

Source details

Journal of Computational and Applied Mathematics

Years currently covered by Scopus: from 1975 to 2025

Publisher: Elsevier ISSN: 0377-0427

Subject area: (Mathematics: Applied Mathematics) (Mathematics: Computational Mathematics)

Source type: Journal

View all documents >

Set document alert

Save to source list

CiteScore 2023

①

(i)

5.4

SJR 2023

0.858

SNIP 2023

1.410

CiteScore CiteScore rank & trend Scopus content coverage

CiteScore 2023

$$5.4 = \frac{11,303 \text{ Citations } 2020 - 2023}{2,104 \text{ Documents } 2020 - 2023}$$

Calculated on 05 May, 2024

CiteScoreTracker 2024 ①

$$4.8 = \frac{10,195 \text{ Citations to date}}{2,143 \text{ Documents to date}}$$

Last updated on 05 April, 2025 • Updated monthly

CiteScore rank 2023 ①

Category	Rank	Percentile		
Mathematics Applied Mathematics	#85/635	86th		
Mathematics Computational Mathematics	#36/189	81st		

View CiteScore methodology \gt CiteScore FAQ \gt Add CiteScore to your site ${\cal O}$

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions $\operatorname{\pi}$ Privacy policy $\operatorname{\pi}$ Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. \neg , its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply. We use cookies to help provide and enhance our service and tailor content.By continuing, you agree to the use of cookies \neg .

Scimago Journal & Country Rank

Enter Journal Title, ISSN or Publisher Name

Home

Journal Rankings

Journal Value

Country Rankings

Viz Tools

Help

About Us

Journal of Computational and Applied Mathematics

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	SJR 2024
Netherlands	Mathematics Applied Mathematics	Elsevier B.V.	0.688 Q2
Universities and research institutions in Netherlands	Computational Mathematics		H-INDEX
Media Ranking in Netherlands			149
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
PUBLICATION TYPE	13314	COVERAGE	INFORMATION
Journals	03770427	1975-2025	Homepage
			How to publish in this journal
			Contact

SCOPE

The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.

Join the conversation about this journal

Quartiles

Ads by clickio

FIND SIMILAR JOURNALS ②

1 Applied Numerical Mathematics NLD

82% similarity

2 Numerical Algorithms

NLD

79% similarity

3 International Journal of Computer Mathematics

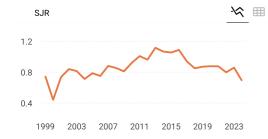
76% similarity

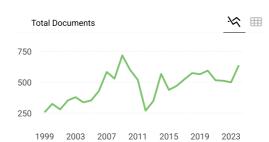
Citations per document

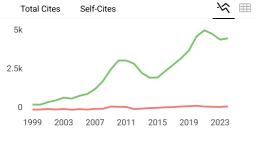
4 Journal of Computational Mathematics CHN

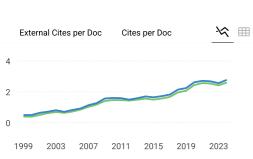
74% similarity

 \bowtie









% International Collaboration

2007

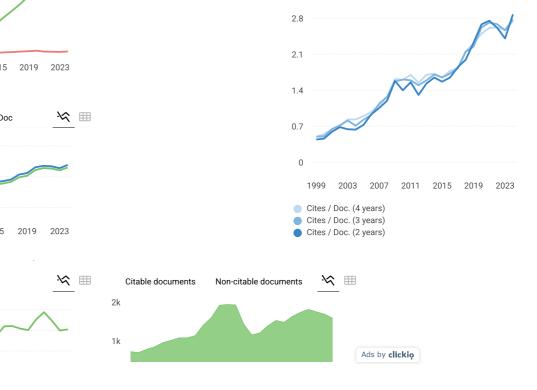
40 30

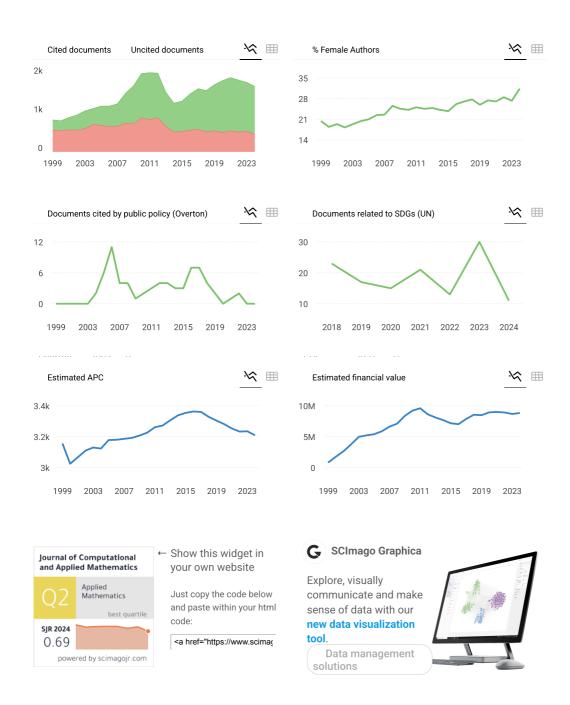
20

10

1999

2003





Metrics based on Scopus® data as of March 2025

S safaa safouan 4 months ago

Dear SCImago Team,

I would like to bring to your attention concerns regarding the editorial process of Journal of Computational and Applied Mathematics. Our manuscript was rejected on grounds of citation errors and similarity to external sources, but the provided feedback lacked clarity, evidence, and professionalism. The similarity index was 17%, well within acceptable academic thresholds, and citation issues could have been addressed during the review process.

Furthermore, after the revisions were made, the reviewers' feedback was positive Ads by clickio still

Your Submission

1 ข้อความ

Computational and Applied Mathematics <em@editorialmanager.com> ตอบกลับไปยัง: Computational and Applied Mathematics <support@elsevier.com> ถึง: Nuttapol Pakkaranang <nuttapol.pak@pcru.ac.th> 26 มีนาคม 2568 เวลา 20:19

Ms. Ref. No.: ELSCAM-D-24-02173R1

Title: New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems Journal of Computational and Applied Mathematics

Dear Dr. Pakkaranang,

I am pleased to confirm that your paper "New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems" has been accepted for publication in Journal of Computational and Applied Mathematics.

Comments from the Editor and Reviewers can be found below.

Thank you for submitting your work to this journal.

We encourage authors of original research papers to share the research objects – including raw data, methods, protocols, software, hardware and other outputs – associated with their paper. More information on how our open access Research Elements journals can help you do this is available at https://www.elsevier.com/authors/tools-and-resources/research-elements-journals?

dgcid=ec_em_research_elements_email.

With kind regards,

Luigi Brugnano
Principal Editor
Journal of Computational and Applied Mathematics

Comments from the Editors and Reviewers:

Reviewer #1: The author has revised the manuscript and I think it is acceptable to publish it in JCAM.

