

บันทึกข้อความ

	งานธุรการ
MANUEL F	ปฏิบ ล เกลรูนยาวเลงผู้แขกเพยไท
เลขที่รับ	C1/264
	o sia beck
เวลา	Ja MoHI
***************************************	dr.

	dr
ส่วนราชการคณะวิทยาศาสตร์และเทคโนโลยีมหาวิทยาลัยราชภัฏเพช่	รบูรณ์ (นางสาววนิตา กักส์ลูรส)
ที่วศ ๐๗ / ๕๙	มีนาคม ครุสุน
เรื่อง ขอส่งบทความทางวิชาการที่นำเสนองานประชุมวิชาการระดับนานาช	าติ

เรียน คณบดีคณะวิทยาศาสตร์และเทคโนโลยี

ตามที่ ข้าพเจ้าได้รับการอนุญาตให้นำเสนองานวิจัย เรื่อง DNA Barcodes for Cultivar Identification of Thailand *Tamarindus indica* L. ในการประชุมวิชาการนานาชาติ " The 2015 International Conference on Science and Technology (TICST 2015)" ซึ่งจัดเมื่อ วันที่ ๔ – ๖ พฤศจิกายน ๒๕๕๘ ณ มหาวิทยาลัย ราชมงคลเทคโนโลยีธัญญบุรี ถนนรังสิต-นครนายก อำเภอธัญญบุรี จังหวัดปทุมธานี ความละเอียดแจ้งแล้วนั้น

บัดนี้ คณะกรรมการจัดงานดังกล่าว ได้คัดเลือก Full Paper ของงานวิจัย เรื่อง DNA Barcodes for Cultivar Identification of Thailand *Tamarindus indica* L. ตีพิมพ์ ในฐานข้อมูล IEEE หน้า ๑๔๘-๑๕๒ ดังเอกสารที่แนบ

จึงเรียนมาเพื่อทราบ และใช้ในการประกันคุณภาพของมหาวิทยาลัยฯต่อไป

์ (รองศาสตราจารย์ ดร. เบญจพร ศรีสุวรมาศ)

อาจารย์ประจำหลักสูตรสาขาวิชาวิทยาศาสตร์ศึกษา

ofour auco

- อนุกฎก - กระทึกกราสิดา - สไละ

M K.a. & K

Proceedings 2015 International Conference on Science and Technology

Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand

November 4-6, 2015

IEEE Xplore®
Digital Library

The International Conference on Science and Technology

The main topics of TICST2015 include:

Physics, Earth Science, and Applied Physics

Mathematics and Statistics

Chemistry and Chemical Technology

Computer Science and Information Technology

Biology and Biotechnology

Applied Science and other related topics

Jointly Organized by:

Rajamangala University of Technology Thanyaburi (Thailand)

National Pingtung University of Science and Technology (Taiwan)

Kobe University (Japan)

Islamic University of Indonesia (Indonesia)

National Food Research Institute (Japan)

International Conference on Science and Technology 2015

November 4-6, 2015 Faculty of Science and Technology Rajamangala University of Technology Thanyaburi, Thailand

Jointly organized by

- Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (Thailand)
- National Pingtung University of Science and Technology (Taiwan)
- Kobe University (Japan)
- Islamic University of Indonesia (Indonesia)
- National Food Research Institute (Japan).

Technical support:

- IEEE Computer Society Thailand
- acm Thailand
- IEEE Thailand Section
- IEEE XPlore
- IEEE

DNA Barcodes for cultivar identification of Thailand *Tamarindus indica*.L.

Benchaporn Srisuvoramas

Biology Department, Faculty of Science and Technology. Phetchabun Rajabhat University. Amphoe Muang, Phethabun Province, 67000. Thailand. benchaporn.sri@pcru.ac.th

Surachest Aiumsamang

Biology Department, Faculty of Science and Technology. Phetchabun Rajabhat University. Amphoe Muang, Phethabun Province, 67000 Thailand. topthesun1978@gmail.com

Thep Piamalung

Faculty of Architectural Technology Phetchabun Rajabhat University. Amphoe Muang,Phethabun Province,67000.Thailand. Teppear@gmail.com

Abstract- This study aims to investigated Tamarindus indica.L. chloroplast rbcL gene for ribulose-1,5-bisphosphate carboxylase/oxygenase, large subunit as the molecular marker to identified the cultivar level of Tamarindus indica.L. in Thailand. The partial rbcL gene of 19cultivars were sequences approximately 611-712 bp. The sequence alignment and Phylogenetic Tree analysis were generated by Clustal W and NJ methods. The result of nucleotide sequence alignment of partial rbcL gene for all cultivars were divided into 19 groups. The different of these groups similar to the different of local name of Tamarind cultivars in Phetchabun Province, Thailand. Base on these results indicated that 19 cultivar DNA Barcodes can supported the local opinions act as the scientific data to identification of tamarind cultivars in Thailand.

