

Source details

International Journal of Agriculture and Biology

Years currently covered by Scopus: from 2008 to 2025

Publisher: Friends Science Publishers ISSN: 1560-8530 E-ISSN: 1814-9596

Subject area: (Agricultural and Biological Sciences: General Agricultural and Biological Sciences)

Source type: Journal

View all documents > Set document alert ☐ Save to source list

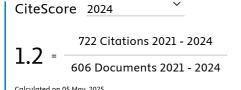
CiteScore 2024

①

(i)

(i)

1.2


SJR 2024

0.182

SNIP 2024

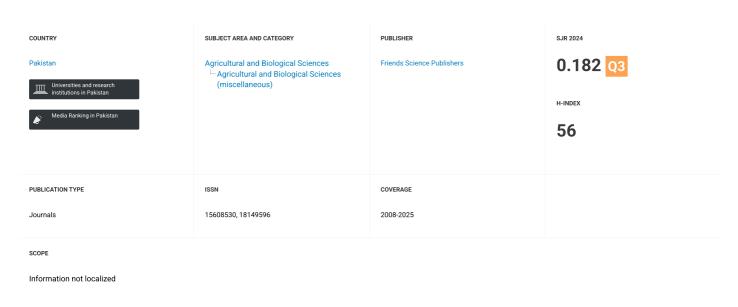
0.249

CiteScore CiteScore rank & trend Scopus content coverage

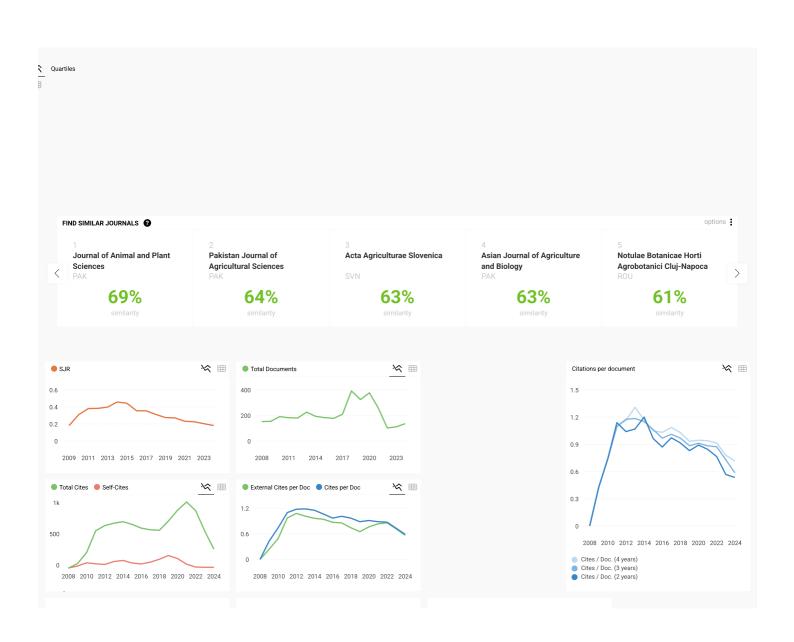
CiteScoreTracker 2025 ①

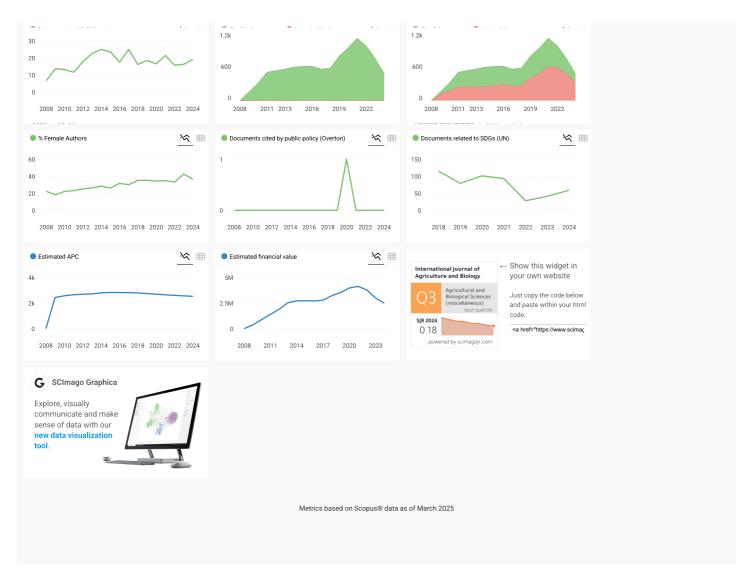
$$0.5 = \frac{264 \text{ Citations to date}}{481 \text{ Documents to date}}$$