For further assistance, please visit our customer support site at http://help.elsevier.com/app/answers/list/p/7923. Here you can search for solutions on a range of topics, find answers to frequently asked questions and learn more about EM via interactive tutorials. You will also find our 24/7 support contact details should you need any further assistance from one of our customer support representatives.

At Elsevier, we want to help all our authors to stay safe when publishing. Please be aware of fraudulent messages requesting money in return for the publication of your paper. If you are publishing open access with Elsevier, bear in mind that we will never request payment before the paper has been accepted. We have prepared some guidelines (https://www.elsevier.com/connect/authors-update/seven-top-tips-on-stopping-apc-scams) that you may find helpful, including a short video on Identifying fake acceptance letters (https://www.youtube.com/watch?v=o5l8thD9XtE). Please remember that you can contact Elsevier s Researcher Support team (https://service.elsevier.com/app/home/supporthub/publishing/) at any time if you have questions about your manuscript, and you can log into Editorial Manager to check the status of your manuscript (https://service.elsevier.com/app/answers/detail/a_id/29155/c/10530/supporthub/publishing/kw/status/).

#AU_ELSCAM#

To ensure this email reaches the intended recipient, please do not delete the above code

Supports open access • Open archive

5.4

2.1

CiteScore

Impact Factor

Submit your article

Guide for authors

Menu

Q

Search in this journal

Editorial board

Gender diversity of editors and editorial board members

57% man

30% woman

13% prefer not to disclose

0% non-binary or gender diverse

Data represents responses from 56.10% of 41 editors and editorial board members

Editorial board by country/region

41 editors and editorial board members in 14 countries/regions

1 Italy (9)

2 United States (7)

3 China (5)

Principal Editors

Luigi Brugnano

University of Florence, viale Giovan Battista Morgagni 67/A, Firenze, 50121, Italy

Numerical solution of ordinary differential equations, Geometric Integration, Computational software,

Numerical linear algebra

> View full biography

Yalchin Efendiev

Texas A&M University Department of Mathematics, 400 Bizzell St, College Station, 77843, Texas, United States Numerical analysis, Scientific Computing, Multiscale Simulation, Uncertainty Quantification

André Keller

University Paris 1 Panthéon-Sorbonne Statistics Analysis and Multidisciplinary Modelling, Paris, France
Circuit Analysis, Control Theory, Discrete Mathematics, Fuzzy Logic, Game Theory, Macroeconometric
Modeling, Metaheuristic Algorithms, Multiobjective Optimization, Time-Delay Systems, Time Series Analysis

Michael Ng

Hong Kong Baptist University Department of Mathematics, Hong Kong, Hong Kong
Numerical Linear Algebra, Imaging Science, Scientific Computing, Data science, Artificial Intelligence

Lucia Romani

University of Bologna Department of Mathematics, Piazza di Porta San Donato 5, Bologna, 40126, Italy Numerical Methods in Computer Aided Geometric Design, Curve and Surface Modeling, Splines and their Applications, Pythagorean Hodograph Curves, Subdivision Schemes, Interpolation Algorithms

> View full biography

Fatih Tank

Atilim University, Ankara, 6830, Türkiye

Statistics, Probability, Actuarial Sciences, Optimization, Financial Mathematics, Reliability

Associate Editors

Lidia Aceto

University of Eastern Piedmont, Vercelli, Italy

Numerical Analysis

Francesca Bonizzoni

Polytechnic of Milan Department of Mathematics, Milano, Italy

Model Order Reduction, Finite Element Exterior Calculus, Uncertainty Quanfication, Numerical methods for PDEs, Multiscale methods

Dimitri Breda

University of Udine, Udine, Italy

Numerical Methods for Stability and Bifurcation Analysis of Delay Equations

Adhemar Bultheel

KU Leuven, Leuven, Belgium

Moment problems, Rational approximation, Structured matrices

Victor Calo

Curtin University, Perth, Australia

Automatic adaptive finite element methods, Isogeometric analysis, Phase-field modeling, Multiphysics simulation, Multiscale modeling, ,

Kwok-wing Chau

The Hong Kong Polytechnic University Department of Civil and Environmental Engineering, Hong Kong, Hong Kong

Machine learning, Neural networks and neurocomputing, Data driven optimization, Intelligent systems and AI in engineering

Dragana Cvetkovic Ilic

University of Niš, Niš, Serbia

Raffaele D'Ambrosio

University of L'Aquila, L'Aquila, Italy

Numerical methods for ordinary differential equations, numerical methods for stochastic differential equations, geometric numerical integration

> View full biography

Jan Dhaene

KU Leuven, Leuven, Belgium

Actuarial science, financial mathematics, quantitative risk management

Kai Diethelm

Technical University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany Numerical methods in fractional calculus, Approximation theory, Numerical integration

Luisa Fermo

University of Cagliari, Cagliari, Italy

Integral Equations, Numerical Integration, Orthogonal Polynomials

Daisuke Furihata

Osaka University Cybermedia Center Toyonaka Area, Toyonaka, Japan

Severiano Gonzalez-Pinto

University of La Laguna Faculty of Mathematics, Santa Cruz de Tenerife, Spain

Numerical analysis of ordinary differential equations, Stiff problems, Parabolic partial differential equations

Ken Hayami

National Institute of Informatics, Chiyoda-Ku, Japan

Guang-Da Hu

Shanghai University, Shanghai, China

Stability and numerical analysis of delay differential equations, Control theory

Chengming Huang

Huazhong University of Science and Technology, Wuhan, Hubei, China

Numerical solution of ordinary and functional differential equations, Volterra equations, Fractional differential equations

Lijian Jiang

Tongji University, Shanghai, China

Numerical multiscale methods, Model reduction, Uncertainty quantification, Porous media applications

Abdul Khaliq

Middle Tennessee State University, Murfreesboro, Tennessee, United States

Numerical Analysis, Scientific Computing, Fractional PDEs, Computational Stochastics

Guanglian Li

The University of Hong Kong, Hong Kong, Hong Kong

Homogenization, Multiscale Finite Element Methods (MsFEM), Generalized Multiscale Finite Element Methods (GMsFEM), Model Order Reduction (MOR), High Dimensional Approximation, Uncertainty Quantification parareal algorithm

James Liu

Colorado State University, Fort Collins, Colorado, United States

Finite element methods, Flow and transport in porous media, Applied dynamical systems

Federica Porta

University of Modena and Reggio Emilia - Reggio Emilia Campus, Reggio Emilia, Italy Numerical Methods for Optimization, Inverse Problems, Machine Learning

Luis Rández

University of Zaragoza, Zaragoza, Spain

Numerical Methods for Ordinary Differential Equations, Stiff Problems, Oscillatory Problems

Lothar Reichel

Kent State University, Kent, Ohio, United States

Yaroslav Sergeyev

University of Calabria, Arcavacata di Rende, Italy Global Optimization, Fractals, Numerical Infinities and Infinitesimals

