(/Payment/Cart)

LOG OFF (/ACCOUNT/LOG

Search

Periodicals

Applied Mechanics and Materials

ISSN: 1662-7482

Volumes (/AMM)

My eBooks (/AMM/ebooks)

Details (/AMM/Details)

Applied Mechanics and

Materials

Editorial Board (/AMM/Editors)

"Applied Mechanics and Materials" is a peer-reviewed journal which specializes in the publication of proceedings of international scientific conferences, workshops and symposia as well as special volumes on topics of contemporary interest in all areas which are related to:

- 1) Research and design of mechanical systems, machines and mechanisms;
- 2) Materials engineering and technologies for manufacturing and processing;
- 3) Systems of automation and control in the areas of industrial production;
- 4) Advanced branches of mechanical engineering such as mechatronics, computer engineering and robotics.

"Applied Mechanics and Materials" publishes only complete volumes on given topics, proceedings and complete special topic volumes. We do not publish stand-alone papers by individual authors.

Authors retain the right to publish an extended, significantly updated version in another periodical.

All published materials are archived with <u>PORTICO (http://www.portico.org/digital-preservation/who-participates-in-portico/participating-publishers/transtech)</u> and <u>CLOCKSS</u>

(/AN

Authors can share research paper via KUDOS platform to help broaden your audience. Share your work via scholarly collaboration networks (like ResearchGate, Academia.edu and Mendeley) in a fully copyrightcompliant way using The Kudos Shareable PDF

Abstracted/Indexed in:

SCImago Journal & Country Rank (SJR) www.scimagojr.com.

Inspec (IET, Institution of Engineering Technology) www.theiet.org.

Chemical Abstracts Service (CAS) www.cas.org.

Google Scholar scholar.google.com.

NASA Astrophysics Data System (ADS) http://www.adsabs.harvard.edu/.

Cambridge Scientific Abstracts (CSA) www.csa.com.

ProQuest www.proquest.com.

Ulrichsweb www.proquest.com/products-services/Ulrichsweb.html.

EBSCOhost Research Databases www.ebscohost.com/.

CiteSeerX citeseerx.ist.psu.edu.

Zetoc zetoc.jisc.ac.uk.

Index Copernicus Journals Master List www.indexcopernicus.com.

WorldCat (OCLC) www.worldcat.org.

Additional Information:

Please ask for additional information: amm@scientific.net (mailto:amm@scientific.net)

Subscription

Irregular: approx. 20-30 volumes per year.

Rates 2019 for:

- Web 2019: EUR 1'154,-,
- Web 'All BackVolumes 2018-till Vol. 1': EUR 44'000,-,
- Print or CD 2019 (+free WEB): EUR 2'946,- (incl. Postage)

Preface

In this volume collected articles presented at Uttaradit Rajabhat University International Conference on Science and Technology 2018 (URUICST 2018. August 2-3, 2018, Uttaradit Thailand). The main topics of issue are technologies in the food processing and agriculture, pharmacology and biotechnologies, technologies for production of renewable energy, advanced materials and chemical technologies in the environmental engineering, designing in mechanical engineering and information technologies.

Committees

Advisory Board

Ruangdet Wongla -Uttaradit Rajabhat University, Thailand

Chanboon Sathiwiriyawong -King Mongkut's Institute of Technology Ladkrabang,

Thailand

Lung-Jen Wang -National Pingtung University, Taiwan

Somyot Plubtieng -Naresuan University, Thailand Charles Christopher Sorrell -NewSouthwales, Australia

Peter C. Angelletti -University of Nebraska, Lincoln, USA Musumari Masika Patou -University School of Public Health, Japan

Michael Hamlin - Lincoln University, Newzeland

Jun Chen - University of Wollonggong, Australia

Ilhan M. Cagirgan - Akdeniz University, Turkey
Stanley R. Ingman - University of North Texas, USA
Andrew Minett - University of Sydney, Australia
Tharapong Vitidsant - Chulalongkorn University, Thailand

