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ABSTRACT
This study explores the use of a Residual Compensation Extreme Learning
Machine (RC-ELM) to predict the growth of Jasmine 105 rice, specifically
in the context of slow-release organic fertilizers (SROFs). The experiment
involved four types of fertilizers: Cow Manure, Filter Cake, Aerated Com-
post, and a standard chemical control (27-12-6). The macronutrient con-
tent of each fertilizer was used as key input variables in the RC-ELM model,
with real-time field sensor data providing insights. After extensive prepro-
cessing through normalization and feature engineering, RC-ELM demon-
strated superior performance compared to traditional models, such as Lin-
ear Regression, Support Vector Machines (SVM), and standard ELM vari-
ants. In particular, RC-ELM achieved an R? = 0.9609, Y=14.982x — 103.58
for Aerated Compost, reducing the Mean Squared Error (MSE) by 30%.
The results indicate that while organic fertilizers like Aerated Compost
may incur higher costs, they offer long-term sustainability benefits, includ-
ing improved soil fertility. The study further highlights the importance
of adopting organic agricultural practices, which align with internation-
ally recognized standards, such as Organic Thailand and IFOAM, for food
safety and environmental preservation. These findings underscore the po-
tential of RC-ELM in enhancing crop yield predictions while supporting
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1. INTRODUCTION

The cultivation of Thailand’s Jasmine Rice, Khao
Dawk Mali 105, plays a crucial role in the country’s
agricultural sector, contributing significantly to do-
mestic consumption and export revenue. Known for
its distinct aroma and high quality, KDML 105 has
become a global favorite. [1] The growing need for
sustainable agricultural practices in the cultivation
of Jasmine 105 rice is critical due to challenges in
optimizing yield and quality while minimizing envi-
ronmental impacts. Traditional farming techniques,
including conventional fertilizer application and sta-
tistical models, have often led to inconsistent out-
comes, such as nutrient leaching and suboptimal
growth rates. Although historically utilized, these

methods lack the precision and adaptability required
for dynamic agricultural environments [2]. Given the
increasing global demand for food and the environ-
mental risks associated with inefficient fertilizer use,
there is a critical need for innovative solutions such as
slow-release organic fertilizers (SROFs) and advanced
machine learning models. These tools aim to enhance
growth prediction accuracy and resource utilization,
thus improving both crop yield and sustainability [3].

Recent research has investigated machine learning
algorithms and fertilizer management techniques in
rice cultivation, but challenges persist. Support Vec-
tor Regression and Artificial Neural Networks have
shown limited success in capturing the complex, non-
linear interactions between growth factors and yield
[4, 5]. Furthermore, conventional fertilizers are often
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used without considering the benefits of slow-release
organic fertilizers [6], which offer better nutrient ef-
ficiency. Studies, such as Li et al. (2024), examined
SROFs across crops but failed to integrate them with
machine learning models for rice, highlighting a gap
in enhancing both nutrient management and predic-
tive accuracy [7].

Our research aims to address current limitations by
developing a model that integrates the Residual Com-
pensation Extreme Learning Machine [8] with slow-
release organic fertilizers for Jasmine 105 rice cultiva-
tion. Previous models like Support Vector Regression
and Artificial Neural Networks have shown potential
but lack the predictive accuracy needed for complex
agricultural systems. By combining RC-ELM with
SROFs, we can enhance nutrient management and in-
crease the precision of rice growth prediction, thereby
improving yield, promoting sustainability, and mini-
mizing environmental impact [9]. This integrated ap-
proach enhances precision agriculture and contributes
to sustainable farming practices.

2. RELATED WORKS

The use of Machine Learning in optimizing agri-
cultural practices has gained significant traction in
recent years. This section reviews the existing litera-
ture on integrating ML with slow-release organic fer-
tilizers, with a specific focus on applications in Thai-
land.

2.1 Agricultural Photoperiod Sensitivity of
The Thai Jasmine Rice Variety Khao
Dawk Mali 105

Photoperiod sensitivity plays a crucial role in cul-
tivating The Thai Rice variety Khao Dawk Mali 105
(KDML105). This variety’s flowering and maturation
are highly influenced by changes in day length, align-
ing with optimal climatic conditions such as sufficient
rainfall and moderate temperatures. Traditional agri-
cultural practices in Thailand have leveraged this sen-
sitivity to maximize yields. However, these methods
often encounter significant limitations in dynamic and
complex environments [10].

Conventional techniques such as direct seeding and
transplanting have been integral to rice cultivation for
decades. These methods depend heavily on historical
knowledge and the intuitive experience of farmers.
While effective in stable conditions, they often lack
the precision to handle the intricate interactions be-
tween various environmental factors. This can lead to
inconsistent yields and inefficient resource use, partic-
ularly when unexpected weather changes disrupt the
timing of flowering in photoperiod-sensitive rice vari-
eties [11].

Traditional statistical models, such as linear re-
gression, have been widely applied to predict crop
yields and optimize farming practices. However,

these models rely on simplifying assumptions, such
as linear relationships between variables, which often
fail to capture the complexity of agricultural systems
[12]. Factors like soil composition, weather variabil-
ity, and plant genetics interact in non-linear ways,
making it difficult for traditional models to deliver
accurate predictions under changing environmental
conditions [13]. Recent advancements in slow-release
fertilizers offer a solution by providing a sustained nu-
trient supply over time, improving nutrient use effi-
ciency, and reducing application frequency [14]. This
approach supports the photoperiod-sensitive growth
of KDML 105 rice, enhancing yield and sustainabil-
ity. Integrating slow-release fertilizers with advanced
predictive models optimizes fertilizer use and boosts
rice productivity in Thailand.

2.2 Slow-Release Organic Fertilizers in Agri-
culture

Slow-release organic fertilizers (SROFs) provide a
controlled nutrient release that matches the crop’s
growth requirements, reducing nutrient losses and im-
proving use efficiency. These fertilizers enhance soil
health, increase crop yields, and minimize environ-
mental impacts compared to conventional fertilizers.
Integrating SRFs with predictive models can further
improve their effectiveness in agricultural practices
[15]. The SROFs typically consist of organic mate-
rials such as Compost, manure, and biochar, which
decompose slowly [16]. This gradual decomposition
ensures a steady supply of nutrients, improving soil
health and promoting sustainable agricultural prac-
tices. Key benefits include improved nutrient effi-
ciency, enhanced soil structure, and reduced environ-
mental pollution [11, 16-17]. Some common SROF's
include:

Manure-Based Fertilizers: Animal manure, of-
ten combined with straw or other organic matter, pro-
vides a slow-release source of nitrogen, phosphorus,
and potassium.

Compost: Compost made from plant residues,
food waste, and manure offers a balanced mix of nu-
trients and improves soil structure.