> View full biography

Stefan Vandewalle

KU Leuven, Leuven, Belgium

Multigrid methods, Uncertainty quantification, Partial differential equations, Delay equations

Maria Vasilyeva

Texas A&M University Corpus Christi Department of Mathematics and Statistics, Corpus Christi, Texas, United States

Multiscale methods, Upscaling, Homogenization, PDE, Numerical methods, Fractured porous media, Perforated domains, Heterogeneous media, Machine learning

Guo-Cheng Wu

Chongqing University of Posts and Telecommunications, Chongqing, China Fractional calculus, Discretization theory of nonlocal operators, Nonlinear dynamics

> View full biography

Jesus Vigo-Aguiar

University of Salamanca, Salamanca, Spain

Numerical Solution of ODEs, Dynamic Optimization, Numerical Methods in Celestial Mechanics

Xingfu Zou

Western University, London, Ontario, Canada

Ordinary, Delay and reaction diffusion differential equations and their applications in biological problems

Advisory Editors

Zhong-Zhi Bai

Chinese Academy of Sciences Academy of Mathematics and Systems Science, Beijing, China

Delin Chu

National University of Singapore, Singapore, Singapore

Eric Tsz Shun Chung

The Chinese University of Hong Kong Department of Mathematics, Hong Kong, Hong Kong

Victor Ginting

University of Wyoming, Laramie, Wyoming, United States

Pavel Solin

University of Nevada Reno, Reno, Nevada, United States

> View full biography

Board of Honorary Editors

C.T.H. Baker †

The University of Manchester, Manchester, England, United Kingdom

Claude Brezinski

University of Lille Faculty of Science and Technology, Villeneuve d'Ascq, France

Paul Michel van Dooren

Catholic University of Louvain, Louvain-la-Neuve, Belgium

Bill Gear †

Princeton University, Princeton, New Jersey, United States

Martin Gutknecht

ETH Zurich, Zurich, Switzerland

Tom Lyche

University of Oslo, Oslo, Norway

Tom Mitsui

Nagoya University, Nagoya, Japan

Mitsuhiro Nakao

National Institute of Technology Sasebo College, Sasebo, Japan

J. Tinsley Oden †

The University of Texas at Austin Oden Institute for Computational Engineering and Sciences, Austin, Texas, United States

Miodrag Petkovic

University of Niš, Niš, Serbia

Marc N. Spijker

Leiden University, Leiden, Netherlands

Manil Suri

University of Maryland Baltimore, Baltimore, Maryland, United States

Keith Unsworth

Lincoln University, Lincoln, New Zealand

Ren-Hong Wang

Dalian University of Technology, Dalian, China

Roderick Wong

City University of Hong Kong, Hong Kong, Hong Kong

All members of the Editorial Board have identified their affiliated institutions or organizations, along with the corresponding country or geographic region. Elsevier remains neutral with regard to any jurisdictional claims.

All content on this site: Copyright © 2025 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

Supports open access • Open archive

Submit your article Guide for

Menu

Q

Search in this journal

Volume 469

In progress (1 December 2025)

This issue is in progress but contains articles that are final and fully citable.

▲ Download full issue

Previous vol/issue

Next vol/issue >

Receive an update when the latest issues in this journal are published

Set up journal alerts

Regular Articles

Research article O Abstract only

An improved theoretical analysis of convolutional sparse coding using stripe coherence Haifeng Li, Wengu Chen Article 116631

Article preview V

Research article O Abstract only

Recovery conditions for generalized orthogonal matching pursuit based coherence Hanbing Liu, Chongjun Li, Yijun Zhong Article 116648

Submit your article Guide for

Q

Article preview

Research article O Abstract only

Efficient and dissipation-preserving Hermite spectral Galerkin methods for diffusive-viscous wave equations in unbounded domains

Dan Ling, Zhiping Mao

Article 116652

Article preview 🗸

Research article O Abstract only

Finite element method analysis of flutter: Comparing Scott-Vogelius and Taylor-Hood elements Karel Vacek, Petr Sváček

Article 116662

Article preview V

Research article O Abstract only

A fast sequentially-decoupled matrix-decomposed algorithm for variable-order time-fractional optimal control and error estimate

Jinhong Jia, Hong Wang, Zhaojie Zhou, Xiangcheng Zheng Article 116667

Article preview V

Research article O Abstract only

A discontinuous Galerkin method for a coupled Brinkman–Biot problem Jialiang Bian, Rui Li, Zhangxin Chen

Article 116659

Article preview V

Research article O Abstract only

Error estimate of high order Runge–Kutta local discontinuous Galerkin method for nonlinear convection-dominated Sobolev equation

Caiyue Du, Di Zhao, Qiang Zhang

Article 116657

Article preview V

Submit your article Guide for

Q

Optimal error estimations and superconvergence analysis of anisotropic FEMs with variable time steps for reaction–diffusion equations

Lifang Pei, Chao Xu, Jiwei Zhang, Yanmin Zhao Article 116656

Article preview 🗸

Research article O Abstract only

Stability and uniqueness of coupled nonlinear finite element solution for anisotropic diffusion equation with nonlinear capacity term

Jun Fang, Zhijun Shen, Xia Cui

Article 116664

Article preview 🗸

Research article O Abstract only

Key distributions in the preservation of aging classes under the construction of systems Jorge Navarro, Tomasz Rychlik, Magdalena Szymkowiak
Article 116650

Article preview 🗸

Research article O Abstract only

Crank–Nicolson alternative direction implicit method for two-dimensional variable-order space-fractional diffusion equations with nonseparable coefficients

Qiu-Ya Wang, Cui-Yun Lin, Cheng-Xue Lao

Article 116655

Article preview 🗸

Research article O Abstract only

On adaptive anisotropic mesh optimization for convection-diffusion problems

Petr Knobloch, René Schneider

Article 116661

Article preview 🗸

Research article O Abstract only

Submit your article Guide for

Q

Robust second-order VSBDF2 finite element schemes for parabolic distributed optimal control problems Caijie Yang, Tongjun Sun

Article 116672

Article preview 🗸

Research article O Abstract only

Meshfree phase-field modeling of three-phase flow using smoothed particle hydrodynamics with differential reproducing kernels and artificial compressibility

Adam Y. Ghoneim

Article 116654

Article preview V

Research article Open access

Preconditioned FEM-based neural networks for solving incompressible fluid flows and related inverse problems

Franziska Griese, Fabian Hoppe, Alexander Rüttgers, Philipp Knechtges Article 116663

View PDF

Article preview V

Research article O Abstract only

Projection method for steady states of Cahn-Hilliard equation with the dynamic boundary condition Shuting Gu, Ming Xiao, Rui Chen

Article 116674

Article preview 🗸

Research article O Abstract only

High-order bound-preserving finite difference methods for incompressible two-phase flow in porous media