Local Organizing Committee

Chair: Ruangdet Wongla, Uttaradit Rajabhat University, Thailand

Co-Chair: Supavinee Sattayaporn, Uttaradit Rajabhat University, Thailand

General Secretary: Kittiwan Junrith, Uttaradit Rajabhat University, Thailand

Porntippa Pinyapong, Uttaradit Rajabhat University, Thailand Jiraporn Nikomtat, Uttaradit Rajabhat University, Thailand Kanokwan Kunyamee, Uttaradit Rajabhat University, Thailand

Committee Members: Napaporn Junsee, Uttaradit Rajabhat University, Thailand

Siriwadee Promnoi, Uttaradit Rajabhat University, Thailand Natkrita Boonprakob, Uttaradit Rajabhat University, Thailand Chattanong Podong, Uttaradit Rajabhat University, Thailand Surapon Chumklin, Uttaradit Rajabhat University, Thailand Chanida Ruangsiriwattanakul, Uttaradit Rajabhat University,

Thailand

Thitiporn Thiankhanthikun, Uttaradit Rajabhat University, Thailand

Issara Inchan, Uttaradit Rajabhat University, Thailand

Nicharee Jaikhumwang, Uttaradit Rajabhat University, Thailand

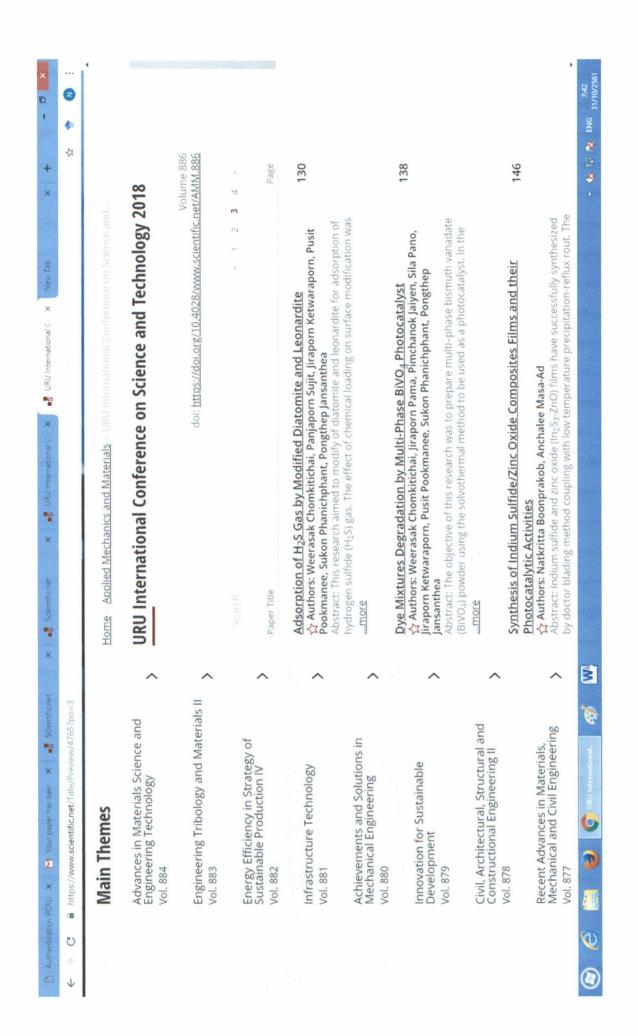
Pongsak Onmoy, Uttaradit Rajabhat University, Thailand