Keywords-DNA Barcodes, Tamarindus indica L., RbcL gene, Ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco.

I. INTRODUCTION

Tamarinds are the symbol and economic agricultural plant products of Phetchabun Province, Thailand due to their usefulness. There are so many cultivars of Tamarinds in Thailand with the same scientific name: *Tamarindus indica* L. such as:

Sompong Sansenya

Department of Chemistry, Faculty of Science, RajamangalaUniversity of Technology, Thanyaburi, Rangsit-Nakhon Nayok Road, Klong6, Thanyaburi, PathumThani12110, Thailand. sompongbiochem@yahoo.co.th.

Lertharong Sripanom.

Department of Chemistry, Faculty of Science, Rajamangala University of Technology, Thanyaburi, Rangsit-Nakhon NayokRoad, Klong6, Thanyaburi, PathumThani12110, Thailand lertharong@hotmail.com

Prakaitong, Srichompoopling, Muenjong, Sangartit, Srichompooklom, Preao-puenmuang, Sripakdee, Phetbourtong, Preao – yak, Khuntee soy, Praroj,

Khuntee yourk, Numpueng etc. These are named by the farmers and the merchants called. So that the same cultivar had two or three names. Confusion were happened in the using purpose for food or medicinal. Another confusion was planting purpose as too many young tamarind plants were faked. Furthermore, the world climate is changed, the tamarinds in Thailand are contaminated with fungi. The complete automated procedure for systematic, crop improvement or gene variation studying is necessary. Molecular data base is performed as DNA Barcodes. These research project aims to reconstruction Phylogenetic Tree. Simultaneously, single nucleotide is analyzed for using as molecular marker to diagnosis, classification and cultivar identification for tamarind crop

П. MATHERIAL AND METHOD

A. Samples

improvement in Thailand.

Around 1,900 tamarind seeds of different cultivars were used in this study. The 7 day leaves of seedling were collected and kept at -20 degree celsius for DNA analysis. The 19 cultivars of *Tamarindus indica* L. were: Preao-yak;(PRY), Sangartit;(SAT),

978-1-4673-7670-9/15/\$31.00 ©2015 IEEE

Praroj;(PRR), Prakaiphet;(PKP), Prakaitong;(PKT), Khuntee –yourk;(KTY), Khuntee –soy;(KTS),

Seetongbow;(STB), Seetongnug; (STN), Fagdap;(FAD),Numpueng;(NUP), Muenjong; (MUJ), Seetongjook;(STJ), Sripakdee;(SPD), Intapalum;(ITPL), Preaopuenmuang;(PPM), Phetbourtong; (PBT), Srichompootongpling; (SCPP), and Srichompootongklom;(SCPK). As show in Fig. 1 and 2.

B. DNA extractions

DNA extractions and normalization were performed by C-TAB method[1], using Real Genomics Kit,RBC Bioscience Crop,Taiwan.

C. PCR amplification and detection

- 1) PCR amplifications are performed using 2 primers which were designed by Macrogen Ltd., Korea. The two primers are RbcL-Tam-F03 and RbcL-Tam-R04.[2]. PCR products were detected through 1% gel electrophoresis and send to sequencing
- 2) The DNA sequencing of 19 tamarinds were aligned by Clustal W (Fig.3) and using NJ method for phylogenetic tree reconstruction[3,4].As shown in Fig.4
- *3)* The single nucleotide of each cultivar was analyzed using BLASTn, compared to *T.indica rbcL* gene from GenBank (Acession No: AB378727 gi 219687663)[7].].As shown in Table1.