Hui Guo, Kaixuan Wang, Jian Huang, Yang Yang

Article 116658

Article preview V

Research article Open access

Submit your article Guide for

Q

Nonsymmetric product integration rules for Chebyshev weight functions with Chebyshev abscissae Sotirios E. Notaris, Nikolaos J. Theodorakopoulos

Article preview 🗸

Article 116668

Research article O Abstract only

Space-time non-local multi-continua multiscale method for channelized-media parabolic equations
Jiuhua Hu, Wing Tat Leung, Eric Chung
Article 116669

Article preview 🗸

Special Issue Computational and Mathematical Methods in Science Engineering and Economics

Research article O Abstract only

New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems

Aliyu Muhammed Awwal, Nuttapol Pakkaranang

Article 116671

Article preview V

Previous vol/issue

Next vol/issue >

ISSN: 0377-0427

Copyright © 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems

Aliyu Muhammed Awwal a,b, Nuttapol Pakkaranang b,*

- ^a Department of Mathematical Sciences, Faculty of Science, Gombe State University (GSU), Gombe 760214, Nigeria
- ^b GSU-Mathematics for Innovative Research (GSU-MIR) Group, Gombe State University, Gombe 760214, Nigeria
- ^c Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, 67000, Thailand

ARTICLE INFO

ABSTRACT

MSC: 90C47

90C06

90C26 90C30

Keywords:

Optimization problems Iterative methods Nonlinear least squares

Structured spectral gradient methods

Robotic motion control

The recently introduced structured spectral Barzilai–Borwein-like (BB-like) gradient algorithms in (Optimization Methods and Software, 4(37), pp:1269–1288, 2022) which utilize substantial information of the Hessian matrix are efficient for solving nonlinear least squares (NLS) problems. However, a safeguarding technique is required for the spectral parameters in their formulation to be well-defined. In this paper, we present another spectral gradient algorithm that improves the efficiency of those formulations where the proposed structured spectral parameter does not necessarily require a safeguarding strategy. Moreover, with the aid of nonmonotone line search and some standard assumptions, we show the global convergence of the algorithm. In addition, the numerical results of the proposed algorithm on some benchmark problems are encouraging. Furthermore, we apply the algorithm to solving a motion control problem.

1. Introduction

Consider the nonlinear least square (NLS) problems, which is a special class of the general unconstrained optimization,

$$\min f(x), \quad f(x) = \frac{1}{2} \sum_{i=1}^{m} [F_i(x)]^2 = \frac{1}{2} \|F(x)\|^2, \quad x \in \mathbb{R}^n,$$
(1.1)

where for each $i=1,2,\ldots,m$, the residuals $F_i:\mathbb{R}^n\to\mathbb{R}$ is twice continuously differentiable functions which is bounded below. The problem (1.1) has recently received much attention due to its special structure. The gradient $g(x)=\nabla f(x)$ and the Hessian $H(x)=\nabla^2 f(x)$ of the objection function (1.1) are defined as follows:

$$g(x) = \sum_{i=1}^{m} F_i(x) \nabla F_i(x) = J(x)^T F(x), \tag{1.2}$$

$$H(x) = \sum_{i=1}^{m} \nabla F_i(x) \nabla F_i(x)^T + \sum_{i=1}^{m} F_i(x) \nabla^2 F_i(x) = J(x)^T J(x) + G(x),$$
(1.3)

respectively. J(x) denotes the Jacobian matrix of the residual function F at x and $G(x) = \sum_{i=1}^{m} F_i(x) \nabla^2 F_i(x_k)$, where $F_i(x)$ is i-component of the residual vector F(x) and $\nabla^2 F_i(x_k)$ is the Hessian matrix of $F_i(x)$, for each i.

Corresponding author.

E-mail address: nuttapol.pak@pcru.ac.th (N. Pakkaranang).

https://doi.org/10.1016/j.cam.2025.116671

Received 15 September 2024; Received in revised form 17 January 2025

Available online 4 April 2025

0377-0427/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Computing the Hessian, $\nabla^2 F_i$, of the real valued-functions F_i , $i=1,\ldots,m$, has been acknowledged to be a cumbersome task as well as costly process. Therefore, as an alternative, researchers usually find some efficient ways of approximating it with a keen interest in getting as much information about the objective function as possible. Moreover, the problem (1.1) is of particular interest to many researchers due to its appearance in several applications such as robotic motion control, data fitting, parameter estimation, imaging problems, stability and time delay-related problems, and so on [1-7].

The iterative scheme generally deployed to solve (1.1) is

$$x_{k+1} = x_k + h_k d_k, \quad k = 0, 1, 2, \dots,$$
 (1.4)

where x_k and x_{k+1} are the previous and current iterates, respectively, and d_k is a search direction usually required to satisfy the following descent condition $g_k^T d_k < 0$. The step length $h_k > 0$ is usually computed using suitable line search strategies. The line search strategy can be exact or inexact. The former is generally considered too expensive and therefore, researchers used the latter which requires relatively less computational effort. Please note that throughout this paper, every vector, say x, is a column vector while x^T denotes its transpose. One of the efficient strategies developed for computing the step length h_k is the inexact line search by Zhang and Hager [8] as stated in the following algorithm

Algorithm 1: The Zhang and Hager [8] line search.

Input: Objective f(x), the search direction vector d_k at the point x_k and positive real numbers $\delta \in (0,1), 0 \le \mu_{\min} \le \mu_{\max} \le 1$,

 $U_0 = f_0, \ \zeta_0 = \alpha_0^* = 1, \ W_0 = 1 \ \mu_k \in [\mu_{\min}, \ \mu_{\max}].$

Step 1: Compute W_{k+1} and U_{k+1} using the following

$$U_0 = f(x_0) \quad and \quad U_{k+1} = \frac{\mu_k W_k U_k + f(x_{k+1})}{W_{k+1}}, \quad W_0 = 1 \quad and \quad W_{k+1} = \mu_k W_k + 1. \tag{1.5}$$

Step 2: Set h = 1, if

$$f(x_k + hd_k) \le U_k + \delta h g_t^T d_k \tag{1.6}$$

then $h_k = h$. Else, set h = h/2 and test (1.6) again.

Popular methods for solving (1.1) include Newton's method, quasi-Newton methods, Gauss–Newton method, Levenberg–Marquardt method and Structured quasi-Newton methods (see [9–13]). Some of these methods utilize the special structure of the problem (1.1) while others do not [14,15]. The recent focus of researchers in this area deals with developing methods, for solving NLS problems, that are based on structured diagonal matrix approximation of the Hessian (1.3) and those that mimic conjugate gradient methods [16–18] as well as spectral gradient methods [19–21]. For example, Mohammad and Santos [22] coined a diagonal Hessian approximation method by approximating both the first term and the second term of the Hessian (1.3) in such a way that the structured secant condition, $H_k s_{k-1} \approx y_{k-1}$, (s_{k-1}, y_{k-1}) are given vectors) is fulfilled. However, to ensure sufficient decency of the search directions generated by their algorithm, they employed safeguarding methodologies that contain several user-defined parameters. This will certainly make their proposed search direction depend on user-defined parameters or at least be influenced by them. This is a sort of deficiency. To ameliorate some of the shortcomings in [22], Yahaya et al. [3] proposed structured quasi-Newton-based algorithms for solving (1.1) based on two formulations of the approximation of the Hessian (1.3). These two approximations were then used to construct two diagonal updating formulas for generating the search directions. Interestingly, unlike the method in [22], these algorithms require fewer user-defined parameters.