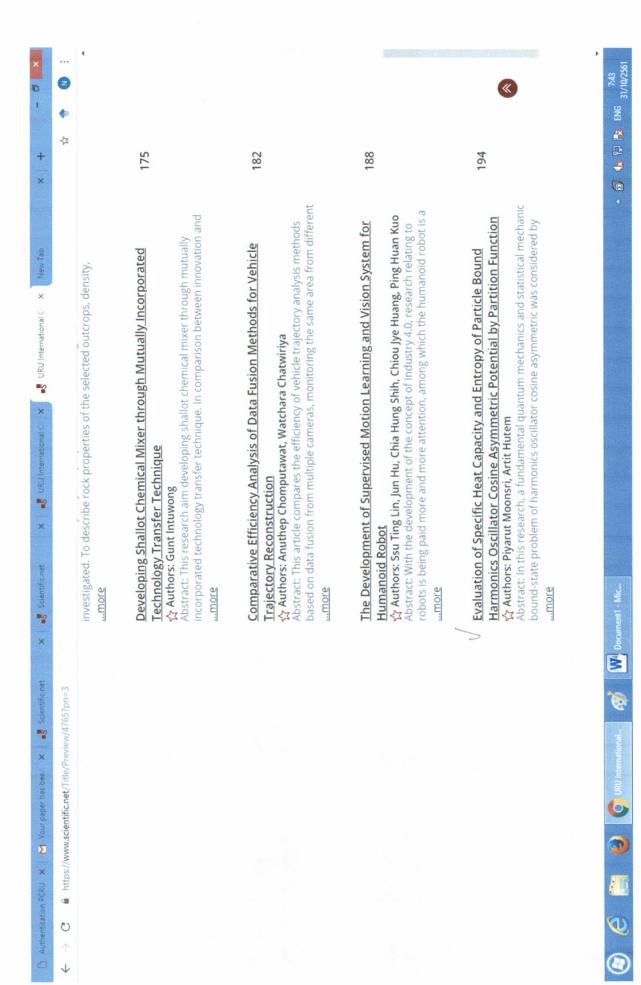
Worrawut Thuwakum, Uttaradit Rajabhat University, Thailand Pornthep Junpeng, Uttaradit Rajabhat University, Thailand Saranyoo Ruanjan, Uttaradit Rajabhat University, Thailand Photjanee Inchan, Uttaradit Rajabhat University, Thailand DISTRIBUTION & ACCESS (/DISTRIBUTOR)

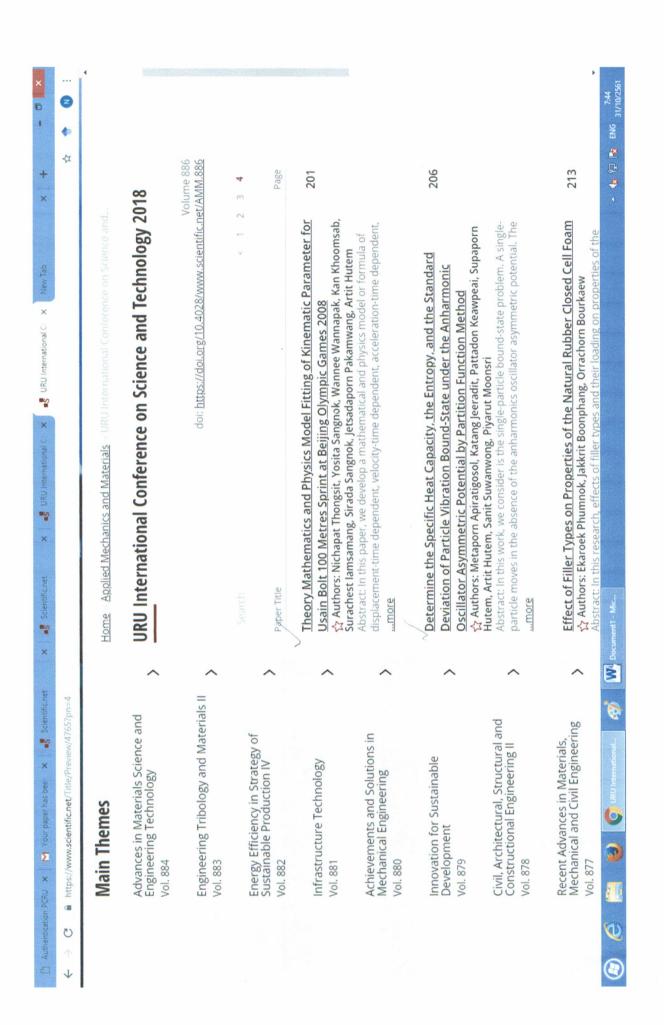
FOR PUBLICATION (/FORPUBLICATION/CONFERENCE)