III. RESULTS AND DISSCUSION

The results of sequencing and analization were shown in table 1 indicated that all of tamarinds were 611-712 bp. They were in the same species, concordance with the maxidentity(%)table, there were difference from each other not more than 5% (not show the data table)[5]

TABLE 1. The length of nucleotide sequences of *rbcL* gene from 19 Thai tamarind cultivars compared to *T.indica rbcL* gene from GenBank (Accession No: AB378727 gi 219687663) using Blastn v.2.2.27

19 Thailand Tamarind cultivars	No. of bp (partial CDS)	Site to site of partial gene that compared to complete gene of T.indicaL. rbcL gene. (complete CDS) 11398
1.Srichompooklom	641	6881346
2.Srichompoopling	671	7441359
3.Seetongbow	611	7311347
4.Seetongnug	621	7311351
5.Seetongjook	649	7041344
6.Khuntee-yourk	643	7061347
7.Khuntee-soy	649	7031349
8.Sripakdee	678	7341386
9.Sangartit	671	6921337
10.Prakaiphet	646	7341372
11.Preaopuenmuang	670	7001344
12.Praroj	645	7061347
13.Numpueng	712	7321394
14.Intapalum	643	7061347
15.Prakaitong	671	7291351
16.Preao-yak	654	7041349
17.Fagdap	644	7011350
18.Muenjong	645	6991349
19.Phetbourtong	657	6961349

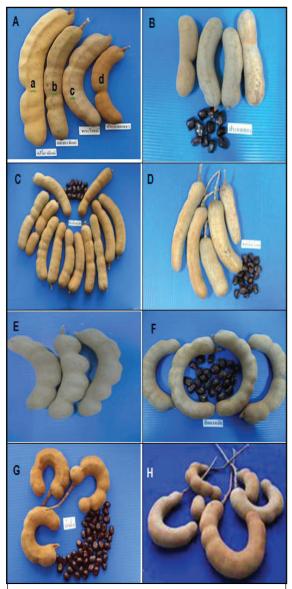


Figure 1: The feature of 11 Thai Tamarind Cultivars.

A. a = Preao - yak; (PRY),

b= Sangartit;(SAT),

c= Praroj;(PRR),

d= Prakaiphet;(PKP),

B.= Prakaitong;(PKT),

C.= Khunteeyourk;(KTY),

D = Khuntee - soy;(KTS),

E.= Seetongbow;(STB),

F.= Numpueng;(NUP),

G.= Numpueng;(NUP),

H.= Muenjong; (MUJ),

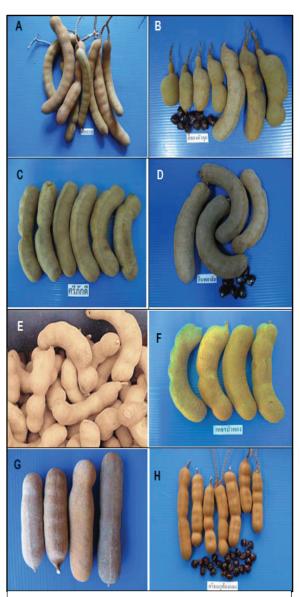


Figure 2: The feature of 8 ThaiTamarind Cultivars.

A = Fagdap;(FAD),

B.= Seetongjook;(STJ),

C.= Sripakdee;(SPD),

D.= Intapalum;(ITPL),

E.= Preao-puenmuang;(PPM),

F.= Phetbourtong; (PBT),

G.= Srichompootongpling;(SCPP),

H.= Srichompootongklom;(SCPK).

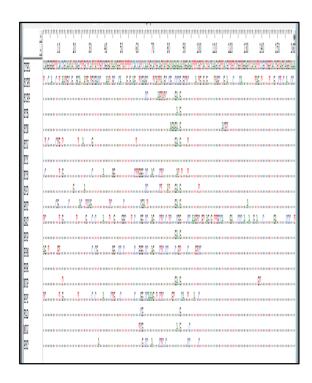


Figure 3: Features and similarities in alignment window of 19 Tamarind cultivar sequences, present number of base 1-160 bp. DOT(.)=view conservation by plotting identities to a standard as a dot.

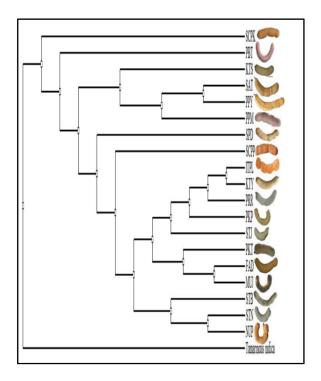


Figure 4: Phylogenetic tree reconstruction from alignment of DNA sequencing in 19 cultivars of Tamarinds in Thailand. Using *Tamarindus indica* from GenBank as out group for rooting the tree trough NJ method.