Last updated on 05 July, 2025 • Updated monthly


CiteScore rank 2024 ①

Category	Rank	Percentile
Agricultural and Biological Sciences General Agricultural and Biological Sciences	#149/228	34th


View CiteScore methodology ➤ CiteScore FAQ ➤ Add CiteScore to your site &



International Journal of Agriculture and Biology 3

Q Join the conversation about this journal

INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596

24-0626/2025/34:340105 http://www.fspublishers.org

Full Length Article

Harnessing Old Oyster Mushroom Substrate: A Circular Economy Approach to Inky Cap Mushroom (*Coprinopsis radiate*) Cultivation

Karun Phungbunhan^{1*†}, Chanirat Phungbunhan² and Itsara Tangsuwan^{3†}

¹Department of Agriculture, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

²Department of Home Economics, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

³Department of Natural Resources and Environmental Management, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

*For correspondence: karun.phu@pcru.ac.th

[†]Contributed equally to this work and are co-first authors

Received 20 November 2024; Accepted 15 March 2025; Published online 26 March 2025

Editor: Arshad Javaid

Abstract

Mushroom cultivation in Thailand primarily uses rubber tree sawdust as a substrate in plastic bags, resulting in an annual production of approximately 120,000 tons. However, this method generates significant amounts of spent mushroom substrate (SMS), which is often discarded or minimally repurposed as fertilizer, contributing to environmental issues. This study was carried out to evaluate the potential of SMS, derived from oyster mushroom (*Pleurotus ostreatus*), as an alternative substrate for cultivating inky cap mushroom (*Coprinopsis radiata*) within a circular economy framework. Five substrate formulas with varying proportions of rubber tree sawdust (SD) and SMS (100:0, 75:25, 50:50, 25:75 and 0:100) were tested using a completely randomized design. The results showed no statistically significant differences in the number of mushrooms, stem length, or biological efficiency across treatments. However, treatments with balanced ratios of SD and SMS (SD 75%:SMS 25% and SD 50%:SMS 50%) produced the highest fresh weight yields during the initial 1–10 days of cultivation, with yields of 72.05 g and 72.16 g, respectively. The SD100%:SMS0% treatment produced the largest cap width at 1.31 cm. The findings underscore SMS's role in reducing production costs, minimizing waste, and supporting sustainable agriculture. Future research should explore SMS utilization under diverse environmental conditions and for other mushroom species to enhance its commercial viability in mushroom production. This study highlights SMS's contribution to circular economy goals by transforming agricultural waste into a valuable resource.

Keywords: Circular economy; Coprinopsis radiata; Inky cap mushroom; Nutrient recycling; Spent mushroom substrate

Introduction

In Thailand, mushroom cultivation primarily involves growing mushrooms in plastic bags, with rubber tree sawdust as the primary substrate. Annual mushroom production is estimated at around 120,000 tons. A significant issue with this method is the lack of disposal for spent mushroom substrate (SMS) after cultivation (Panutat 2018). The majority of mushrooms grown in bags belong to the genus *Pleurotus* spp. SMS, or the spent mushroom substrate, poses environmental challenges due to the large amount of waste generated from mushroom cultivation. Most SMS is repurposed as organic fertilizer, with some left to decompose naturally at cultivation sites (Wu *et al.* 2020a). These disposal

methods not only contribute to environmental waste but also overlook SMS's potential for reuse in a circular economy, transforming waste into valuable resources (Medina and Afagh 2023). SMS typically comprises fungal fibers, extracellular enzymes released by mushrooms for down various substances, and breaking lignocellulosic materials (Lim et al. 2013). These residual by-products contain high nutritional value and can be repurposed in numerous applications (Antunes et al. 2020). Utilizing SMS effectively is essential for advancing a sustainable mushroom industry within a circular economy framework. Therefore, examining SMS characteristics is necessary to identify optimal reuse methods (Martín et al. 2023). SMS is recognized as a nutrient-rich organic waste with potential for reuse (Li et al. 2023).

