

Some properties of 3-uniform hypergraphs of order n and size at least $\left\lfloor \frac{n}{2} \right\rfloor$ สมบัติบางประการของ 3-ไฮเพอร์กราฟเอกรูป ที่มีอันดับ n และขนาดอย่างน้อย $\left\lfloor \frac{n}{2} \right\rfloor$

Krittawit Limkul and Supawan Nanta กฤตวิทย์ ลิ่มกุล และ ศุภาวัลย์ นันตา 2

^{1,2} Mathematics Program, Faculty of Science and Technology Petchabun RaJabhat University, Petchabun, 67000

Abstract

The hypergraph H=(V,E) is said to be order n and size m, if |V|=n and |E|=m, respectively and the hypergraph H is said to be k – uniform if every edge $e\in E,\ |e|=k$. In this paper, some properties of k – uniform hypergraphs of order n and size at least $\left\lfloor \frac{n}{2} \right\rfloor$ are investigated.

Keywords: 3-uniform hypergraph / connected hypergraph

บทคัดย่อ

ให้ H=(V,E) เป็นไฮเพอร์กราฟ จะกล่าวว่า H มีอันดับ n และขนาด m ถ้า |V|=n และ |E|=m ตามลำดับ และจะเรียกไฮเพอร์กราฟ H ว่า k-เอกรูป ถ้า |e|=k ทุก $e\in E$ ใน บทความนี้ ศึกษาสมบัติบางประการของ k-ไฮเพอร์กราฟเอกรูป อันดับ n และ ขนาดอย่างน้อย $\left\lfloor \frac{n}{2} \right\rfloor$ คำสำคัญ: ไฮเพอร์กราฟ / 3-ไฮเพอร์กราฟเอกรูป

1. Preliminaries

A hypergraph H is a pair H = (X, E) where X is a finite nonempty set and E is a nonempty subset of power set of X. The elements of X are called vertices of H and those of E edges of H. Here we investigate the domination problems in hypergraphs which all edges have same cardinality called uniform hypergraphs.

A k-edge in hypergraph H is an edge of size k. The hypergraph H is said to be k-uniform hypergraph if every edge of H is a k-edge. Properties of uniform

hypergraphs has been studied in several papers (see, e.g. (Clemens, 2015, Eustis et al., 2016, Frank et al., 2003, Han & Zhao, 2015 and Mycroft, 2016)).

We shall use the notation $n_H = |V|$ and $m_H = |E|$, and sometimes simply n and m without subscript if actual H need not be emphasized, to denote the order and size of H, respectively. The edge of set E is often allowed to be a multiset in the literature, but in this research, we exclude multiple edges.

An *isolated vertex* in H is a vertex in H that does not contain in any other edges in H. An *isolated edge* in H is an edge on H that does not intersect any other edge in H. Also in the problems studied here, one may assume that $|e| \geq 2$ holds for all $e \in E$ and H has no isolated vertex.

The degree of a vertex v in H, denoted by $d_H(v)$ or d(v) if H is clear from the context, is the number of edges of H which contain v. A vertex of degree t is called a degree t - vertex. The number of degree t - vertices in H is denoted by $n_t(H)$. The minimum degree among the vertices of H is denoted by $\delta(H)$ and the maximum degree by $\delta(H)$.

2. Characterization of 3-uniform hypergraphs

In this section, we give some useful properties of 3 –uniform hypergraph. Recall that, 3 – uniform hypergraph H=(V,E) is a hypergraph which every edge of H is an 3 – edge, i.e. |e|=3 for all $e\in E$. The following definition denote i and \mathbf{Z} are sets of real numbers and integers, respectively.

The *floor* and *ceiling* functions are map from a real number to the greatest preceding or the least succeeding integer, respectively. More precisely, let $x \in$; and $m,n \in \mathbb{Z}$, floor $(\lfloor x \rfloor)$ and ceiling $(\lceil x \rceil)$ may be defined by the set equations,

$$\lfloor x \rfloor = max \{ m \in \mathbf{Z} \mid m \le x \}$$

 $\lceil x \rceil = min \{ n \in \mathbf{Z} \mid n \ge x \}$

Observation 2.1 Let H=(V,E) be a 3-uniform hypergraph of size m, then $\sum_{v\in V}d\left(v\right)=3m$.

For a hypergraph H=(V,E) of size m, we have $\Delta(H)\leq m$ so, we let $V_i=\{x\in V\mid d(x)\geq i\}$ for $i\in\{1,2,3...,m\}$.

Example 2.2 Let H = (V, E) be a hypergraph as follow:

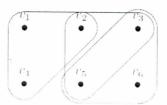


Figure 1: H = (V, E)

and from definitions of V_i we have

i)
$$V_1 = \{x \in V \mid d(x) \ge 1\} = \{v_1, v_2, v_3, v_4, v_5, v_6\} = V$$

ii)
$$V_2 = \{x \in V \mid d(x) \ge 2\} = \{v_2, v_3, v_5\}$$

iii)
$$|V_1| = |V|$$
 and $|V_1| + |V_2| = 9 = 3(3)$.

Form the above example, we get the following lemma.

Lemma 2.3 Let H=(V,E) be a hypergraph of order n, size m and $\delta(H)\geq 1$. Then

$$\sum_{v \in V} d(v) = \sum_{i=1}^{m} |V_i| = n + \sum_{i=2}^{m} |V_i|.$$

Proof. Let $V(H) = \{v_1, v_2, \mathbf{K}_-, v_n\}$ such that $d(v_1) = k_1, d(v_2) = k_2, \mathbf{K}_-, d(v_n) = k_n$. Form $\delta(H) \ge 1$ we have $|V_1| = n$ and $1 \le k_i \le m$ for all i since |E(H)| = m.