Biochar: Biochar, produced from the pyrolysis
of organic material, enhances nutrient retention and
soil health by providing a stable habitat for beneficial
microorganisms.

The study [18] assessed the effects of slow-release
and controlled-release urea fertilizers on rice yield and
environmental impact. The research found that slow-
release urea fertilizers increased rice grain yield by
10% compared to conventional urea. Additionally,
ammonia volatilization was significantly reduced by
30-50%, depending on the type of controlled-release
fertilizer used. The study also noted a 20-30% reduc-
tion in greenhouse gas emissions, including methane
and nitrous oxide, showcasing the ecological benefits
[19]. These findings highlight the dual advantages of
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enhanced agricultural productivity and reduced envi-
ronmental footprint using advanced urea fertilizers.

2.3 Extreme Learning Machine

An Extreme Learning Machine (ELM) is a feed-
forward neural network specifically designed explic-
itly for single-hidden layer feedforward networks
(SLFNs). It is known for its rapid learning capa-
bilities and high generalization performance. Unlike
traditional neural networks that require iterative pa-
rameter tuning, ELM assigns input weights and bi-
ases randomly and keeps them constant throughout
training [20]. The output weights are determined an-
alytically, significantly speeding up the training pro-
cess.

Input Layer

Hidden Layer Output Layer

Activation
Function

Transfer Y
function
Activation

Function
>» O

Transfer

3%
function

Activation
Function

(0]

weights = I¥';; (Random ) Activation Function= Linear weights =
Bias = b; (Random) Sigmoid, RBF. Efc. Transfer Func. = Linear, Nonlinear
#= number of input neuron (1-) j = number of hidden neuron (7-m) k= number of output neuron
Fig.1: The structure of Extreme Learning Machine.

Random Initialization: The input weights a;,
and biases b; of the hidden layer neurons are ran-
domly assigned and remain fixed throughout train-
ing.

Linear Parameter Solution: Given N training
samples (z;,t;), where x; is the input vector, and ¢;
is the target output, the hidden layer output matrix
H is computed as:

G(a, by, ;) G(ar,br,x)
H=| i s )
G(ay, b, zN) G(ar,br,xzN)

Where G is the activation or transfer function, and L
is the number of hidden nodes.

Output Weights Calculation: The output
weights § are determined using the Moore-Penrose
generalized inverse of H:

g=H'T (2)

Where T is the matrix of target outputs, and HT is
the Moore-Penrose inverse of H.

A comprehensive review of the Extreme Learning
Machine, emphasizing its rapid learning speed and
low computational costs, making it highly effective for
classification, regression, and feature selection tasks.

The authors explore ELM’s wide applications across
multimedia analysis, agriculture, and industrial pro-
cess control [21]. They highlight the growing trend of
using hybrid ELM models, which integrate optimiza-
tion algorithms to improve performance [22]. In agri-
culture, hybrid ELM models show promise in enhanc-
ing crop yield prediction and resource optimization,
particularly when combined with sustainable prac-
tices like slow-release fertilizers.

2.4 Advanced Predictive Models: Residual
Compensation Extreme Learning Ma-
chine

The Residual Compensation Extreme Learning
Machine (RC-ELM) is an advanced variant of the
Extreme Learning Machine (ELM) designed to im-
prove prediction accuracy by iteratively compensat-
ing for residual errors. This method integrates ad-
ditional layers that iteratively refine the initial pre-
dictions made by the base ELM model, enhancing its
performance in capturing complex data relationships
[23].

Residual Calculation: The residuals e; from the
initial ELM predictions are calculated:

er=y—g=y— Hip. (3)

First Compensation Layer: A secondary ELM
to predict these residuals. The hidden layer output
matrix for this layer Hs in a similar manner and ad-
justs the residuals accordingly:

é1=Hip
ex =e1 — €

(4)

Iterative Residual Compensation: This pro-
cess is iteratively applied, where each subsequent
layer compensates for the residual errors of the pre-
vious layer.

HiBit1 (5)

Consequently, RC-ELM can be employed to pre-
dict the optimal environmental and soil conditions
required for cultivating KDML105. By analyzing his-
torical data on temperature, humidity, soil nutrients,
and water availability, RC-ELM can model the com-
plex, nonlinear relationships between these variables
and the growth outcomes of the rice. The model’s
Multi-Layer structure allows it to capture residual
errors and iteratively improve predictions, ensuring
that farmers receive highly accurate guidance on the
best times and conditions for planting [24].

€i+1 = € —

2.5 Kernel Function in ELM and RC-ELM

Kernel Function is a mathematical function used
that transform data from a lower-dimensional space
to a higher-dimensional space without directly com-
puting the transformation. This approach enables the



310 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.19, NO.2 April 2025

———->e——»

*y
*y
+

e=y-J

e=e;- ¢

Fig.2: Training phase of RC-ELM.

separation of data groups that cannot be linearly sep-
arated in the original space using linear methods. In
ELM and RC-ELM, Kernel Functions to handle non-
linear data. The Kernel Trick allows computations in
the higher-dimensional space directly using the Ker-
nel Function instead of performing complex feature
transformations.

2.5.1 Linear Kernel Function [20, 24]

G(a,b,z) = (z;,x;) = xl (6)

Linear Kernel Function compute the dot product
between two data vectors z; and x;, where: z; and x;
are vectors in the original space. z! is the transpose
of vector ;.

2.5.2  Sigmoid Kernel Function [20, 24]

G(a,b,z) = tanh(az! + ¢) (7)

Sigmoid Kernel Function consists of the following
steps: (1) compute the dot product between z; and
z;, i.e. ] x;; (2) Multiply the result by the parame-
ter «; and (3) add the constant c. Apply the hyper-
bolic tangent function to the result using the equation
tanh(z).

2.5.3 Radial Basis Function Kernel Function [20,
24]

G(a7 b, .”L') = exp (_’7||mi - xj”Q) (8)

Radial Basis Function the Kernel Function in-
volves the following steps: |z; — z;||? is the squared
Euclidean distance between vectors x; and x;, cal-
culated by summing the squared differences of each
component in the vectors. v is a parameter that con-
trols the spread of the Kernel, where a higher value of
~v makes the Kernel more focused on nearby points.

2.6 Purpose
SROF's

Integrating advanced predictive models like RC-
ELM with slow-release organic fertilizers (SROF's)
marks a notable advancement in agricultural yield
prediction. RC-ELM excels in managing nonlinear
data and large datasets, enhancing predictive accu-
racy by addressing residual errors often neglected by
traditional models [11, 12]. This study highlights
that combining SROFs with biochar and Compost
improves nitrogen use efficiency in wetland rice pad-
dies, reducing ammonia emissions by 15% and in-
creasing soil bacterial populations by 20% [16-17, 19].
Moreover, nutrient synchronization achieved through
SROFs resulted in a 10% rise in rice yields [25],
demonstrating their potential to enhance sustainable
agriculture and productivity.