On the other hand, the structured spectral gradient-based approaches, for solving NLS problems, approximate the Hessian matrix (1.3) with a scalar multiple of an identity matrix where the scalar is usually updated in every iteration. Some of the proposed algorithms in this direction include the work of Mohammad and Waziri [19] which is based on the same structured vector used in [20]. Moreover, the authors employed a safeguarding strategy to ensure the search direction defined by those two structured parameters satisfied the descent condition. To improve upon the algorithms in [19], Awwal et al. [20] proposed another three structured spectral gradient algorithms where unlike in [19], they considered approximating only the second term of (1.3) with higher-order Taylor polynomial and retaining the exact structure of the first term. This means the algorithms in [20] utilize more information of (1.3). However, despite the advantages of these algorithms, their formulations still require safeguarding techniques to avoid negative curvature directions. To mitigate this shortcoming, we proposed a new structured spectral gradient algorithm that does not require any safeguard. As safeguarding is completely avoided in the definition of the structured spectral parameter, it will have more freedom to utilize the information gained from the preceding iteration. What follows is the summary of the contribution of this research article:

- · A new structured spectral gradient algorithm is proposed.
- The proposed algorithm does not require any safeguarding technique.
- The global convergence of the proposal is shown under some standard assumptions.
- The algorithm is applied to solve the motion control problem of a robotic arm.

The rest of the article is subdivided into the following sections: In the next section, the formulation of the new structured spectral gradient algorithm and its convergence are outlined. More so, in Section 3, the numerical experiments are presented with some comparison and application. Finally, in Section 4, the conclusion of this research is presented.

2. Proposed NSSGM and its convergence

Consider the relation given by (1.3). Now, suppose that at a certain iteration say, k, we have

$$G(x_k) = \sum_{i=1}^{m} F_i(x_k) \nabla^2 F_i(x_k),$$
(2.1)

where $F_i(x_k)$ is i—component of the residual vector $F(x_k)$, and $\nabla^2 F_i(x_k)$ is the Hessian matrix of $F_i(x_k)$. Let $g_i(x_k)$ denotes the gradient of $F_i(x_k)$, for each i, we seek to construct some estimates for $G(x_k)$, say $D(x_k)$ such that the following secant equation,

$$D(x_k)s_{k-1} \approx G(x_k)s_{k-1} = \overline{y}_{k-1},$$
 (2.2)

is satisfied, where s_k is the difference between any two successive estimates of the solution and \overline{y} is a structured vector to be determined. This means that substituting (2.2) in (1.3), gives the following secant equation

$$H(x_k)s_{k-1} = J(x_k)^T J(x_k)s_{k-1} + \overline{y}_{k-1}.$$
(2.3)

For simplicity, let G_k , J_k , and D_k denote $G(x_k)$, $J(x_k)$, and $D(x_k)$, respectively, with the $g_k^i = g_i(x_k)$ representing the gradient of the ith component of the residual $F(x_k)$.

Now, we approximate $G(x_{k+1})$ by employing a similar approach as presented in [17]. Since F_i is a real-valued function, then consider the higher order Taylor's series expansion of F_i^{L} as follows:

$$F_{i}(x_{k-1}) = F_{i}(x_{k}) + \nabla F_{i}(x_{k})^{T} (x_{k-1} - x_{k}) + \frac{1}{2} (x_{k-1} - x_{k})^{T} \nabla^{2} F_{i}(x_{k}) (x_{k-1} - x_{k}) + \frac{1}{6} (x_{k-1} - x_{k})^{T} (T_{k}^{i}(x_{k-1} - x_{k})) (x_{k-1} - x_{k}) + O(\|x_{k-1} - x_{k}\|^{4}).$$

$$(2.4)$$

Multiplying both sides of (2.4) by $(x_{k-1} - x_k)^T$ gives

$$(x_{k-1} - x_k)^T \nabla F_i(x_{k-1}) = (x_{k-1} - x_k)^T \nabla F_i(x_k) - (x_{k-1} - x_k)^T \nabla^2 F_i(x_k) (x_{k-1} - x_k) + \frac{1}{2} (x_{k-1} - x_k)^T (T_k^i(x_{k-1} - x_k)) (x_{k-1} - x_k) + O(\|x_{k-1} - x_k\|^4),$$
(2.5)

where T_k^i is the tensor of $F_i(x_k)$, $i=1,2,\ldots,m$. By setting $s_{k-1}=x_k-x_{k-1}$, then (2.4) and (2.5) respectively become

$$F_i(x_{k-1}) = F_i(x_k) - \nabla F_i(x_k)^T s_{k-1} + \frac{1}{2} s_{k-1}^T \nabla^2 F_i(x_k) s_{k-1} + \frac{1}{6} s_{k-1}^T (T_k^i s_{k-1}) s_{k-1} + O(\|s_{k-1}\|^4), \tag{2.6}$$

and

$$s_{k-1}^T \nabla F_i(x_{k-1}) = s_{k-1}^T \nabla F_i(x_k) - s_{k-1}^T \nabla^2 F_i(x_k) s_{k-1} + \frac{1}{2} s_{k-1}^T (T_k^i s_{k-1}) s_{k-1} + O(\|s_{k-1}\|^4).$$
(2.7)

Now, adding (2.6) and (2.7) and truncating the term containing the tensor onward, we have

$$s_{k-1}^T \nabla^2 F_i(x_k) s_{k-1} \approx (\nabla F_i(x_k) - \nabla F_i(x_{k-1}))^T s_{k-1} + 6(F_i(x_{k-1}) - F_i(x_k)) + 3(\nabla F_i(x_k) + \nabla F_i(x_{k-1}))^T s_{k-1}.$$
(2.8)

Now, we consider a simple approximation of $\nabla^2 F_i(x_k)$. That is, if we require that $\nabla^2 F_i(x_k) \approx \alpha_i I$, where I is an identity matrix and α_i is a scalar for each i, then (2.8) becomes

$$s_{k-1}^T \nabla^2 F_i(x_k) s_{k-1} \approx \alpha_i s_{k-1}^T s_{k-1} \approx (\nabla F_i(x_k) - \nabla F_i(x_{k-1}))^T s_{k-1} + 6(F_i(x_{k-1}) - F_i(x_k)) + 3(\nabla F_i(x_k) + \nabla F_i(x_{k-1}))^T s_{k-1}.$$
(2.9)