Thus
$$\sum_{i=1}^n d(v_i) = k_1 + k_2 + K + k_n$$
. We will show that $\sum_{i=1}^m \left|V_i\right| = k_1 + k_2 + K + k_n$.

Assume that $1 \le k_1 \le k_2 \le K \le k_2 \le m$

So
$$\sum_{i=1}^{m} \left| V_i \right| = \sum_{i=1}^{k_1} \left| V_i \right| + \sum_{i=k_1+1}^{k_2} \left| V_i \right| + K + \sum_{i=k_{n-1}+1}^{k_n} \left| V_i \right|, \quad (\text{if } k_n < m \text{ , } V_j = \varnothing \text{ for all } k < j \le m \text{)}$$

$$= k_1 n + \left(k_2 - k_1 \right) \left(n - 1 \right) + \left(k_3 - k_2 \right) \left(n - 2 \right) + K + \left(k_n - k_{n-1} \right) \left(n - \left(n - 1 \right) \right)$$

$$= k_1 + k_2 + K k_n$$

Therefore
$$\sum_{v \in V} d(v) = \sum_{i=1}^{m} |V_i| = n + \sum_{i=2}^{m} |V_i|$$
.

Lemma 2.4 Let H = (V, E) be a 3-uniform hypergraph of order n and size m.

Then
$$\sum_{i=2}^{m} |V_i| \ge m-1$$
.

Proof. Consider
$$\sum_{v \in V} d\left(v\right) = \sum_{i=1}^{m} \left|V_{i}\right| = n + \sum_{i=2}^{m} \left|V_{i}\right|, \text{ we have}$$

$$3m = n + \sum_{i=2}^{m} \left|V_{i}\right|$$

$$m = \frac{n}{3} + \frac{\sum_{i=2}^{m} \left|V_{i}\right|}{3}$$

$$m - \frac{n}{3} = \frac{\sum_{i=2}^{m} \left|V_{i}\right|}{3} \leq \sum_{i=3}^{m} \left|V_{i}\right|$$

Form $n \ge 3$, we conclude that $\sum_{i=2}^{m} |V_i| \ge m-1$

Theorem 2.5 Let H = (V, E) be a 3-uniform hypergraph of order n and size m.

Then

1. For
$$n$$
 is odd, $m \ge \left\lfloor \frac{n}{2} \right\rfloor$ if and only if $\sum_{v \in V} d(v) \ge n + m - 1$.

2. For
$$n$$
 is even, $m \ge \frac{n}{2} - 1$ if and only if $\sum_{v \in V} d(v) \ge n + m - 2$.

Proof.

1. Let n=2q+1 for some $q \in \mathbb{Z}$, from assumption we have,

$$m \ge \left\lfloor \frac{2q+1}{2} \right\rfloor$$
$$= \left\lfloor q + \frac{1}{2} \right\rfloor$$
$$= q$$

This implies that $m \ge q$ Suppose that $\sum_{v \in V} d(v) < n + m - 1$. Since $\sum_{v \in V} d(v) = 3m$,

3m < n+m-1=2q+1+m-1. Then 2m < 2q. This mean that m < q, it is impossible. Thus $\sum_{v \in V} d\left(v\right) \ge n+m-1$.

Conversely, let $\sum_{v \in V} d(v) \ge n + m - 1$.

We have

$$\sum_{v \in V} d(v) = 3m \ge n + m - 1$$

$$2m \ge n - 1$$

$$m \ge \frac{n - 1}{2} \ge \left| \frac{n - 1}{2} \right|$$

if n = 2q + 1, then

$$m \ge \left\lfloor \frac{n-1}{2} \right\rfloor = \left\lfloor \frac{2q+1-1}{2} \right\rfloor = q = \left\lfloor \frac{2q}{2} \right\rfloor = \left\lfloor \frac{2q}{2} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor$$

Therefore $m \ge \left\lfloor \frac{n}{2} \right\rfloor$

2. Let n = 2q for some $q \in \mathbb{Z}$, from assumption we have,

$$m \ge \frac{2q}{2} - 1 = q - 1$$

This implies that $m \ge q-1$. Suppose that $\sum_{v \in V} d(v) < n+m-2$. Since $\sum_{v \in V} d(v) = 3m$,

3m < n+m-2 = 2q+m-2. Then 2m < 2q-2. This mean that m < q-1, it is impossible. Thus $\sum_{v \in V} d(v) \ge n+m-2$.

Conversely, let
$$\sum_{v \in V} d(v) \ge n + m - 2$$
.

We have

$$\sum_{v \in V} d(v) = 3m \ge n + m - 2$$

$$2m \ge n - 2$$

$$m \ge \frac{n - 2}{2} = \frac{n}{2} - 1$$

Therefore $m \ge \frac{n}{2} - 1$

Acknowledgement

This work was supported by the Research and Development Institute Phetchabun Rajabhat University.

References

- Clemens, D. (2015). Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs. Electronic Notes in Discrete Mathematics, 49, 23-30.
- Eustis, A., A. Henning, M., & Yeo, A. (2016). Independence in 5-uniform hypergraphs. Discrete Mathematics, 339, 1004–1027.
- Frank, A., Kiraly, T., & Kriesell, M. (2003). On decomposing a hypergraph into kconnected sub-hypergraphs. Discrete Applied Mathematics, 131, 373 – 383.
- Han, J., & Zhao, Y. (2015). Minimum codegree threshold for Hamilton $\it l-cycles$ in k – uniform hypergraphs. Journal of Combinatorial Theory, Series A, 132, 194 -223.
- Mycroft, R. (2016). Packing k partite k uniform hypergraphs. Journal of THE WHITE PHEET OF THE CONTROL OF TH Combinatorial Theory, Series A, 138, 60-132.