To cite this paper: Phungbunhan K, C Phungbunhan, I Tangsuwan (2025). Harnessing old oyster mushroom substrate: a circular economy approach to inky cap mushroom (*Coprinopsis radiate*) cultivation. *Intl J Agric Biol* 34:340105. https://doi.org/10.17957/IJAB/15.2340

 $@\ 2025\ The\ Authors.\ International\ Journal\ of\ Agriculture\ and\ Biology\ published\ by\ Friends\ Science\ Publishers,\ Faisalabad,\ Pakistan$

This is an open access article under the terms of the Creative Commons Attribution License, which permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited

Farmers in Thailand predominantly use rubber tree sawdust as a substrate in plastic bags. However, rubber tree sawdust prices have increased by over 50% in recent years, with a truckload now costing around 830-890 USD, or more depending on transport distance (Nukpook et al. 2019). Selecting suitable agricultural or agro-industrial waste substrates for mushroom cultivation is essential for achieving economically viable production (Banasik et al. 2017). Inky cap mushroom (Coprinopsis radiate) is a nutritionally rich mushroom with economic importance in many countries. It is a valuable source of protein, vitamins, minerals, and beneficial bioactive compounds (Miles and Chang 2004). This mushroom has a short cultivation cycle, allowing farmers to generate quick income. Quality substrate is vital for producing high-quality yields, with natural materials like rice straw, sawdust, and rice husks commonly used. Substrate selection influences growth and yield by affecting aeration, water retention, and nutrient availability for mushrooms (Akinyele and Atanda 2008; Sánchez 2010). Studies have investigated SMS's use as a substrate for various mushroom species, focusing on popular mushrooms such as oyster mushroom (Pleurotus ostreatus) and hairy jew's ear (Auricularia polytricha) (Hoa et al. 2022; Zied et al. 2024). The SMS from Pleurotus spp. has been repurposed to cultivate mushrooms like grey oyster mushroom (Pleurotus sajor-caju) (Sharma and Jandaik 1992a, hairy jew's ear (Sharma and Jandaik 1992b) and wine cap stropharia (Stropharia rugosoannulata) (Rinker 2002, 2017). Specifically, oyster mushroom SMS has been reused for cultivating oyster mushroom (Pardo-Giménez and Pardo-González 2009; Picornell et al. 2016) and white oyster mushroom (P. florida) (Ashrafi et al. 2014). Despite these applications, there is no standardized method for reusing spent oyster mushroom sawdust blocks as substrate for cultivating inky cap mushroom.

The primary degradation role of *Pleurotus* spp. in decomposition allows these mushrooms to rapidly extend their mycelium, decomposing plant tissues effectively. Each mushroom species produces unique enzymes to degrade lignin-cellulose structures in plant cells. Once one species has fully decomposed these structures, other saprophytic microorganisms use their enzymes to further break down the material (Stamets 2000) using oyster mushroom. SMS for inky cap mushroom presents unique challenges due to specific growth patterns and nutritional requirements. Prior research indicates that nutrient dynamics in SMS are complex due to microbial interactions, affecting nutrient access and thus growth variability (Gómez 1984; Hawkins 2018). The limited understanding of SMS's effectiveness as a substrate for inky cap mushroom highlights the need for targeted research to enhance substrate efficiency in mushroom cultivation systems. The aim of this study was to evaluate the potential of SMS, derived from oyster mushroom, as an alternative substrate for cultivating inky cap mushroom within a

circular economy framework.

Materials and Methods

Experimental details

This experiment was conducted at the Department of Agriculture, Faculty of Agricultural and Industrial Technology, Phetchabun Rajabhat University, Phetchabun, Thailand, between April and October 2024. The mushroom spawn was obtained from Lanlalin Biotech Company Limited, certified under the code of practice for mushroom culture (TAS 2507-2016). The following steps describe the process of cultivating Inky cap mushrooms in plastic bags. All ingredients for each substrate formula were combined in a mixing tray and thoroughly blended. Water was added according to the formula's requirements, and mixing was continued until the moisture content reached 70-75%. A portion of the prepared substrate was set aside to measure moisture content and checks nutrient levels. Heat–resistant plastic bags (15 \times 28 cm) were filled with approximately 600 g of the substrate, pressed firmly into solid blocks. A plastic bottle neck was placed on each bag, sealed with cotton wool, and covered with a plastic lid. Water was added to a sterilization container, covering the bottom to a depth of 15-20 cm. A metal rack was placed above the water, and a burlap sack was laid over the rack and container edges to prevent direct contact between the mushroom bags and container walls. The mushroom bags were stacked in layers, covered with another burlap sack then the container was sealed with a lid and steamed for 4 h at a temperature of 80–100°C. After steaming, the heat was turned off, and the bags were left to cool overnight before inoculating with prepared millet spawn. The mushroom bags were arranged in rows for easy handling. Hands and tools were sterilized with alcohol. Cotton spawn was broken up in a basin to ensure even distribution and 3-5 g of spawn was inoculated into each bag. The inoculated bags were placed in a room at ambient temperature, away from direct sunlight, and incubated for 5-7 days until the mycelium fully colonized the substrate. The bags were left until the mycelium had bound the substrate firmly, indicating readiness for fruiting. After 5 days of incubation, the mushroom bags were transferred to a black plastic-covered grows room. Excess cotton spawn was removed to prevent contamination by green mold. The bag surfaces were misted lightly to stimulate mushroom development, and water-filled plastic cups were placed beside the bags to maintain humidity. On dry days, water was sprayed around the grow room to support the moisture levels required by inky cap mushrooms.