Recent studies have showcased the effectiveness of
RC-ELM in integrating diverse data sources such as
remote sensing, meteorological data, and soil health
metrics to improve crop yield predictions [27]. For in-
stance, combining. Hyperspectral Imaging and Ma-
chine Learning for Crop Stress Detection and Man-
agement reported a 95% accuracy in detecting crop
stress [26]. conducted a study on Controlled-Release
Nitrogen Fertilizer (CRNF) and its impact on micro-
bial community symbiosis, published in Field Crop
Research [19]. The results showed that CRNF sig-
nificantly enhanced nitrogen use efficiency by 25%,
increased microbial biomass by 18%, and improved
crop yield by 15% compared to conventional fertiliz-
ers. These findings underscore the potential of CRNF
to promote sustainable agriculture.

Utilizing multi-spectral and hyper-spectral imag-
ing as high-resolution inputs for RC-ELM models
has improved yield estimation accuracy by 20% and
achieved an R? of 0.85 when integrating satellite
data [28]. RC-ELM offers advantages such as faster
training times and reliable performance on limited
datasets, making it well-suited for scenarios involv-
ing sporadic agricultural data collection. Studies con-
firm RC-ELM’s superior accuracy in predicting crop
yields, outperforming traditional models like SVM
and random forests [27, 29].

integration of RC-ELM with

3. MATERIALS AND METHODS

The procedures and methodologies employed in
this research encompass the entire process from data
collection and preprocessing through to the selection
of significant features, training and testing of various
models, and ultimately, the evaluation of the model
outcomes for predicting the growth of KDML 105.

The study used Jasmine rice seeds (KDML 105) —
50 kg, Cow Manure — 17 kg, Filter Cake — 17 kg, Aer-
ated Compost — 17 kg, and Chemical Fertilizer (27-
12-6) — 30 kg. Equipment included a mixing tub, 1000
mL beaker, 200-cell seedling trays, high-precision
scale (NBL 254i), ruler, measuring tape, moisture me-
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ter (Dickey-john 46233-1223A), and weighing scales
(100 kg capacity and SUNFORD ACS-30-ZC41).
This setup ensured accuracy in material preparation
and data collection.

| Data Collection and Data Pre-Processing Khao Dawk Mali 105

!~ |Data Integration : SROFs Formula from 3 Types of Organic Fertilizers with a 27-12-6 Fertlizer Formula
Used as a Control Parameter in Experimental Com parisons.

H KDML 105

| C—— Fertilizer formula 27-12:6

Filter cake (Contral parameter)

Cow Manure Aerated Compost

Data Transformation: Selection of KDML 105 from the Reproductive Phase (week 9)
through to the Ripening Phase (weeks 17 until Harvest Complefion).

Data Selection : Feature Selection with Correlation-Based Feature Selection (CFS) ‘

) )

Testing set 20 % ‘

Training set 80 % ‘ ‘

| Test the model using Single-Layer Feedforward Networks (SLFNs) and other neural network

Extreme Learning

Support Vector Attificial Neural
Machine

Regression (SVR) Network (ANNs)

Residual compensation
Extreme Learning Machine

ml )

| | The evaluation of neural network model performance of KDML 105 Growth rate per Week

- Coefficient of Determination (R-Squared)
- Prediction (Y)
- Root Mean Squared Error (RMSE)

- Training Time
- Testing Time

- Mean Absolute Error (MAE)

Fig.3: The Conceptual Framework of this study.

3.1 Data Collection and Data Preparation

The cultivation of KDML 105 rice involves key
growth stages, starting from transplanting and pro-
gressing through the initiation of panicle primordia
(IPP). By the 9*" Week, the rice enters the reproduc-
tive phase, marked by morphological changes as the
stem transitions from flat to cylindrical. These mor-
phological changes lead to the booting stage, marked
by stem swelling and flag leaf emergence, signaling
the beginning of panicle formation. The ripening
phase occurs between the 17" and 21°¢ weeks, cul-
minating in full-grain maturation. The development
of slow-release organic fertilizers (SROFs) for KDML
105 utilized three agricultural by-products: Cow Ma-
nure, Filter Cake, and Aerated Compost. These were
combined with urea and additives to create three dis-
tinct formulations. Each 5-gram fertilizer was coated
with 10 grams of clay, embedding three rice seeds.
The experiment employed a Randomized Complete
Block Design (RCBD) in 2x2 meter plots, with nine
plots comprising three replications per treatment,
and each replication containing five plants [30].

The researchers installed temperature and humid-
ity data collectors in the experimental plots. A 27-
12-6 fertilizer served as the control for comparison,
detailed in Table 1.

The nutrient content analysis of three slow-release
fertilizer formulations, as shown in Table 1, high-
lights Aerated Compost as having the highest levels
of nitrogen and phosphate, making it highly effec-
tive for promoting strong plant growth. Cow Manure
stands out for its rich potassium content, which is
vital for plant health and disease resistance. Cow

Table 1: The analysis of nutrients in slow-release
fertilizers developed into planting blocks.
Macronutrients Cow Filter | Aerated
Manure | Cake | Compost
Nitrogen (Total N; %) 5.22 5.79 5.96
Phosphate (P205; %) 0.03 0.08 0.25
Potassium (K20; %) 0.44 0.11 0.16
Organic matter 9.45 9.44 7.69
Moisture by weight 14.38 10.07 20.11
pH Value 1:2 7.34 7.39 7.47
EC 1:10; ds/m 0.42 0.54 0.39
Organic carbon 5.48 5.47 4.46
Carbon/Nitrogen ratio 1.05 0.94 0.75

Manure and Filter Cake are rich in organic matter,
which is essential for improving soil structure and fer-
tility. Aerated Compost contains significantly higher
moisture, which may influence its application and nu-
trient release rate. The pH levels across all formula-
tions are slightly alkaline, making them suitable for
most soil types. Electrical conductivity is highest in
Filter Cake, reflecting a higher concentration of solu-
ble salts. Moreover, the favorable carbon-to-nitrogen
ratio in Cow Manure supports a slow release of nutri-
ents, contributing to improved soil fertility and sus-
tained plant growth.

3.2 Correlation-Based Feature Selection

Correlation-Based Feature Selection (CFS) is a vi-
tal method for enhancing regression models by select-
ing features that are highly correlated with the target
variable but have low inter-correlation among them-
selves [31]. The effectiveness of CFS in improving
model accuracy by focusing on relevant features while
eliminating redundancy [32]. This method is advan-
tageous in regression analysis, where feature selection
directly impacts predictive performance, making CFS
a robust tool for researchers in machine learning and
data analysis.