SUPPLEMENTS (/SUPPLEMENTS)

ABOUT US (/HOME/ABOUTUS)


POLICY & ETHICS (/HOME/MISCONDUCT)


CONTACT US (/HOME/CONTACTS)


IMPRINT & PRIVACY POLICY (/HOME/IMPRINTANDPRIVACYPOLICY)

SITEMAP (/HOME/SITEMAP)

Scientific.Net is a registered brand of Trans Tech Publications Inc © 2018 by Trans Tech Publications Inc. All Rights Reserved

Your paper has been accepted for publication in International Conference on Science and Technology 2018

2 messages

International Conference on Science a... <9783035714142@scientific.net>
Reply-To: "International Conference on Science a..." <9783035714142@scientific.net>
To: "Mr. Artit Hutem" <artithutemdee@gmail.com>

Wed, Aug 29, 2018 at 11:00 AM

Dear Artit Hutem,

Your paper «{PAPER_NAME}» has been accepted for further quality check in order to be published* in the «International Conference on Science and Technology 2018». Although no further action is required, you can verify the status of your manuscript by logging in to the publisher's website:

Please go to https://www.scientific.net/ and log in using the credentials below.

Username: artithutemdee@gmail.com

Password: aoylum61599

After you login please select « Participant » near the top of the screen.

If any further changes to your manuscript become necessary you must notify and obtain permission of an Editor via E-mail PRIOR to uploading a new version. Thank you very much.

Best regards, Kittiwan Junrith uruicst@uru.ac.th

Uttaradit Rajabhat University International Conference on Science and Technology 2018

*Before the publication all of the manuscripts accepted by editors undergo an additional internal quality check. They are verified for the absence of the plagiarism and redundant publication. The accepted manuscripts which do not pass this quality check are rejected from the publication in the journal.

Artit Hutem <artithutemdee@gmail.com>
To: 9783035714142@scientific.net

Thu, Aug 30, 2018 at 7:36 AM

Dear: Editor Kittiwan Junrith

My name is Mr. Artit Hutem in system letter electronic it not Show title Article.

Example: Your paper «{PAPER_NAME}» has been accepted for further quality check in order to be published* in the «International Conference on Science and Technology 2018». Although no further action is required, you can verify the status of your manuscript by logging in to the publisher's website:

Thank very much. Mr. Artit Hutem

[Quoted text hidden]

Evaluation of Specific Heat Capacity and Entropy of Particle Bound Harmonics Oscillator Cosine Asymmetric Potential by Partition Function

Submitted: 2018-05-26

Revised: 2018-08-07

Online: 2019-01-04

Accepted: 2018-08-29

Piyarut Moonsri^{1a}, Artit Hutem^{2b*}

¹Chemistry Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand 67000

²Physics Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand 67000

^aPiyarutto@hotmail.com, ^{b*}artithutemdee@gmail.com

*Corresponding author: Fax: 056-717-123, Mobile: 086-9909536

Keywords: partition function, specific heat capacity, entropy, harmonics oscillator cosine asymmetric potential

Abstract. In this research, a fundamental quantum mechanics and statistical mechanic bound-state problem of harmonics oscillator cosine asymmetric was considered by using partition function method. From the study, it found that the internal energy, the entropy and the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential were increased as the increasing of the parameters of μ , η , and β . While an increasing of parameter α affected to the decreasing of the entropy and the heat capacity. In addition, the increasing values of the entropy and the specific heat capacity value were depended on the decreasing of the parameter α value.