Treatments

The experiment was conducted using a completely

randomized design (CRD) with five treatments and 20 replications per treatment, totalling 100 experimental units. Each treatment contained different proportions of rubber tree sawdust (SD) and spent mushroom substrate (SMS) as follows: Treatment 1 consisted of SD 100% and SMS 0%; Treatment 2 consisted of SD 75% and SMS 25%; Treatment 3 consisted of SD 50% and SMS 50%; Treatment 4 consisted of SD 25% and SMS 75%; and Treatment 5 consisted of SD 0% and SMS 100%. Each treatment batch, weighed 5 kg, was supplemented with 200 g of fine rice bran, 10 g of Epsom salt (MgSO4·7H₂O), 100 g of granulated sugar, 50 g of calcium carbonate and 50 g of urea (46–0–0) Water was added to adjust the moisture content to 70–75%.

Data recording

Growth and yield data of mushrooms were collected daily over a 30-day period. Data regarding harvest frequency, number of mushrooms, cap width, stem length, fresh weight and biological efficacy were recorded. The accumulated data were used to calculate the biological efficiency. Biological efficiency was determined using the formula:

$$Biological\ Efficiency\ (\%) = \frac{Weight\ of\ Fresh\ Fruiting\ Body\ (g)}{Dry\ Weight\ of\ Substrate\ (g)} \times\ 100$$

Statistical analysis

The collected data values were presented as the mean \pm standard deviation. Differences between the means of individual groups were assessed using a one-way ANOVA followed by Duncan's New Multiple Range Test at a 95% confidence level.

Results

The cap width results show that the amount of fresh sawdust and spent mushroom substrate significantly affects cap width, with a statistically significant difference (P < 0.05), as shown in Table 1. Treatment 1 (SD100%:SMS0%) had the highest cap width at 1.31 ± 0.09 cm, followed by Treatment 4 (SD25%:SMS75%), Treatment 5 (SD0%:SMS100%), Treatment 3 (SD50%:SMS50%), and Treatment 2 (SD75%:SMS25%), with cap widths of 1.28 ± 0.14 , 1.24 ± 0.10 , 1.23 ± 0.11 and 1.20 ± 0.14 cm, respectively. This indicates that the amount of fresh sawdust and spent mushroom substrate influences cap width.

For stem length, however, the results indicate no significant effect of fresh sawdust and spent mushroom substrate on stem length, as there was no statistically significant difference (P < 0.05) as shown in Table 1. Regarding biological efficiency (BE), there was no significant difference in the biological efficiency of Inky Cap mushroom production among the treatments (P < 0.05), as shown in Table 1.

The total fresh weight results show that the amount of

fresh sawdust and spent mushroom substrate significantly affects the fresh weight yield (P < 0.05), as shown in Table During days 1–5, the SD75%:SMS25% SD50%:SMS50% treatments yielded the highest fresh weights at 72.05 and 72.16 g, respectively. The SD100%:SMS0% and SD0%:SMS100% treatments yielded the lowest fresh weights, with SD100%:SMS0% having the lowest average at 41.76 g. In the 6-10 days period, the SD50%:SMS50% treatment yielded the highest fresh weight (91.92 g), while the (SD0%:SMS100%) treatment yielded the lowest fresh weight (80.18 g). From days 11 to 30, the SD100%:SMS0% treatment produced the highest fresh weight, while the (SD0%:SMS100%) treatment consistently yielded the lowest fresh weight during this period. It can be observed that the ratios SD75%:SMS25% and SD50%:SMS50% resulted in the highest yield during the initial period (1–10 days). A decline in yield occurred across all ratios, with the most rapid decrease observed between days 6-10. After 20 days, the mushroom yield decreased to the point where there was little difference between the various ratios. Since inky cap mushrooms have a short harvesting period, it is advisable to use the ratios of SD75%:SMS25% or SD50%:SMS50% for cultivation, as they provide the highest yield during the early stages of cultivation (Table 3).