Since the scalar $s_{k-1}^T s_{k-1} = \|s_{k-1}\|^2 \neq 0$, otherwise, the solution of the problem in question has been achieved. Then dividing (2.9) by the scalar $\|s_{k-1}\|^2$ gives

$$\alpha_i \approx \frac{(\nabla F_i(x_k) - \nabla F_i(x_{k-1}))^T s_{k-1} + 6(F_i(x_{k-1}) - F_i(x_k)) + 3(\nabla F_i(x_k) + \nabla F_i(x_{k-1}))^T s_{k-1}}{\|s_{k-1}\|^2}.$$
(2.10)

Therefore, the approximation of $\nabla^2 F_i(x_k) s_{k-1}$ is

$$\nabla^2 F_i(x_k) s_{k-1} \approx \frac{(\nabla F_i(x_k) - \nabla F_i(x_{k-1}))^T s_{k-1} + 6(F_i(x_{k-1}) - F_i(x_k)) + 3(\nabla F_i(x_k) + \nabla F_i(x_{k-1}))^T s_{k-1}}{\|s_{k-1}\|^2} s_{k-1}. \tag{2.11}$$

Now, substituting (2.11) into (2.1) gives

$$G_k s_{k-1} = \frac{1}{\|s_{k-1}\|^2} \sum_{i=1}^m F_i(x_k) [(\nabla F_i(x_k) - \nabla F_i(x_{k-1}))^T s_{k-1} + 6(F_i(x_{k-1}) - F_i(x_k)) + 3(\nabla F_i(x_k) + \nabla F_i(x_{k-1}))^T s_{k-1}] s_{k-1}.$$
(2.12)

Since $\nabla F_i(x) = J(x)$, then using (2.2), we have the following structured secant equation

$$D_k s_{k-1} = \overline{y}_{k-1},$$
 (2.13)

where

$$\overline{y}_{k-1} = (J_k - J_{k-1})^T F(x_k) + \frac{\theta_{k-1}}{\|s_{k-1}\|^2} s_{k-1}, \tag{2.14}$$

$$\vartheta_{k-1} = 3F(x_k)^T [(J_k - J_{k-1})s_{k-1} - 2(F(x_k) - F(x_{k-1}))]. \tag{2.15}$$

Finally, combining (2.3) and (2.13) yields

$$H_k s_{k-1} = \gamma_{k-1},$$
 (2.16)

where

$$\gamma_{k-1} = J_k^T J_k s_{k-1} + (J_k - J_{k-1})^T F(x_k) + \frac{\theta_{k-1}}{\|s_{k-1}\|^2} s_{k-1}. \tag{2.17}$$

Recently, as mentioned in the previous section, Awwal et al. [20] proposed three structured spectral gradient algorithms by incorporating the structured vector (2.17) into the BB spectral parameters as well as their convex combination. They defined the search directions as follows

$$d_k^{(i)} = -\lambda_k^{(i)} g_k, \quad i = 1, 2, 3, \quad \text{and} \quad k \ge 1,$$
 (2.18)

where

$$\lambda_{k}^{(i)} = \begin{cases}
\frac{\|s_{k-1}\|^{2}}{s_{k-1}^{T}\gamma_{k-1}}, & \text{for } i = 1, \\
\frac{s_{k-1}^{T}\gamma_{k-1}}{\|\gamma_{k-1}\|^{2}}, & \text{for } i = 2, \\
r_{k}\frac{\|s_{k-1}\|^{2}}{\gamma_{k-1}^{T}s_{k-1}} + (1 - r_{k})\frac{\gamma_{k-1}^{T}s_{k-1}}{\|\gamma_{k-1}\|^{2}}, & \text{for } i = 3,
\end{cases}$$
(2.19)

with the scalar $r_k \in [0, 1]$. To avoid negative curvature directions, the authors replaced $s_{k-1}^T \gamma_{k-1}$ with the following safeguard

$$\tau_{k}^{(i)} = \max\{\beta \lambda_{k-1}^{(i)}, \ 2|s_{k-1}^{T} \gamma_{k-1}| + \|s_{k-1}\|^2 + \|\gamma_{k-1}\|^2\}, \quad \beta > 0,$$
(2.20)

whenever it is nonpositive, where i = 1, 2, 3.

Now, using Cauchy Schwarz inequality on $\lambda_k^{(1)}$ and $\lambda_k^{(2)}$, we have

$$\lambda_k^{(1)} = \frac{\|s_{k-1}\|^2}{s_{k-1}^T \gamma_{k-1}} \ge \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|},\tag{2.21}$$

and

$$\lambda_k^{(2)} = \frac{s_{k-1}^T \gamma_{k-1}}{\|\gamma_{k-1}\|^2} \le \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|}. \tag{2.22}$$

This means that $\lambda_k^{(1)} \geq \lambda_k^{(2)}$ for all k. That is, the quantity $\lambda_k^{(1)} - \lambda_k^{(2)}$ is nonnegative. Motivated by this, we define the search direction of the new algorithm as

$$d_k = -\psi_k g_k, \quad k \ge 1,\tag{2.23}$$

where

$$\psi_k = \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|} + \frac{\|s_{k-1}\|^2}{s_{k-1}^T \gamma_{k-1}} - \frac{s_{k-1}^T \gamma_{k-1}}{\|\gamma_{k-1}\|^2}.$$
(2.24)

To analyze the advantage of the parameter (2.24) as well as the convergence of the proposed algorithm, we require the following standard assumption.

Assumption 2.1. The following standard assumptions are useful in the convergence analysis of the proposed method.

A1. The level set $D = \{x \in \mathbb{R}^n \mid f(x) \le f(x_0)\}$ is bounded. That is, $||x|| \le \omega$, holds for all $x \in D$, where $\omega > 0$.

A2. There exist constants $L_1 > 0$ and $L_2 > 0$ such that for all $x, y \in \mathcal{D}$, we have

$$||J(x) - J(y)|| \le L_1 ||x - y||,$$
 (2.25)

$$||F(x) - F(y)|| \le L_2 ||x - y||. \tag{2.26}$$

The two inequalities (2.25) and (2.26) give rise to the following conclusions

$$\|g(x) - g(y)\| \le l\|x - y\|, \ \|F(x)\| \le \omega_1, \ \|J(x)\| \le \omega_2, \ \|g(x)\| \le \gamma_3,$$

where l, ω_1 , ω_2 and ω_3 are positive constants.