Introduction

Until now, we have described the macroscopic properties of matter phenomenologically with the aid of equations of state which had been derived empirically. For thermodynamics it is no importance, in this connection, how a certain equation of state come about. We have already seen that many quantities of state and equation state (ideal gas, van der Waals gas)[1,4] can be very well understood with the aid of microscopic considerations. The essential superiority of statistical mechanics however, will not become apparent until the modern formulation of canonical distribution and an ensemble defined by this distribution is called a canonical ensemble. The purpose of this paper, we will evaluate the partition function as a function of temperature, internal energy, entropy, specific heat capacity, enthalpy, free energy and standard deviation. The scheme of the article is as follows. In section (2) we wrote the gamma function basic evaluation of integral Gaussian odd and even function. In section (3) we presented the evaluation of the partition function, the entropy, specific heat capacity of particle bound state in harmonics oscillator cosine asymmetric potential. In section (4) contains our conclusions.

Gamma Function $\left(\Gammaig(m{n}ig)\right)$

We start with the gamma function, which is identical with the factorial function (n-1)! and definition as the integral form

$$\Gamma(n) \equiv (n-1)! = \int_{0}^{\infty} e^{-x} x^{n-1} dx \; ; n > 0$$
 (1)

Substituting $x = ay^2$ into eq. (1) takes the form

$$\Gamma(n) = 2a^n \int_0^\infty e^{-ay^2} y^{2n-1} dy \; ; n > 0$$
 (2)

Thus, we obtained another closely which related to the integral, namely

$$\int_{-\infty}^{\infty} e^{-ay^2} y^n dy = \begin{cases} 0 & \text{for } n = \text{odd intrger} \\ 2I_n, & \text{for } n = \text{even intrger.} \end{cases}$$
 (3)

The partition function of particle bound state in potential of $V(q) = \alpha q^2 + \beta q^3 + \mu \cos(\eta q^2)$

In the partition function of particle bound state in potential asymmetric. Consideration as we defined that the μ , η , β and α were parameter of the harmonics oscillator cosine asymmetric potential respectively. It was assumed that identical the masses were present in all regions of the structure. The harmonics oscillator cosine asymmetric potential $V(q) = \alpha q^2 + \beta q^3 + \mu \cos(\eta q^2)$ diagram were sketched as show in fig. (1) [5].

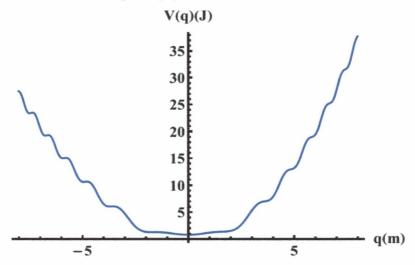


Figure 1 The harmonics oscillator cosine asymmetric potential energy for vibration of a particle bound-state[7]. The unit of distance is the meters.

To solve the problem, it was first necessary to solve the partition function in all regions [2,4,6]. Then, the part of the partition function of an oscillator originating from the potential V(q) was written as this

$$Z = \int_{-\infty}^{\infty} e^{-\frac{V(q)}{k_{\beta}T}} dq . \tag{4}$$

Substituting the potential V(q) into equation (4), we obtain

$$Z = \int_{-\infty}^{\infty} e^{-\frac{\alpha q^2}{k_B T}} e^{-\frac{\left(\beta q^3 + \mu \cos(\eta q^2)\right)}{k_B T}} dq . \tag{5}$$

Since coefficients μ , η , β were positive constant small, the integral was largely determined by the first exponential function, which is appreciable only in the range $q^2 \leq \frac{k_\beta T}{\alpha}$ [2,4,6]. Therefore, the second exponential function factor in equation (5) reflected approximation order in the expansion potential

$$Z(T) = \int_{-\infty}^{\infty} e^{-\frac{\alpha q^{2}}{k_{\beta}T}} \left(e^{-\frac{\mu}{k_{\beta}T}} - \left(\frac{\beta e^{-\frac{\mu}{k_{\beta}T}}}{k_{\beta}T} q^{3} \right) + \left(\frac{\mu \eta^{2} e^{-\frac{\mu}{k_{\beta}T}}}{2k_{\beta}T} q^{4} \right) + \left(\frac{\beta^{2} e^{-\frac{\mu}{k_{\beta}T}}}{2(k_{\beta}T)^{2}} q^{6} \right)$$