Discussion

This study demonstrated that the use of spent mushroom substrate significantly affects the cap width and fresh weight of inky cap mushroom aligning with previous research such as the one that showed that SMS from king oyster mushroom (*P. eryngii*) and maple oyster mushroom (*P. cystidiosus*) can effectively replace fresh sawdust in cultivating hairy jew's ear (Wu *et al.* 2020b). Similarly, that improving substrate composition impacts the growth and quality of oyster mushroom and maple oyster mushroom (Hoa *et al.* 2022). This study is significant as it specifically focuses on using SMS as a substrate for inky cap mushroom, aligning with circular economy principles that emphasize sustainable resource utilization (Wu *et al.* 2020b; Hoa *et al.* 2022).

The experimental results indicated that the formula using 100% fresh sawdust (SD100%:SMS0%) provided the best outcome in terms of mushroom cap width, with an average of 1.31 ± 0.09 cm. This may be attributed to the porous structure and organic content of fresh sawdust, which supports mushroom growth. However, formulas with high SMS proportions, such as (SD25%:SMS75%) and (SD0%:SMS100%), also produced mushrooms with large caps, suggesting that an appropriate level of SMS can adequately meet the nutritional needs of inky cap mushroom for growth and may reduce reliance on fresh sawdust (Sripheuk 2007). This finding is consistent reported that SMS retains essential nutrients such as nitrogen and

Table 1: Frequency of harvests number of fruiting bodies cap width, stem length and biological efficiency of inky cap mushroom fruiting bodies in varying ratios of rubber tree sawdust and spent mushroom substrate

Treatment	Harvest frequency	_	Cap width	Stem length	Biological
	(times)	Bodies	(cm)	(cm)	Efficiency (%)
1 rubber tree sawdust 100% and spent mushroom substrate 0%	$9.95 \pm 1.70a$	44.95 ± 6.70	$1.31 \pm 0.09a$	3.85 ± 0.55	93.51 ± 28.22
2 rubber tree sawdust 75% and spent mushroom substrate 25%	$7.95 \pm 2.01b$	43.75 ± 10.06	$1.20\pm0.14b$	3.84 ± 0.33	92.83 ± 13.23
3 rubber tree sawdust 50% and spent mushroom substrate 50%	$8.30\pm1.92b$	47.50 ± 5.33	$1.23 \pm 0.11 ab$	3.62 ± 0.81	89.95 ± 7.10
4 rubber tree sawdust 25% and spent mushroom substrate 75%	$8.65 \pm 2.05 ab$	46.35 ± 6.25	$1.28 \pm 0.14 ab$	5.51 ± 9.23	90.49 ± 32.70
5 rubber tree sawdust 0% and spent mushroom substrate 0%	$9.95 \pm 2.69a$	44.95 ± 7.07	$1.24 \pm 0.10 ab$	3.46 ± 0.65	89.49 ± 22.34
F-Test	*	ns	*	ns	ns
C.V.%	23.50	15.96	9.75	16.01	24.94

Note: (*) Significant, (ns) = Non-significant. Statistically significant differences at a 95% confidence level (P < 0.05), with mean comparisons made using Duncan's new multiple range test (DMRT)

Table 2: Fresh weight (g/treatment) at each interval of inky cap mushroom with different ratios of rubber tree sawdust and spent mushroom substrate

Treatment	1-5 Days	6-10 Days	11-15 Days	16-20 Days	21-25 Days	26-30 Days
1 rubber tree sawdust 100% and spent mushroom substrate 0%	$41.76\pm11.45c$	$88.10\pm13.77ab$	$110.61 \pm 10.88a$	$118.78 \pm 9.98a$	$122.97 \pm 9.63a$	$125.39 \pm 9.74a$
2 rubber tree sawdust 75% and spent mushroom substrate 25%	$72.05 \pm 11.11a$	$87.77 \pm 11.23ab$	$96.87 \pm 11.88 bc$	102.05 ± 11.63 bc	$102.45 \pm 11.58b$	$102.58 \pm 11.58b$
3 rubber tree sawdust 50% and spent mushroom substrate 50%	$72.16 \pm 6.74a$	$91.92 \pm 4.72a$	$99.99 \pm 6.75b$	$105.93 \pm 7.03b$	$106.65 \pm 7.16b$	$106.69 \pm 7.12b$
4 rubber tree sawdust 25% and spent mushroom substrate 75%	$66.46 \pm 15.99a$	$90.30\pm17.13a$	$98.30\pm18.02b$	103.77 ± 17.13 bc	$104.33 \pm 17.16b$	$104.40 \pm 17.17b$
5 rubber tree sawdust 0% and spent mushroom substrate 0%	$54.17 \pm 14.14b$	$80.18\pm10.22b$	$89.46 \pm 8.42c$	$97.14 \pm 8.74c$	$100.20\pm9.02b$	$101.22 \pm 9.29b$
F-Test	*	*	*	*	*	*
C.V.%	20.05	13.84	11.95	10.84	10.65	10.64