Data collection on the cultivation of photoperiod-
sensitive KDML 105 using slow-release organic fertil-
izer from planting to harvesting consists of 59 data
types, consisting of 16 Nominal, 7 Nominal (Date),
9 Discrete, and 27 Continuous. In the process of se-
lecting factors using the CFS method for predicting
the growth rate of KDML 105, the merit of a feature
subset [31, 32] is calculated using the formula: (9)

_ k-Tor
VE+k-(k=1)-757

Where k is the number of features in the subset (S)

T¢r is the average correlation between the features
in subset (S) and the target variable YV’

Trr denotes the average correlation between fea-
tures in the subset (S) Evaluate the feature subsets
using the formula above and select the one with the
highest merit score.

Marit(S) (9)
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3.2.1 Calculate the Correlation between Factors
and Target Variable [31, 32]:

Compute the Pearson Correlation coefficient be-
tween each feature X7, Xo,..., X,. The target vari-
able Y is Growth rate (Week), The formula is:

(X - X)(Y -Y)
VEX - X2 (Y - Y)?
The result is 7. will use Pearson Correlation val-

ues with a score of 0.70 or higher. Features with lower

scores will be removed as they may introduce errors

that are not important. Table 2 is used as the crite-
ria for significant correlation between all features and

Tef

= 45

Tle X2 = 0.06 (XTemp and XHumidity)

Tle X3 = 0.05 (XTemp and XChlorophyll)

rX10, X9 =0.85 (XYield(kg/plot) and XPlantHeight(cm))
The result is 7yy which indicates the correlation

between the features.

0.60+0.55+0.40+0.70 +--- +0.85 0.65

3.2.3 Calculate the Merit of the Feature Subset [31,

39]

We use the Merit formula (9) to evaluate the fea-

the target variable.
Features: XTemp7 XHumidity7 XChlorophyll;
XRiceearclump» XPlant weight(fresh)s

XSeed weight XRicegTains(eaT)7 XTotal grain

XPlant Height(ecm)s X(Y’Leld(kg/pZOt))
Target Variable: Yarowth rate(week)

0.85+0.75+0.80 4+ 0.72 4 - -- 4- 0.87

Tof =

Table 2: Result of Correlation between Factors and

Target Variable.

10

No Features Description Values | Correlation
1 | Temp Temperature (°C) 28.2 ¢ 0.85
2 | Humidity Humidity within the 62 0.75

rice field (%)
3 | Chlorophyll | Chlorophyll content in 33.9 0.80
rice leaves (%)
4 | Rice ear Total number of rice 40.34 0.72
clump ears per clump
5 Plant Fresh plant weight per 3.5 0.88
weight clump (g)
(fresh)
6 Seed weight | Weight of 100 rice Week 9 0.76
seeds per clump (g)
7 | Rice grains Number of rice grains 35 cm 0.74
(ear) per ear
8 | Total grain Total grain weight for 25 kg 0.82
1000 rice seeds (g)
9 | Growth rate | Week number Week 9, 1.00
(Week) indicating the growth day 2
stage of the Rice
10 | Plant Height of the rice plants | 16 0.89
Height (cm) | in centimeters
11 | Yield Yield of Rice in 145 0.87
(kg/plot) kilograms per plot

3.2.2 Calculate the Correction between Features:

ture subset:

. 10 - 0.808
Merity, =
\/10 +10(10 - 1) - 0.65
Merit, = 8.08 808 _ % =0.976

V101585 /685 8.28

Therefore, the Merit value of this Feature Subset is
0.976, which reflects the average correlation between
all the selected factors and the target (Growth rate
per Week). Generally, a high Pearson Correlation
value indicates that the factors are closely related to
the target variable, which in turn enhancing the ac-
curacy of predictive modeling.

When conducting experiments with KDML 105
rice using the four sets of planting blocks, we trans-
planted seedlings during the Reproductive Phase.
During this period, rice reaches full growth, forming
young panicles, and the stems change from a flat-
tened to a round shape between weeks 10" and 17,
This continues into the Ripening Phase, during which
the rice flowers pollinate, and the grains, initially re-
sembling milky liquid, turn into complex starch and
eventually mature, ready for harvest by week 16" on-
wards. Following the completion of the rice planting
process, we divided the data into training and testing
sets using an 80:20 ratio, as show in Table 3.

Table 3: Training and Testing datasets in the ez-

periment..
Experimental | Training | Testing | Total
set set

Cow Manure 327 81 405

Filter Cake 318 79 397

Aerated Compost 340 85 415

Control (27-12-6) 353 89 443
Total 1,338 334 1,660

Calculate the average correlation between features
and the target variable [31, 32]. The formula for the
Pearson Correlation Coefficient between features X;
and X is.

3.3 Performance Evaluation

Performance Evaluation is a critical process in as-

sessing the effectiveness of predictive models, partic-
ularly in forecasting the growth of KDML 105. This
process involves using various metrics to evaluate how
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well the model can predict the target variable, in this
case, the growth rate of the Rice over a specified pe-
riod [33]. By applying suitable performance metrics,
researchers can assess the model’s accuracy, reliabil-
ity, and generalizability.

3.3.1 Mean Absolute Error (MAE) [33]

Measures the average magnitude of the errors be-
tween the predicted and actual values without con-
sidering their direction. It provides a straightforward
interpretation of the average prediction error.

jp— .
MAE==3"" lyi— il (12)

n

3.3.2 Mean Squared Error (MSE) [33]

Is the average of the squared differences between
the predicted and actual values. By squaring the er-
rors, MSE places greater emphasizes on larger errors,
making it helpful in highlighting significant devia-
tions in predictions.

MsE= 1" (u-al?  (3)

n

3.3.3 Root Mean Squared Error (RMSE) [33]

Is the square root of MSE, providing an error met-
ric in the same units as the target variable. Re-
searchers often prefer this metric due to its inter-
pretability and sensitivity to significant errors.

1 n
— ./ 52
RMSE = \/n E i:l(yZ )

3.34 R-squared (Coeflicient of Determination) [33]

Measures the extent to which the model accounts
for variability in the target variable. It ranges from 0
to 1, with values closer to 1 indicating a better fit.

Z:‘L:1(yi - ?ji)z
Z?:l(yi —7)?

Where y represents the mean of the actual growth
rates observed in the dataset.

(14)

R*=1- (15)

4. RESULTS AND DISCUSSION

4.1 Results of General Rice Cultivation with
SROF's

The experimental results from the cultivation of
KDML 105 using various slow-release organic fertil-
izers, although promising, reveal that optimal growth
conditions have not yet been fully reached. Despite
notable improvements in growth rates with differ-
ent fertilizer treatments, the overall growth remains
moderate. For instance, the Cow Manure treatment
exhibited growth ranging from 43.33 cm at week
10*" to 59.01 cm at week 17", yet its R? = 0.6415
indicates only a moderate correlation in predicting

growth trends. Similarly, although the Filter Cake
and Aerated Compost treatments showed better re-
sults, with higher growth rates and stronger correla-
tions (R? values of 0.8064 and 0.8465, respectively),
the growth performance, especially during the early
stages, remained inconsistent. The control group us-
ing the 27-12-6 fertilizer demonstrated the most sub-
stantial and consistent growth with an R? = 0.8659,
suggesting a better fit for the predictive model. Aer-
ated Compost demonstrated the highest growth per-
formance among natural slow-release fertilizers, with
an R? = 0.8465. While the chemical fertilizer control
27-12-6 outperformed in growth, this study empha-
sizes the potential of sustainable, natural fertilizers
for agriculture.