$$- \left(\frac{\mu \eta^{2} \beta e^{-\frac{\mu}{k_{\beta}T}}}{2(k_{\beta}T)^{2}} q^{7} \right) + \left(\frac{\mu \eta^{4} (k_{\beta}T - 3\mu) e^{-\frac{\mu}{k_{\beta}T}}}{24(k_{\beta}T)^{2}} q^{8} \right) - \left(\frac{\beta^{2} e^{-\frac{\mu}{k_{\beta}T}}}{6(k_{\beta}T)^{3}} q^{9} \right) + \left(\frac{\mu \eta^{2} \beta^{2} e^{-\frac{\mu}{k_{\beta}T}}}{4(k_{\beta}T)^{3}} q^{10} \right) + \cdots \right) dq.$$

$$(6)$$

By using the relationship of the integral gamma function from equation(3). Therefore the partition function of an oscillator Z(T) could be expressed that

$$Z(T) = e^{-\frac{\mu}{k_{\beta}T}} \sqrt{\frac{\pi k_{\beta}T}{\alpha}} \left\{ 1 + \left(\frac{3\mu\eta^{2}}{8\alpha^{2}} (k_{\beta}T) \right) - \left(\left(\frac{315\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{128\alpha^{5}} \right) (k_{\beta}T)^{2} \right) + \left(\frac{105\mu\eta^{4}}{384\alpha^{4}} (k_{\beta}T)^{3} \right) + \cdots \right\}.$$
(7)

From partition function [5] is defined in equation (7) and the results of calculating results which derived from the equation have shown in figure (2).

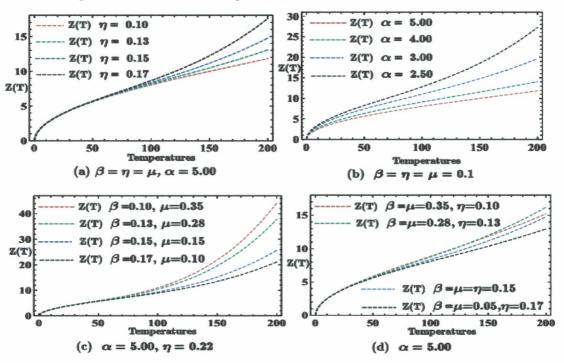


Figure 2 Illustration the partition function of particle bound-state under potential system.

The thermodynamic internal-energy U(T), entropy S(T), could be determined from the microscopic physics of statistical mechanics. The macroscopic work done by the system dW, and displacement, it found that from of the average energy as $dW = \left(\beta_t^{-1}\right) \frac{\partial}{\partial q^2} \left(\ln\left(Z(T)\right)\right) dq$ [5]. With the first law of thermodynamics dQ = dW + dU. From the second law of thermodynamics, dS=dQ/T and the definition of $\beta_t = \left(k_\beta T\right)^{-1}$, the right-hand side of the above equation could be rewritten in terms of the entropy as

$$S(T) = k_{\beta} \ln(Z(T)) + \frac{U(T)}{T}$$
(8)

When taking the logarithm in equation (7) yields

$$\ln(Z(T)) = -\frac{\mu}{k_{\beta}T} + \frac{1}{2}\ln(\frac{\pi k_{\beta}T}{\alpha}) + \ln\left\{1 + \left(\left(\frac{3\mu\eta^{2}}{8\alpha^{2}} + \frac{15\beta^{2}}{16\alpha^{3}}\right)(k_{\beta}T)\right) - \left(\left(\frac{315\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{128\alpha^{5}}\right)(k_{\beta}T)^{2}\right) + \left(\frac{105\mu\eta^{4}}{384\alpha^{4}}(k_{\beta}T)^{3}\right) + \cdots\right\}$$
(9)