Note: (ϕ) Significant Statistically significant differences at a 95% confidence level (P < 0.05), with mean comparisons made using Duncan's new multiple range test

Table 3: Nutrient composition before and after cultivating inky cap mushroom with different ratios of rubber tree sawdust and spent mushroom substrate

Nutrients	N (mg/kg)	P (mg/kg)	K (mg/kg)	pН	Temp (°C)	EC (µS/cm)
Before Cultivating	(2 2)	(& &)	(& &)		1 ()	, ,
1 rubber tree sawdust 100% and spent mushroom substrate 0%	$337.41 \pm 46.52b$	478.86 ± 51.28	$970.05 \pm 125.83b$	9.0 ± 0.0	27.5 ± 2.42	$4587.64 \pm 1026.66b$
2 rubber tree sawdust 75% and spent mushroom substrate25%	$661.53 \pm 201.5ab$	835.77 ± 292.86	$1488.57 \pm 287.03a$	9.0 ± 0.0	27.62 ± 1.61	$9121.2 \pm 2527.09 ab$
3 rubber tree sawdust 50% and spent mushroom substrate 50%	$718.45 \pm 311.6a$	949.92 ± 490.44	$1568.97 \pm 377.06a$	9.0 ± 0.0	28.6 ± 2.85	$10672.76 \pm 5011.49a$
4 rubber tree sawdust 25% and spent mushroom substrate 75%	$340.07 \pm 69.88b$	528.29 ± 152.19	$1025.63 \pm 265.93b$	9.0 ± 0.0	27.08 ± 1.29	$4911.48 \pm 1106.32b$
5 rubber tree sawdust 0% and spent mushroom substrate 0%	$421.0\pm89.1ab$	581.78 ± 117.1	$1188.58 \pm 235.31ab$	9.0 ± 0.0	26.6 ± 1.35	$5047.95 \pm 551.68b$
F-Test before	*	Ns	*	Ns	Ns	*
C.V. % before	46.42	46	27.95	0	7.1	51.12
After Cultivating						
1 rubber tree sawdust 100% and spent mushroom substrate 0%	$83.78 \pm 10.88b$	$118.69 \pm 14.3b$	$239.41 \pm 27.8b$	8.58 ± 0.59	30.81 ± 0.56	$1199.15 \pm 141.72b$
2 rubber tree sawdust 75% and spent mushroom substrate25%	$217.81 \pm 64.51ab$	$316.72 \pm 94.74ab$	$616.53 \pm 238.8ab$	8.9 ± 0.21	30.31 ± 0.64	$2903.76 \pm 625.22ab$
3 rubber tree sawdust 50% and spent mushroom substrate 50%	$296.09 \pm 122.33a$	$413.17 \pm 160.26a$	$843.32 \pm 341.23a$	8.97 ± 0.06	31.02 ± 0.65	$4138.90 \pm 1622.47a$
4 rubber tree sawdust 25% and spent mushroom substrate 75%	$347.18 \pm 98.28b$	$563.91 \pm 152.78b$	$1072.52 \pm 295.89b$	8.61 ± 0.57	31.24 ± 0.5	$5865.26 \pm 1931.22b$
5 rubber tree sawdust 0% and spent mushroom substrate 0%	$584.29 \pm 243.33a$	$835.49 \pm 361.57a$	$1607.29 \pm 667.35a$	8.7 ± 0.41	31.28 ± 0.55	$8241.51 \pm 3268.56a$
F-Test after	*	*	*	ns	ns	*
C.V. % after	67.88	67.47	66.18	4.76	2.07	67.27

Note: (*) Significant, (ns) = Non-significant. Statistically significant differences at a 95% confidence level (P < 0.05), with mean comparisons made using Duncan's new multiple range test (DMRT)

phosphorus after the initial mushroom cultivation (Medina and Afagh 2023).