Table 4: Growth Results of KDML 105 Rice Culti-
vation Using a Developed SROF's Formula.

Organic Maximum-Minimum R? Y
Fertilizer Height (cm)
Week 10 Week 17

Cow Manure [43.33+50.20 | 59.01+85.09 [0.64154.1931x +5.9591
Filter Cake |45.06+61.23 | 75.85+89.04 |0.8064 |4.3248x + 13.018
Aerated 48.04+54.21 | 83.05+99.76 | 0.8465 | 8.896x - 53.146
Compost
Control 60.22+67.30 | 92.02+104.00| 0.8659 | 6.7113x - 18.317
27-12-6

To enhance the accuracy of rice growth predic-
tions, advanced models like the Extreme Learning
Machine (ELM) and its variant, Residual Compen-
sation ELM (RC-ELM), offer significant advantages.
These models capture the nonlinear and complex
growth patterns characteristic of rice cultivation. By
applying regression techniques and neural network-
based approaches, such as RC-ELM, these models
effectively account for subtle variations in growth
rates under different fertilizer treatments. This preci-
sion is critical for optimizing fertilizer strategies and
enhancing crop yield. Compared to traditional lin-
ear regression methods, ELM and RC-ELM provide
more reliable predictions by handling the complexi-
ties of agricultural data, making them ideal for im-
proving decision-making in dynamic environmental
conditions.

4.2 The experimental results of Support Vec-
tor Regression (SVR)

The results presented in Table 5, using the Sup-
port Vector Regression (SVR) model, show varying
degrees of predictive accuracy as reflected by the
R? values and corresponding regression equations Y.
The R? values for the Cow Manure, Filter Cake,
and Aerated Compost fertilizers were 0.8316, 0.8339,
and 0.8632, respectively, indicating a moderate to
strong correlation between the predicted and ob-
served growth rates. However, the predictive models
did not achieve a sufficiently high R? to be considered
highly accurate predictors of rice growth. The regres-
sion equations Y also suggest that while the models
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captured some growth patterns, they may still lack
the precision required to fully model the complexities
of rice growth under varying fertilization conditions.

Table 7: Growth Results of Experiments Using Ad-
vanced Predictive Models: RC-ELM.

Models | Organic Max-Min R? Y
Notably, these results exclude the control group, fo- Fertilizer Height (cm)
cusing solely on the experimental treatments. Week 10 | Week 17
ELM | Cow 41.06+ 53.30+ 0.8079 |5.1212x —
(Linear | Manure |55.22 81.12 47.4478
Table 5: Growth Results of Support Vector Regres- Kernel) [Fijlter 34.25+ 5822+ 0.8776 |8.896x —
SiOM. Cake 44.53 74.44 43.146
Aerated |38.82% 60.16= 0.8906 |8.7982x —
Organic Maximum-Minimum R? Y Compost |47.72 92.50 48.893
Fertilizer Height (cm) Control  [40.12+ 60.18+ 0.9121 [10.223x—
Week 10 | Week 17 27-12-6  |51.11 90.23 59.3652
Cow Manure [35.09+39.32 [ 72.51+85.06] 0.8316]5.8076x - 24.508 ELM  |Cow 50.00+ 92.02+ 0.7932 |6.2247x —
Filter Cake [45.06+61.23 | 75.85+89.00 0.83392.2409x - 27.449 (Sigmoid | Manure  |57.30 104.04 27.415
Aerated 48.04+54.21 | 83.02+£99.76| 0.8632]5.3927x - 24.025 Kernel) | Filter 42.12+ 72.34+ 0.7671 |6.8758x —
Compost Cake 61.23 88.51 23.8232
Control 40.30+42.18 | 82.05+95.51] 0.8961|2.4452x - 34.4513 Aerated |42.71 80.76 0.8041 |6.7123x —
27-12-6 Compost |53.14 102.84 25.5456
Control  |41.04+ 92.00+ 0.8185 |6.962x —
27-12-6 5633 106.73 29.1234
4.3 The experimental results of Artificial %QAF f,lc;v:um ig:égi }gigi 07532 ég:égg;‘*
Neural Networks (ANNSs) Kernel) |Filter  [30.34+ | 98.69+ | 0.7104 |11.284x—
o Cake 41.21 120.85 98.0192
We analyzed the growth prediction of KDML Acrated |40.23% | 104.36= | 0.7844 | 12.348x —
105 rice using Multi-Layer Perceptron (MLP) and Comptl)st 46.93 126.22 100.237
. . Control  |41.25+ 10552+ | 0.8276 |13.120x —
Bayesian Neural Networks (BNNs), with performance P I 17894 oL 13
metrics (R2 values and regression equations) detailed RC-ELM | Cow 4334+ 11532 109265 |12.143x —
in Table 6. (Lincar | Manure |52.41 128.12 107.39
Kernel) | Filter 40.11+ 101.23+ [ 0.9121 [12.873x—
Cake 51.23 130.29 100.949
Table 6: Growth Results of Artificial Neural Net- Aerated |45.31% 127.66+ | 0.9609 |14.982x —
work. Compost |54.45 140.03 103.58
Control  |45.21+ 133.12+ | 0.9645 |15.416x—
Models| Organic | Maximum-Minimum R? Y 27-12-6  |57.21 148.12 108.02
Fertilizer Height (cm) RC-ELM | Cow 40.15+ 117.08+ 0.9176 |10.896x —
Week 10 | Week 17 (Sigmoid | Manure  [56.09 140.01 100.146
MLP | Cow 35.00+ 7251+ 0.8316 |5.8076x — Kemel) [Filter ~ [3833+  [9239+ |0.9012 |12.8384x—
Manure  |39.32 85.06 24.508 Cake 41.18 109.33 95.923
Filter 45.06+ 75.85+ 0.8339 |[2.2409x — Aerated (45.31+ 127.66+ 0.9309 |14.982x —
Cake 61.23 89.00 27.449 Compost 54.45 140.03 103.58
Acrated  [48.04+ | 83.02+ | 0.8632 [53927x- Control - |42.45+ 1 121,12+ 1 0.9238 | 15.044x -
Compost 8421 |99.76 24025 RCE [Con o005t THT3.11T 0899 121455
Control  [40.30+ 82.05+ 0.8961 [2.4452x — : : : :
7126|4218 9551 e (RBF | Manure  |42.28 131.64 100.31
Kernel) | Filter 35.35+ 119.12+ | 0.8862 [10.145x —
BNNs | Cow 28.07+ 59.01% 0.7632 |2.2409x +
Manure __|50.21 85.09 7.4492 Cake 48.54 129.09 102.752
- Acrated  |40.58+ 120.12+ | 0.9057 |13.764x —
Filter 25.02+ 4224+ 0.7316 |1.3927x + Compost _|45.12 14147 94708
Cake 46.18 60.12 7.7025 Control |43.65¢ | 121.36= | 0.9101 |11.377x—
Aerated  |32.23% 71.06+ 0.7351 |[2.4452x + 27126 |5062 1474 106.999
Compost _ |50.25 84.25 4.4513
Control 2437+ 80.18+ 0.8462 |[5.044x —
27-12-6  |44.29 90.23 13.9688 2.2409x + 7.4492 for cow manure. While both mod-