We can easily calculate the mean value of the internal energy per oscillator from the partition function Z(T) by noting the following relationships: $U(T) = k_{\beta}T^{2} \frac{\partial}{\partial T} \ln(Z(T))$ therefore the mean value of the internal energy per oscillator of a single-particle bound-state under harmonics oscillator cosine asymmetric potential system could be found from differentiation of the logarithm of partition function with respect to temperature, we obtain

$$U(T) = \mu + \frac{k_{\beta}T}{2} + \left[\left(\frac{3\mu\eta^{2}}{8\alpha^{2}} + \frac{15\beta^{2}}{16\alpha^{3}} \right) \left(k_{\beta}T \right)^{2} \right] - \left[\left(\frac{630\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{128\alpha^{5}} \right) \left(k_{\beta}T \right)^{3} \right] + \left(\frac{315\mu\eta^{4}}{384\alpha^{4}} \left(k_{\beta}T \right)^{4} \right) + \cdots$$

$$(10)$$

The mean value of the internal energy per oscillator U(T) as a temperature dependent and depend on the parameter μ , η , β and α showed in equation (10). As substituting equation (10) into equation (8), we can rewrite the entropy of the potential $V(q) = \alpha q^2 + \beta q^3 + \mu \cos(\eta q^2)$ completely in terms of temperature as

$$S(T) = \frac{k_{\beta}}{2} \ln \left(\frac{\pi k_{\beta} T}{\alpha} \right) + k_{\beta} \ln \left(1 + \left(\left(\frac{3\mu\eta^{2}}{8\alpha^{2}} + \frac{15\beta^{2}}{16\alpha^{3}} \right) (k_{\beta} T) \right) - \left(\left(\frac{315\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{128\alpha^{5}} \right) (k_{\beta} T)^{2} \right)$$

$$+ \left(\frac{105\mu\eta^{4}}{384\alpha^{4}} (k_{\beta} T)^{3} \right) + \frac{k_{\beta}}{2} + \left(\left(\frac{3\mu\eta^{2}}{8\alpha^{2}} + \frac{15\beta^{2}}{16\alpha^{3}} \right) (k_{\beta}^{2} T) \right) - \left(\left(\frac{630\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{128\alpha^{5}} \right) (k_{\beta}^{3} T^{2}) \right)$$

$$+ \left(\frac{315\mu\eta^{4}}{384\alpha^{4}} (k_{\beta}^{4} T^{3}) \right) + \cdots$$

$$(10a)$$

The entropy for the particle oscillate in the potential $V(q) = \alpha q^2 + \beta q^3 + \mu \cos(\eta q^2)$ system was plotted as a function of temperature as shown in figure (3).

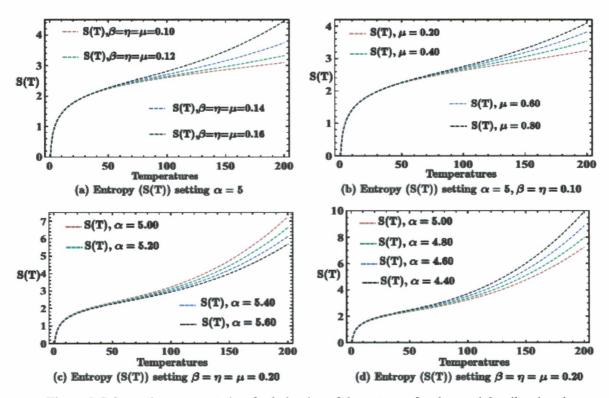


Figure 3 Schematic representation for behavior of the entropy for the particle vibrational bound-state under potential system.