Regarding stem length, the results showed no statistically significant differences among the treatments, suggesting that the SD–to–SMS ratio may not directly influence stem length. This finding in terms of biological efficiency, no significant differences were observed across all treatments. This may be due to the short harvesting period of inky cap mushroom, resulting in similar overall efficiencies. These findings are consistent that short harvesting periods require balanced nutrient availability in the initial growth phase (Wu *et al.* 2020b). Fresh weight yield results revealed that the (SD75%:SMS25%) and (SD50%: SMS50%) treatments produced the highest yields

during the first 1–10 days, yielding 72.05 and 72.16 g, respectively. This suggests that an optimal SD-to-SMS ratio can maximize early production. This observation aligns that balanced substrate mixtures improve mushroom yield during the early stages of cultivation (Zied *et al.* 2024). However, during days 6–10, a sharp decline in yield was observed across all treatments, likely due to nutrient depletion in the substrate after the initial intense absorption phase. Furthermore, differences in substrate ratios may influence aeration. Rapidly growing mushroom mycelia require good aeration to ensure adequate oxygen supply, which promotes rapid mycelial growth (Royse *et al.* 2004). Additionally, fast-growing mushrooms can quickly absorb nutrients from the substrate, enabling them to

form fruiting bodies in a short period. For example, straw mushrooms can form fruiting bodies within 7–10 days after the mycelium fully colonizes the substrate (Miles and Chang 2004). Nutrient depletion in the substrate may limit mushroom growth in later stages (Medina and Afagh 2023). Therefore, adding supplemental nutrients during cultivation could help maintain stable yields in later stages.

Nutrient levels and environmental conditions in the substrate before and after cultivating inky cap mushrooms, focusing on nitrogen, phosphorus, potassium, pH, temperature, relative humidity, and electrical conductivity. Initially, Treatment 3 showed the highest nutrient concentrations, while Treatment 1 had the lowest. After cultivation, all treatments exhibited a significant decrease in nutrient levels, particularly nitrogen, as the mushrooms absorbed these nutrients for growth. However, Treatments 4 and 5 retained slightly higher nutrient levels compared to other treatments, possibly due to the breakdown of stored nutrients in the spent mushroom substrate, continued microbial activity, and the recycling of remaining nutrients back into the substrate. The electrical conductivity values also decreased, especially in Treatment 1, indicating nutrient depletion and varying nutrient uptake efficiency among treatments.

A key recommendation from this study is to use SD-to-SMS ratios of SD75%:SMS25% or SD50%:SMS50% for cultivating inky cap mushroom, as these ratios provided the highest yields during the early harvesting period. This approach is particularly suitable for mushrooms with short harvesting cycles. Moreover, using SMS reduces production costs, decreases dependence on fresh sawdust, and promotes the sustainable reuse of waste from the mushroom industry. This practice supports sustainable agriculture and circular economy principles (Wu *et al.* 2020a; Medina and Afagh 2023; Zied *et al.* 2024).

Conclusion

This study confirmed that spent mushroom substrate (SMS) is an effective and sustainable alternative for cultivating inky cap mushroom. The results showed that balanced ratios of fresh sawdust and SMS (SD75%:SMS25% and SD50%:SMS50%) provided the highest yields during the early harvesting period. SMS demonstrated potential as a cost-effective nutrient source, supporting sustainable agriculture and circular economy principles. Future research should focus on enhancing SMS properties and optimizing its long-term use in mushroom cultivation.

Acknowledgements

Research Funding: Budget for Science, Research and Innovation (SRI) – Fundamental Fund, Fiscal Year 2024 from Phetchabun Rajabhat University, Phetchabun, Thailand.

Author Contributions

KP and IT planned the experiments and interpreted the results; KP and CP made the write up statistically analyzed the data and made illustrations.

Conflict of Interest

All authors declare no conflict of interest.

Data Availability

Data presented in this study will be available on a fair request to the corresponding author.

Ethics Approval

Not applicable to this paper.

References

- Akinyele BJ, OO Atanda (2008). Effects of substrate density on the growth and yield of mushroom (*Coprinus* spp.). *J Microbiol Biotechnol Res* 4:56–65
- Antunes F, S Marçal, O Taofiq, AMMB Morais, AC Freitas, ICFR Ferreira, M Pintado (2020). Valorization of mushroom by–products as a source of value–added compounds and potential applications. *Molecules* 25:1-40
- Ashrafi R, MH Mian, MM Rahman, M Jahiruddin (2014). Recycling of spent mushroom substrate for the production of oyster mushroom. *Res Biotechnol* 5:13–21
- Banasik A, A Kanellopoulos, GDH Claassen, JM Bloemhof-Ruwaard, JGVD Vorst (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. *Intl J Prod Econ* 183:409–420
- Gómez P (1984). Soil improvement through the use of mushroom substrate. Agric Res J 52:15–25
- Hawkins J (2018). The influence of mushroom waste on plant crop yields. Plant Sci Innov 34:345–360
- Hoa HT, CL Wang, CH Wang (2022). Effect of different substrates on growth and yield of oyster mushrooms (*Pleurotus ostreatus* and *Pleurotus cystidiosus*). Mushroom Sci 15:45–57
- Li TH, PF Che, CR Zhang, B Zhang, A Ali, LS Zang (2023). Recycling of spent mushroom substrate: Utilization as feed material for larvae of the yellow mealworm *Tenebrio molitor* (Coleoptera: Tenebrionidae). *Ins Sci* 24:678–689
- Lim SH, YH Lee, HW Kang (2013). Efficient recovery of lignocellulolytic enzymes from spent mushroom compost of *Pleurotus* spp. and potential use in dye decolorization. *Mycobiology* 41:214–220
- Martín C, GI Zervakis, S Xiong, G Koutrotsios, KO Strætkvern (2023).