The results in Table 6 highlight the predictive
performance of the MLP algorithm in modeling the
growth of KDML 105 rice with various organic fertil-
izers. The MLP achieved R? values between 0.8316
and 0.8632, indicating a strong correlation between
predicted and actual growth. For example, the regres-
sion equation for Cow Manure (Y = 5.80762—24.508)
shows a positive relationship between time and devel-
opment, with MLP refining predictions through back-
propagation by iteratively adjusting network weights.

Conversely, the BNNs algorithm demonstrated
lower R? values, from 0.7316 to 0.7632, reflecting
moderate accuracy. BNNs account for uncertainty by
modeling weights as distributions rather than fixed
values, as shown in the regression equation Y =

els provided useful predictions, their limitations sug-
gest exploring more advanced approaches, such as the
ELM, which offers more efficient handling of nonlin-
ear data and faster training times.

4.4 Results of Experiments Using Advanced
Predictive Models: RC-ELM.

The application of ELM and RC-ELM in pre-
dictive modeling for the growth of KDML 105 rice
involved a systematic hyperparameter optimization
process. We tested the number of hidden nodes (L)
with values ranging from 10, 30, 50 up to 1,000, and
so on. We varied the Regularization Factor (C) across
2712 9=10 9=8 212 We made comparisons using
three activation functions: Linear, Sigmoid, and Ra-
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dial Basis Function (RBF). We identified the opti-
mal configuration as L=700 for ELM and L = 500,
C = 26 for RC-ELM, with Linear activation yielding
the best performance for the predictive task. These
results, visualized in Fig. 4

RC-ELM outperformed linear regression in fore-
casting growth rates under diverse conditions and fer-
tilizer treatments in Table 7.

a1 Hight Bias —e— Training set
e LOW variance

Low Bias
Hight variance

1.1 .\. o2

Training error \ Asting efror
1.04
L]

0.9 1 ! ‘/
_ \ 7
0.8 4 /'

Prediction Error

(1227(10)27(8) 2(6) 2M4) 22) 20) 2M2) 2'4) 2\(6) 2\(B) 2°(10)2°(12)
Regularization Factor C

Fig.4: Regularization Factor C.

The ELM algorithm, when applied with different
activation functions—Linear, Sigmoid, and RBF Ker-
nels—demonstrates varying degrees of predictive per-
formance for KDML 105 growth using slow-release or-
ganic chemical fertilizers: Cow Manure, Filter Cake,
and Aerated Compost. The Linear Kernel generally
exhibits the highest R? values among the three, indi-
cating a strong linear relationship between time and
growth. For instance, using Aerated Compost with
the Linear Kernel yields an R? = 0.8906 and a re-
gression equation of Y = 8.7982x —48.893, indicating
that the model effectively captures linear growth pat-
terns. The high R? demonstrates a strong fit, explain-
ing most of the variance in rice growth. In contrast,
the Sigmoid Kernel, which introduces nonlinearity
into the model, has lower R? values, such as 0.8041
for Aerated Compost, with a Corresponding equation
Y = 6.71232 — 25.5456. The lower R? indicates that
while the Sigmoid Kernel captures some nonlinear re-
lationships, it may not fully account for the complex-
ity of growth patterns in the rice data. The RBF
Kernel, known for its ability to handle more com-
plex, nonlinear data, also shows moderate predictive
capability, but with R?=0.7844 for Aerated Compost.
The regression equation Y = 12.348x — 100.237 sug-
gests that the RBF Kernel attempts to model growth
with more aggressive parameter shifts. However, it
may overestimate the variability in the data, leading
to less precise predictions.

The RC-ELM algorithm, designed to enhance
ELM’s predictive performance by compensating for
residual errors, significantly improves the accuracy
of growth predictions for KDML105. When ap-
plied with the Linear Kernel, RC-ELM achieves an
R?=0.9609 for Aerated Compost, with the regression
equation Y = 14.982x — 103.58, indicating a near-

perfect fit and highly accurate predictions. The Lin-
ear Kernel in RC-ELM captures the linear growth
dynamics of rice with remarkable precision, explain-
ing nearly all the variance in growth. Similarly, the
RC-ELM with Sigmoid and RBF Kernels outper-
forms their ELM counterparts. For example, the Sig-
moid Kernel in the RC-ELM model combined with
Aerated Compost achieves an R?= 0.9309 and a
regression equation of Y=13.112x-103.84, indicating
its superior capability to capture complex nonlin-
ear growth patterns. The RBF Kernel in RC-ELM
also shows significant improvement, with an R? =
0.9057 for Aerated Compost and a regression equa-
tion Y = 13.764x — 94.708. These results indicate
that RC-ELM possesses superior capabilities for han-
dling the intricacies of rice growth data, providing
more accurate and stable predictions across all ker-
nel types.

The RC-ELM consistently delivers superior results
to other algorithms due to its unique ability to cor-
rect residual errors generated by initial predictions.
Unlike traditional algorithms, RC-ELM incorporates
a residual learning mechanism that sequentially im-
proves prediction accuracy by compensating for dis-
crepancies in earlier outputs. This iterative refine-
ment enhances the model’s ability to capture com-
plex, nonlinear patterns, especially in high-variability
datasets typical of agricultural growth modeling. Ad-
ditionally, RC-ELM’s computational efficiency, en-
sures optimal performance with reduced overfitting
risks, making it particularly suited for dynamic sys-
tems like KDML 105 rice cultivation.

4.5 Training and testing time of SVR MLP
BNNs ELM and RC-ELM

The training and testing times are critical metrics
in evaluating the computational efficiency of machine
learning algorithms, as they directly impact the fea-
sibility and scalability of models in practical appli-
cations. These metrics are crucial when comparing
all algorithms across different kernel functions and
organic fertilizers, as they provide insight into the
trade-offs between model complexity and computa-
tional demand. We present the training and testing
times in Table 8.