Srichompoo-tongklom; SCPK = PRT Phetbourtong; KTS Khuntee-soy; SAT Sangartit; PRY Preao-yak; PPM Preao-puenmuang; SPD Sripakdee: SCPP Srichompoo-tongpling; ITPI. Intapalum; KTY Khuntee-yourk; PRR Praroj; Prakaiphet; PKP Seetongjook; STJ PKT Prakaitong: FAD Fagdap; MUJ Muenjong; STB Sectongbow; STN Seetongnug;

From Phylogenetic Tree of 19 Thailand tamarind cultivars in Fig. 4 could be devised into 15 groups, they were:

Numpueng.

1. SCPK = Srichompoo-tongklom

2. PBT = Phetbourtong.

NUP

3. KTS = Khuntee–soy

4. SAT = Sangartit and PRY=Preao-yak

5. PPM = Preao-puenmuang

6. SPD = Sripakdee.

7. SCPP = Srichompoo-tongpling.

8. ITPL = Intapalum and KTY=Khuntee-yourk.

9. PRR = Praroj.

10. PKP = Prakaiphet.

11. STJ = Seetongjook.

12. PKT = Prakaitong.

13. FAD = Fagdap and MUJ=Muenjong.

14. STB = Sectongbow.

15. STN = Seetongnug and NUP=Numpueng

These data indicated that their single nucleotide sequences in partial of *rbcL* gene were variated or point mutated but the differences of each orther not over than 5%. So they are still in the same species. And they can be use as DNA Barcode for cultivar level identification of Thai Tamarinds.

Nevertheless, they have been concordanced with research of Patipanee khunthapok, 2007[6],

IV. CONCLUSION

1) From phylogenetic reconstruction study showed that the 19 Thailand tamarind cultivars were divided nto 15 groups concordanced with the

tamarind derived cultivars Phetchabun opinion in Phetchabun Province, Thailand.

2) *T.indica* Chloroplast *rbcL* gene for ribulose -1,5-bis phosphate carboxylaese /oxygenase large subunit, partial CDS only 611-712 bp, (while the full gene is

1398 bp.)enough for DNA Analysis. This result cause saving time and money.

3) These DNA barcodes could be used as molecular maker for classification and identification of *Tamarindus indica* L. in both species and cultivar levels. By comparison of single nucleotide sequences using Clustal W and Blatn software and can be use as DNA Barcodes for sustainably crop improvements and developments in Thailand.

ACKNOWLEDMENT

This project is supported by the annual Government statement of expenditure 2014, Thank you Assoc. Prof. Dr. Pruang Junda, the chancellor of Phetchabun Rajabhat University for all services and convenient during in conduct the research. And Dr. Ratana Chayaratanasin, the director of Phitsanulok Artificial Insemination and Biotechnology Research Center for supporting N₂ liquid to this project.

REFERENCES

- [1] J.J. Doyle, and J.LA, Doyle, "Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue," Photochemical Bulletin, vol. 19, 1987, pp. 11–15.
- [2] C.W. Dieffenbach and , G. S. Dveksler. PCR primer: Laboratory manual, 2nd ed. New York: Cold Spring Harbor, 2003
- [3] F. Jeanmougin, J.D. Thompson, M. GonM, D.G. Higgins, and T.J.Gibson, Multiple Sequence Alignment with Clustalx. Trends in Biochemical Sciences, Southampton: International Centre for Underutilized Crops, 1998.
- [4] E. Kass, and M.Wink, "Phylogenetic relationships in the Papilionoideae (family Leguminosae)based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS1 and 2)," Molecular Phylogenetics and Evolution, vol. 8,1997, pp.65-88.
- [5] D.L.Swofford, PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Method). Beta Version4.0610. Sunderland, Massachusetts. Semina. Associats, 2003.
- [6] Patipanee khunthapok, "DNA Fingerprint and chemical assessment of selected Tamarind Cultivars with high laxative activity", Master of Science Program in Biotechnology, Faculty of Science, Chulalongkorn University, 2007, Vol.23, pp.403-405
- [7] S.Sukrong, "gi|219687663|dbj|AB378727.1, Tamarindus indica chloroplast rbcL gene for ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit, complete cds, specimen_voucher: PCU:TI-SP/P5," NCBI, 2007.