 Spent substrate from mushroom cultivation: Exploitation potential toward various applications and value-added products.

 Bioengineered 14:1-41
- Medina P, F Afagh (2023). Nutrient cycling in spent mushroom substrate and its impact on sustainable agriculture. J Agric Waste Manage 19:78–92
- Miles PG, ST Chang (2004). Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd edn. Boca Raton, CRC
- Nukpook K, R Satitpong, T Somdech, S Nantinee, C Chatsuda (2019).
 Development of screw press for packing corn husk substrate in long polytene bag for mushroom cultivation. *Thai Agric Res J* 37:37–47
- Panutat C (2018). Thailand's mushroom situation. Presented at the Special Lecture on Mushroom Research Development. Available at:

- https://www3.rdi.ku.ac.th/wp-contents/uploads/2018 (Accessed: 15 February 2018)
- Pardo-Giménez A, JE Pardo-González (2009). Development of new substrates for cultivating *Pleurotus ostreatus* (Jacq.) P. Kumm. based on substrates degraded by mushroom cultivation. *ITEA Prod Veg* 105:89–98
- Picornell MR, A Pardo-Giménez, AD Juan (2016). Agronomic assessment of spent substrates for mushroom cultivation. *Biotechnol Agron Soc* 20:363–374
- Rinker DL (2017). Spent mushroom substrate uses. In: Edible and Medicinal Mushrooms: Technology and Applications, pp::427-454. Zied DC, A Pardo-Giménez (Eds.), Wiley-Blackwell: West Sussex, UK
- Rinker DL (2002). Handling and using "spent" mushroom substrate around the world. *In: Mushroom Biology and Mushroom Products*, pp::43–60. Sánchez JE, G Huerta, E Montiel (Eds.). Universidad Autónoma del Estado de Morelos: Cuernavaca, Mexico
- Royse DJ, TW Rhodes, S Ohga, JE Sanchez (2004). Yield, mushroom size and time to production of Pleurotus cornucopiae (*Oyster mushroom*) grown on switch grass substrate spawned and supplemented at various rates. *Bioresour Technol* 91:85–91
- Sánchez C (2010). Cultivation of *Pleurotus ostreatus* and other edible mushrooms. *Appl Microbiol Biotechnol* 85:1321–1337

- Sharma VP, CL Jandaik (1992a). Recycling of mushroom industry waste for growing *Pleurotus sajor-caju* and *Auricularia polytricha*. *Ind J Mycol Plant Pathol* 22:182–186
- Sharma VP, CL Jandaik (1992b). Supplementation of wheat straw for improved yields of black ear mushroom (*Auricularia polytricha*). *Mushr Res* 1:57–58
- Sripheuk P (2007). Use of spent mushroom compost in a cultivation of abalone mushroom (*Pleurotus abalonus* Han, Chen et Cheng) and jew's ear mushroom (*Auricularia polytricha* (Mont.) Sacc. in plastic bags. *Khon Kaen Agric J* 35:356–363
- Stamets P (2000). Growing Gourmet and Medicinal Mushrooms, 3rd edn. Ten Speed Press: Berkeley
- Wu CY, CH Liang, ZC Liang (2020a). Suitability of spent mushroom sawdust waste (SMSW) for cultivating wood ear mushrooms (Auricularia polytricha). Mycol Sci 11:145–156
- Wu CY, CH Liang, ZC Liang (2020b). Evaluation of using spent mushroom sawdust wastes for cultivation of Auricularia polytricha. Mycol Sci 10:220–231
- Zied DC, JE Sánchez, R Noble, A Pardo-Giménez (2024). Economic impact of reusing spent mushroom substrate in commercial mushroom farming. Mushr Prod Econ 12:457–472