The entropy per oscillator S(T) increase exponentially which depend on the parameter μ , η , β and α . Accordingly, the contribution to the specific heat capacity per oscillation expressed by

$$C_{V}(T) = \frac{\partial}{\partial T} U(T) = \frac{k_{\beta}}{2} + \left[\left(\frac{3\mu\eta^{2}}{8\alpha^{2}} + \frac{15\beta^{2}}{16\alpha^{3}} \right) \left(2k_{\beta}^{2}T \right) \right] - \left[\left(\frac{630\mu^{2}\eta^{4}}{384\alpha^{4}} - \frac{945\mu\beta^{2}\eta^{2}}{64\alpha^{5}} \right) \left(3k_{\beta}^{3}T^{2} \right) \right] + \left(\frac{315\mu\eta^{4}}{96\alpha^{4}} \left(k_{\beta}^{4}T^{3} \right) \right) + \cdots$$

$$(11)$$

The specific heat capacity per oscillation $C_{\nu}(T)$ as a function of temperature depend on the parameter μ , η , β and α show in the figure (4).

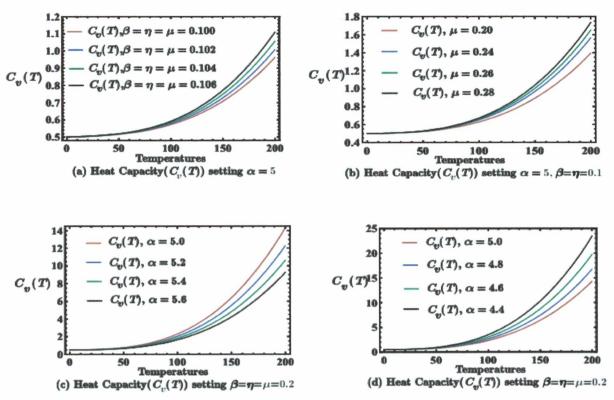


Figure 4 Illustration the specific heat capacity of particle bound-state under potential system.

Discussion and Conclusion

This work, we present the partition function method to obtain the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential. The results show that the magnitude of the partition function, the entropy and the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential vary according to the parameters μ , η , β and α , respectively. If the value of each parameter μ , η , β is increased, then the entropy, the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential have increased. While the values of the lphaparameter are increased, the entropy, the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential have decreased. Moreover, we find that as the values of the α parameter are decreased, the entropy, the specific heat capacity of particle vibration bound-state under harmonics oscillator cosine asymmetric potential have increased. Mention to figure 2(a), when we increase η parameter positive constant from 0.10 to 0.17. It will affect the partition function in the harmonics oscillator cosine asymmetric potential energy to be increased. Mention to figure 2(b), when we decrease α parameter positive constant from 5.00 to 2.50. It will affect the partition function in the harmonics oscillator cosine asymmetric potential energy to be increased. Mention to figure 3(a,b), when we increase μ , η , β parameter positive constant from 0.10 to 0.16 and 0.2 to 0.8. It will affect behavior of the entropy in the harmonics oscillator cosine asymmetric potential energy to be increased.

Acknowledgements

Artit Hutem and Piyarut Moonsri would like to thank the Phetchabun Rajabhat University, Physics for partial support.

References

- [1] Ira N. Levine, Quantum Chemistry, Sixth Edition, Pearson Prentice Hall Education International, 2009, pp.65-96.
- [2] R. Anandakrishnan, A Partition Function Approximation Using Elementary Symmetric Functions, Plosone, Volume 7, Issure 12, 2012, pp.e51352.
- [3] R. Kubo, Statistical Mechanics an Advanced Course with Problems and Solutions, North-Holland Personal Library, 2004, pp.135-158.
- [4] S. O. Nielsen, Nested sampling in the canonical ensemble: Direct calculation of the partition function from NVT trajectories, J. Chem. Phys., 139, 2013, pp.124104.
- [5] A. Hutem and P. Moonsri, Evaluated Excited-State Time-Independent Correlation Function and Eigenfunction of the Harmonics Oscillator Cosine Asymmetric Potential via Numerical Shooting Method, Physics Research International, Volume 2015, Article ID 609495.
- [6]D. Skouteris et. al., Methods for Calculating Partition Functions of Molecules Involving Large Amplitude and/or Anharmonic Motions, J. Chem Theory. Comput, 12, 2016, pp.1011-1018.
- [7] A. Yariv, An Introduction to Theory and Applications of Quantum Mechanics, John Wiley and Sons, 1982, PP.44-45.