The analysis of training and testing times reveals
notable differences in computational efficiency among
the algorithms. ELM with a Linear Kernel is the
fastest, with training times as low as 3.5123 seconds
and testing at 0.4234 seconds, making it ideal for
tasks with linear relationships. BNNs, however, re-
quire up to 23.1789 seconds for training due to their
complex probabilistic models, making them less effi-
cient. RC-ELM strikes a balances between speed and
accuracy, especially with the RBF Kernel, making it
suitable when both computational efficiency and pre-
dictive accuracy are essential.
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Table 8: Training time and testing time of SVR,
MLP, BNNs, ELM and RC-ELM.
Models Organic Training Testing
Fertilizer Time (s) Time (s)
SVR Cow Manure 5.1234 0.6789
Filter Cake 5.0678 0.6453
Acrated Compost | 5.1476 0.6821
Control 27-12-6 5.1089 0.6724
MLP Cow Manure 12.4567 1.1234
Filter Cake 12.0345 1.0789
Aecrated Compost | 12.6234 1.2123
Control 27-12-6 12.3789 1.1567
BNNs Cow Manure 22.5123 1.5678
Filter Cake 21.8765 1.4678
Aecrated Compost | 23.1789 1.6123
Control 27-12-6 22.3456 1.5234
ELM Cow Manure 3.7234 0.4567
(Linear Kernel) | Filter Cake 3.5123 0.4234
Aecrated Compost | 3.7890 0.4789
Control 27-12-6 3.6456 0.4456
ELM Cow Manure 4.0345 0.5234
(Sigmoid Kernel) | Filter Cake 3.9456 0.4789
Acrated Compost | 4.1123 0.5345
Control 27-12-6 4.0345 0.489
ELM Cow Manure 4.2123 0.5678
(RBF Kernel) Filter Cake 4.1456 0.5345
Acrated Compost | 4.3345 0.5789
Control 27-12-6 4.2678 0.5234
RC-ELM Cow Manure 4.3789 0.5234
(Lincar Kernel) | Filter Cake 4.0567 0.4789
Acrated Compost | 4.5123 0.5345
Control 27-12-6 4.2890 0.489
RC-ELM Cow Manure 4.6234 0.6789
(Sigmoid Kernel) | Filter Cake 4.4567 0.589
Aerated Compost | 4.7890 0.6345
Control 27-12-6 4.5345 0.589
RC-ELM Cow Manure 4.7890 0.7345
(RBF Kernel) Filter Cake 4.6456 0.6789
Acrated Compost | 5.0456 0.7345
Control 27-12-6 4.8234 0.689

4.6 Model Performance Evaluation Obtained
Linear Kernel Function within both ELM
and RC-ELM

The evaluation of the Linear Kernel Function
within both ELM and RC-ELM algorithms reveals
significant differences in model performance, as evi-
denced by the MAE, MSE, and RMSE metrics. The
Linear Kernel in ELM performs adequately across
various organic fertilizers, with MAE values ranging
from 0.1510 to 0.1743, MSE values between 0.0347
and 0.0496, and RMSE values from 0.1863 to 0.2227.
These results indicate that while ELM with a Linear
Kernel is capable of can capture linear growth pat-
terns, its predictive accuracy and error metrics sug-
gest room for improvement, particularly when dealing
with complex growth data such as that seen with Cow
Manure, Shown in Table 9.

The RC-ELM with Linear Kernel demonstrates su-
perior performance across key metrics compared to
standard ELM. RC-ELM achieves lower MAE values
(0.1243-0.1382), indicating reduced prediction error,
and MSE values (0.0234-0.0293), leading to lower
RMSE (0.1529-0.1712). These improvements high-
light the strength of the residual compensation mech-
anism in RC-ELM, allowing for more accurate predic-

Table 9: Comparison of Model Performance Fval-
uation Linear Kernel Function within ELM and RC-
ELM.

Models Organic MSE MAE RMSE
Fertilizer
ELM Cow Manure 0.1743 0.0496 | 0.2227
(Linear Kernel) | Filter Cake 0.1567 0.0378 | 0.1944
Aecrated Compost | 0.1541 0.0365 | 0.1911
Control 27-12-6 0.1510 0.0347 | 0.1863
RC-ELM Cow Manure 0.1325 0.0271 | 0.1645
(Linear Kernel) | Filter Cake 0.1382 0.0293 | 0.1712
Aerated Compost | 0.1274 0.0256 | 0.1600
Control 27-12-6 0.1243 0.0234 | 0.1529

tions and better handling of residual errors. The su-
perior accuracy and reliability demonstrated by RC-
ELM make it the preferred choice for modeling the
linear growth of KDML105, outperforming ELM.

4.7 Assessment of KDML 105 Tillers, Pani-
cles, and Grain Yield Per Clump: Insights
from RC-ELM and ELM with SROFs

A comparative analysis of tillers per clump using
RC-ELM and ELM across different fertilizers shows
that the RC-ELM model’s control group (no fertil-
izer) achieved the highest number of tillers at 119,
outperforming the ELM model’s 90 tillers. Among
fertilizers, Aerated Compost consistently produced
the most tillers across both models, outperforming
Filter Cake and Cow Manure. Overall, RC-ELM
generated more tillers than ELM, demonstrating its
superior ability in optimize rice growth predictions.
These findings highlight RC-ELM’s effectiveness, es-
pecially when paired with proper fertilizers in Fig.
5.

Number of Tillers per Clump
RC-ELM Control - INEEIN N IR 119
RC-ELM Aerated Compost [ IEEHENIEN IEEEE N 96
RC-ELM Filter cake [INESEENINEEN BECEE AN 81
RC-ELM Cow Manure | INECHENIEEANN BN N 80
ELM Control  [INESEENEEN I 90
ELM Aerated Compost 90
ELM Filter Cake | INEENNIEZN EEEN ECE 69
ELM Cow Manure | IEENENEEN EEN K 7
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Algorithm

Fig.5: Number of Tillers per Clump.

Number of Panicles per Clump
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Fig.6: Number of Panicles per Clump.
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Fig.7: Number of Grains per Panicle.

Reg ion of Aerated C with RC-ELM Linear Kernel vs ELM Linear Kernel

Aerated Compost RC-ELM
140 e  Aerated Compost ELM =
e Non-Aerated Compost R? = 0.89
120 e Aerated Compost Normal

Height (CM.)