Lemma 2.2. Suppose that Assumption 2.1 (A2) holds. Let the structured vector γ_{k-1} be defined by (2.17), then there exists some positive constant, say M > 0, such that

$$\|\gamma_{k-1}\| \le M\|s_{k-1}\|, \ \forall \ k.$$
 (2.27)

$$\psi_k \ge 1/M, \quad \forall \ k. \tag{2.28}$$

Proof. Let $\omega \in [0, 1]$, by Assumption 2.1 and mean value theorem, we have

$$\begin{aligned} |\vartheta_{k-1}| &= \left| 3F(x_k)^T \left[(J_k - J_{k-1})s_{k-1} - 2(F(x_k) - F(x_{k-1})) \right] \right| \\ &= \left| 3F(x_k)^T \left[(J_k - J_{k-1})s_{k-1} - 2J(x_{k-1} + \omega s_{k-1})s_{k-1} \right] \right| \\ &\leq 3\|F(x_k)\| \left\| (J_k - J_{k-1}) - 2J(x_{k-1} + \omega s_{k-1}) \right\| \|s_{k-1}\| \\ &\leq 3\|F(x_k)\| \|s_{k-1}\| \left[\|J_k - J(x_{k-1} + \omega s_{k-1})\| + \|J_{k-1} - J(x_{k-1} + \omega s_{k-1})\| \right] \\ &\leq 3\|F(x_k)\| \|s_{k-1}\| \left[L_1(1 - \omega)\|s_{k-1}\| + L_1\omega\|s_{k-1}\| \right] \\ &\leq 6L_1\omega_1 \|s_{k-1}\|^2. \end{aligned} \tag{2.29}$$

If we let $m := 6L_1\omega_1$, we obtain

$$|\theta_{k-1}| \le m \|s_{k-1}\|^2, \quad \forall \ k. \tag{2.30}$$

Again, using Assumption 2.1 (A2) and (2.30), we obtain

$$\begin{aligned} \|\gamma_{k-1}\| &= \left\| J_k^T J_k s_{k-1} + \left[(J_k - J_{k-1})^T F(x_k) + \frac{\theta_{k-1}}{\|s_{k-1}\|^2} s_{k-1} \right] \right\| \\ &\leq \|J_k\|^2 \|s_{k-1}\| + \|J_k - J_{k-1}\| \|F(x_k)\| + \frac{|\theta_{k-1}|}{\|s_{k-1}\|^2} \|s_{k-1}\| \\ &\leq \|J_k\|^2 \|s_{k-1}\| + \|J_k - J_{k-1}\| \|F(x_k)\| + \frac{m\|s_{k-1}\|^2}{\|s_{k-1}\|^2} \|s_{k-1}\| \\ &\leq \omega_2^2 \|s_{k-1}\| + \omega_1 L_1 \|s_{k-1}\| + m\|s_{k-1}\| \\ &= (\omega_2^2 + \omega_1 L_1 + m) \|s_{k-1}\|. \end{aligned} \tag{2.31}$$

By letting $M := \omega_2^2 + \omega_1 L_1 + m$, we get the desired result. Lastly, from (2.21) and (2.22), we have that $\frac{\|s_{k-1}\|^2}{s_{k-1}^T \gamma_{k-1}} - \frac{s_{k-1}^T \gamma_{k-1}}{\|\gamma_{k-1}\|^2} \ge 0$, and therefore using (2.27) $\psi_k \ge \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|} \ge \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|} = \frac{1}{M}$.

From Lemma 2.2, we see that the spectral parameter ψ_k is strictly positive, for all k.

Algorithm 2: New Structured Spectral Gradient Method (NSSGM)

Input: Initial approximation $x_0 \in \text{dom}(f)$, $0 << \psi_{\text{max}} << +\infty$ and Tol > 0.

Step 0: Compute $f(x_0)$ and $d_0 = -g_0$. Set k = 0.

Step 1: Compute $F(x_k)$ and g_k . If $||g_k|| \le Tol$ or $k \ge k_{max}$, stop.

Step 2: Compute h_k using Algorithm 1.

Step 3: Update the next iterate using $x_{k+1} = x_k + h_k d_k$.

Step 4: Compute $\gamma_{k-1} = J_k^T J_k s_{k-1} + (J_k - J_{k-1})^T F(x_k) + \frac{\theta_{k-1}}{\|s_{k-1}\|^2} s_{k-1}$,

where $\theta_{k-1} = 3F(x_k)^T[(J_k - J_{k-1})s_{k-1} - 2(F(x_k) - F(x_{k-1}))].$

Step 5: Update the search direction

$$d_k = -\hat{\psi}_k g_k, \tag{2.32}$$

$$\widehat{\psi}_{k} = \min \left\{ \frac{\|s_{k-1}\|}{\|\gamma_{k-1}\|} + \frac{\|s_{k-1}\|^{2}}{s_{k-1}^{T} \gamma_{k-1}} - \frac{s_{k-1}^{T} \gamma_{k-1}}{\|\gamma_{k-1}\|^{2}}, \psi_{\text{max}} \right\}$$
(2.33)

Step 6: Set k := k + 1 and go to step 1.

Remark 2.3. From the definition of the spectral parameter (2.33) and Lemma 2.2, we see that $\hat{\psi}_k$ is automatically bounded, i.e.

$$\frac{1}{M} \le \hat{\psi}_k \le \psi_{\text{max}}, \quad \forall \ k. \tag{2.34}$$

This means that unlike the methods in [20], we do not require any special safeguarding strategy for the spectral parameter $\hat{\psi}_k$ defined by (2.33). In addition, it is not difficult to see that the following hold with regards to the search direction defined by (2.32)

$$g_k^T d_k \le -\frac{1}{M} \|g_k\|^2. \tag{2.35}$$

$$||d_k|| \le \psi_{\max} ||g_k||.$$
 (2.36)

Lemma 2.4. Let $\delta \in (0,1)$ and suppose d_k is the search direction defined by (2.32) such that the inequalities (2.35) and (2.36) hold. Suppose Assumption 2.1 holds, then the Algorithm 2 (NSSGM) is well-defined.

Proof. Let g_k be the gradient of the objective function (1.1) generated by Algorithm 2 (NSSGM) at x_k such that $||g_k|| \neq 0$. By the fact that (2.35) holds for the search direction (2.32) then by Assumption 2.1, there exists a step length h_k^* sufficiently small enough such that

$$f(x_k + h^* d_k) \le U_k + \delta h^* g_k^T d_k, \tag{2.37}$$

holds, where the next iterate $x_{k+1} = x_k + h^* d_k$ is well-defined.

Suppose for contradiction that, at a certain iteration, there exists some $h_j \ge 0$ for which the line search (1.6) does not hold, then we have

$$f(x_k + h_i d_k) > U_k + \delta h_i g_k^T d_k, \text{ for all } \alpha_i \ge 0,$$

$$(2.38)$$

where $\{h_i\}$ is a strictly decreasing sequence satisfying $\lim_{i\to\infty} h_i = 0$.

By the definition of the problem (1.1), we have $f(x_k) \ge 0$, $\forall k$. Since $U_0 = f(x_0)$, (see, Algorithm 1) and the fact that U_k is a convex combination of U_{k-1} and $f(x_k)$, it holds that $U_k \ge 0 \ \forall k$.