Y = 8.896x - 53.146
R? =0.8465

Y = 6.9632x - 31.456
R? =0.8002
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Growth Rate (Weeks)
Fig.8: Linear Regression of Aerated Compost RC-
ELM Linear Kernel vs. ELM Linear Kernel

Fig. 6 shows the number of panicles per clump
in Jasmine 105 rice under different slow-release fer-
tilizers using RC-ELM and ELM models. The RC-
ELM model with Aerated Compost achieves the high-
est panicle count at 110, followed by RC-ELM with
Filter Cake at 108. The ELM Control model also
performs well with 99 panicles. However, RC-ELM
and ELM models with Cow Manure produce the low-
est counts, at 90 and 72, respectively. These findings
emphasize the significant influence of fertilizer type
on rice productivity, with advanced models like RC-
ELM enhancing panicle production when combined
with optimized fertilizers, demonstrating the poten-
tial for improved agricultural outcomes.

Fig. 7 illustrates the number of grains per pani-
cle across different experiments using RC-ELM and
ELM combined with slow-release organic fertilizers.
Results indicate that RC-ELM with Aerated Com-
post resulted in the highest grain count per panicle
at 764 grains, while RC-ELM with Filter Cake and
Cow Manure showed 760 and 746 grains, respectively.
Conversely, the ELM experiments demonstrated that
Aerated Compost and Filter Cake produced 767 and
766 grains per panicle, respectively, outperforming
RC-ELM in these cases.

The regression analysis using the Aerated
Compost RC-ELM Linear Kernel model (Y =
14.9822103.58, R?=0.9609) in Fig. 8 demonstrates
the highest predictive accuracy for plant growth with
compost, as the R? value close to 1 indicates the
model explains nearly all data variance. Compar-
atively, the Aerated Compost ELM Linear Kernel

model (R?=0.8906,Y = 8.782x + 48.893) demon-
strates marginally lower predictive accuracy. Non-
Compost and Compost Normal models further de-
crease accuracy, with R? values of 0.8465 and 0.6002,
respectively. The analysis of post-harvest produc-
tion for KDML 105 rice using the Aerated Compost
RC-ELM Linear Kernel model shows promising prof-
itability. Assuming an average yield of 500 kg per rai
(1,600 m?) and market prices between 10-15 THB per
kilogram, the expected revenue per rai ranges from
5,000 to 7,500 THB. After deducting fertilizer costs,
which are estimated at 4,000-6,000 THB per rai, the
net profit per rai varies between 1,000 and 3,500 THB.
This profitability highlights the efficiency of the Aer-
ated Compost RC-ELM model in optimizing growth
and resource allocation, reinforcing its potential for
sustainable agricultural practices.

4.8 Application Rates of Slow-Release Or-
ganic Fertilizers, Costs, and Economic Vi-
ability

In the experiment, fertilizers applied to 9 plots
(36 m? total, 2 x 2 m per plot) included 11.25 kg
each of Cow Manure, Filter Cake, Aerated Compost,
and Control 27-12-6. Costs ranged from 56.25-112.50
THB for Cow Manure, 33.75-56.25 THB for Filter
Cake, 90.00-135.00 THB for Aerated Compost, and
168.75—-225.00 THB for Control 27-12-6, highlighting
the higher cost of chemical fertilizer. Show in Table
10.

Table 10: Cost Comparison of SROFs for Experi-
mental 9 Plots (86 m?) and 1 Rai (1,600 m?).

Organic Cost THB Cost for nine Cost per rai 500
Fertilizer per kg plots 11.25 kg kg (1,600 m?)
(36 m?»)
Cow 5-10 THB 56.25-112.50 2,500 - 5,000
Manure THB THB
Filter 3-5THB 33.75-56.25 1,500 - 2,500
Cake THB THB
Aerated 8-12 THB 90.00 - 135.00 4,000 - 6,000
Compost THB THB
Control 15-20 THB 168.75 - 225.00 7,500 - 10,000
(27-12-6) THB THB

The evaluation of four fertilizers for rice cultiva-
tion on a one-rai area shows varying investment costs
and quantities. Cow Manure, Filter Cake, and Aer-
ated Compost each require 500 kg or 20 sacks per
rai, costing 2,500-5,000 THB, 1,500-2,500 THB, and
4,000-6,000 THB, respectively. Chemical fertilizer
(27-12-6) also requires 500 kg, which is equivalent
to 10 sacks, with a higher cost ranging from 7,500
to 10,000 THB per rai. While organic fertilizers like
Aerated Compost can be more expensive, they im-
prove long-term soil health by reducing degradation
and enhancing fertility. The increasing use of sustain-
able, natural inputs aligns with global standards such
as Organic Thailand and IFOAM [15, 35], which em-
phasize environmentally friendly practices. Despite
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higher costs, consumer demand for organic products
is rising due to increased awareness of food safety and
environmental benefits [35].

5. DISCUSSION

The RC-ELM model’s accuracy in predicting
growth performance was critical in determining the
most suitable SROF for sustainable rice cultivation.
Among the SROF's tested, Compost provided the best
results, achieving an R2=0.9609, indicating a strong
correlation between predicted and actual growth out-
comes. The regression equation for Compost (Y =
14.9822 —103.58) demonstrates its positive impact on
rice growth, as evidenced by its low MAE (0.1274),
MSE (0.0256), and RMSE (0.1600). In comparison,
Cow Manure and Filter Cake yielded lower R2 values
of 0.9265 and 0.9121, respectively, and higher error
metrics, indicating less predictive accuracy. Com-
post’s superior performance suggests that it pro-
vides more consistent nutrient release and better soil
health, key to sustainable rice production.

One of the key findings from this research is that
Compost, while having a higher initial cost per kilo-
gram (THB 8-12), offers the best growth performance
among the SROFs tested. These findings highlight
the importance of balancing cost and performance, as
the ability of compost to promote robust growth may
outweigh its higher price over the long term. The cost
comparison for nine plots (11.25 kg) shows that Com-
post costs between THB 90 and 135, while Cow Ma-
nure and Filter Cake are cheaper (THB 56.25-112.50
and THB 33.75-56.25, respectively). However, the
superior growth outcomes associated with Compost
suggest that it may offer better value when scaled to
larger areas, such as 1 rai (1,600 m?). The implica-
tions of this research are multifaceted. First, using
RC-ELM Linear Kernel as a predictive tool in agri-
cultural applications demonstrates its value in opti-
mizing fertilizer selection for rice cultivation. The
findings also support the broader adoption of Com-
post as a sustainable and effective organic fertilizer
for KDML105, which aligns with global trends to-
ward reducing chemical fertilizer use.

Future research could expand on this study by ex-
ploring the use of other predictive models or kernel
functions within the RC-ELM framework to capture
non-linear growth patterns under varying environ-
mental conditions. Additionally, a more extensive ex-
amination of different organic fertilizer formulations
and their long-term impacts on soil health and rice
productivity would provide valuable insights. Re-
search could also focus on integrating real-time envi-
ronmental monitoring data with RC-ELM to optimize
fertilizer applications dynamically, further enhancing
the accuracy of predictions and sustainability in rice
cultivation.
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