Now, since it holds from (2.36) that $||d_k|| \le \psi_{\text{max}} ||g_k||$, then (2.38) becomes

$$\begin{split} U_k &< f(x_k + h_j d_k) - \delta h_j \mathbf{g}_k^T d_k \\ &\leq f(x_k + h_j d_k) + \delta h_j \|\mathbf{g}_k\| \|d_k\| \\ &\leq f(x_k + h_j d_k) + \delta \psi_{\max} h_j \|\mathbf{g}_k\|^2 \\ &\leq f(x_k + h_j d_k) + \delta \psi_{\max} h_j \gamma_3^2. \end{split}$$

This means that taking the limit on both sides as $j \to \infty$ gives

$$U_k \le f(x_k). \tag{2.39}$$

However, since

$$U_k = \frac{\mu_{k-1} W_{k-1} U_{k-1} + f(x_k)}{\mu_{k-1} W_{k-1} + 1},$$

it means that U_k lies between U_{k-1} and $f(x_k)$. Merging this with (2.39) yields $f(x_k) = U_k$. This further means that $\mu_{k-1} = 0$, since $U_{k-1} \neq 0$, and $W_{k-1} \neq 0$. Therefore, the non-monotone line search turns into monotone. Thus, (2.38) turns to

$$f(x_k + h_i d_k) > f(x_k) + \delta h_i g_L^T d_k,$$
 (2.40)

this implies,

$$\frac{f(x_k + h_j d_k) - f(x_k)}{h_i} > \delta g_k^T d_k.$$

Now, taking limit as $j \to \infty$ and using Assumption 2.1 gives $g_k^T d_k \ge \delta g_k^T d_k$. Since $g_k^T d_k < 0$, it must hold that $\delta \ge 1$, which is a contradiction. Hence, the proof.

The following result is from [8] and is useful in proving the convergence result of the proposed method.

Lemma 2.5. Suppose the nonmonotone line search algorithm is employed with the search direction being descent such that $\|\nabla f(x) - \nabla f(x_k)\| \le L\|x - x_k\|$ for all x on the line segment connecting x_k and $x_k + h_k \rho d_k$, $\rho > 0$, if $\rho h_k \le \overline{\mu}$, $\overline{\mu} > 0$, then

$$h_k \ge \min\left\{\frac{\overline{\mu}}{\rho}, \frac{2(1-\delta)}{L\rho} \frac{|g_k^T d_k|}{\|d_k\|^2}\right\}. \tag{2.41}$$

Now, we state the convergence result of the proposed method. The proof follows directly from Theorem 2.2 [8]. We only repeat it here for the benefit of the potential readers.

Theorem 2.6. Let $\{x_k\}$ be the sequence generated by Algorithm 2 and suppose f(x) is given by (1.1) such that Assumption 2.1 holds. Then the sequence of iterates $\{x_k\}$ is contained in the level set and the following conclusions hold:

$$\lim_{k \to \infty} \inf \|g_k\| = 0, \quad and$$

$$\lim_{k \to \infty} \|g_k\| = 0, \quad \text{if} \quad 0 < \mu_{\max} < 1.$$

Proof. It was shown in Lemma 1.1 of [8] that for W_{k+1} defined in Step 1 of Algorithm 1, we have

$$W_{k+1} = 1 + \sum_{i=0}^{k} \prod_{m=0}^{i} \mu_{k-m} \le k + 2. \tag{2.42}$$

Next, consider the following cases:

Case 1. If $\rho h_k \geq \overline{\mu}$, then $h_k \geq \frac{\overline{\mu}}{a}$. By (1.6) and (2.35), it follows that

$$\begin{split} f(x_{k+1}) &\leq U_k + \delta h_k g_k^T d_k \\ &\leq U_k - \frac{\delta}{M} h_k \|g_k\|^2 \\ &\leq U_k - \frac{\delta \overline{\mu}}{M \rho} \|g_k\|^2. \end{split}$$

Case 2. On the other hand, if $\rho h_k \leq \overline{\mu}$, then by (2.41),

$$h_k \ge \frac{2(1-\delta)}{L\rho} \frac{|g_k^T d_k|}{\|d_k\|^2}.$$
 (2.43)

From (2.35) and (2.36), we deduce $|g_k^T d_k| \ge \frac{1}{M} ||g_k||^2$ and $\frac{1}{||d_k||^2} \ge \frac{1}{||g_k||^2}$. Combining with (1.6) gives

$$\begin{split} f(x_{k+1}) & \leq U_k + \delta h_k g_k^T d_k \\ & \leq U_k - \frac{\delta}{M} \frac{2(1-\delta)}{L\rho} \frac{|g_k^T d_k|}{\|d_k\|^2} \|g_k\|^2 \\ & \leq U_k - \frac{2(1-\delta)}{L\rho} \frac{\delta}{M^2} \frac{\|g_k\|^2}{\|d_k\|^2} \|g_k\|^2 \\ & \leq U_k - \frac{2(1-\delta)}{L\rho \psi_{max}^2} \frac{\delta}{M^2} \|g_k\|^2, \end{split}$$

where the third and last inequalities follow from (2.35) and (2.36), respectively. Setting $v = \min\left\{\frac{\delta\overline{\mu}}{M\rho}, \frac{2(1-\delta)}{L\rho\psi_{max}^2} \frac{\delta}{M^2}\right\}$, yields

$$f(x_{k+1}) \le U_k - v \|g_k\|^2$$
. (2.44)

Combining the relation (1.5) in Step 1 of Algorithm 1 and (2.44), gives

$$\begin{split} U_{k+1} &= \frac{\mu_k W_k U_k + f(x_{k+1})}{W_{k+1}} \\ &\leq \frac{\mu_k W_k U_k + U_k - v \|g_k\|^2}{W_{k+1}} \\ &= \frac{(\mu_k W_k + 1) U_k - v \|g_k\|^2}{W_{k+1}} \\ &= U_k - \frac{v \|g_k\|^2}{W_{k+1}}. \end{split} \tag{2.45}$$

From (2.44), we can deduce $f(x_{k+1}) \le U_k$, and by the fact that the objective function f is bounded from below, we have that U_k is bounded from below, $\forall k$.

Now, from (2.45), we have that

$$\sum_{k=0}^{\infty} \frac{\|g_k\|^2}{W_{k+1}} < \infty. \tag{2.46}$$

If $\|g_k\|$ were bounded away from 0, then (2.46) would be violated since $W_{k+1} \le k+2$. Hence, $\lim_{k\to\infty} \inf \|g_k\| = 0$, holds. If $\mu_{\text{max}} < 1$, then by (2.42),

$$W_{k+1} = 1 + \sum_{j=0}^{k} \prod_{i=0}^{j} \mu_{k-i} \le 1 + \sum_{j=0}^{k} \mu_{\max}^{j+1} \le \sum_{j=0}^{\infty} \mu_{\max}^{j} = \frac{1}{1 - \mu_{\max}}.$$
 (2.47)

Combining with (2.46), we have $\lim_{k\to\infty} ||g_k|| = 0$, holds.

3. Numerical experiments and comparison

In this section, the numerical performance as well as computational efficiency of the proposed method shall be demonstrated. The experiment is divided into two subsections. The first subsection discusses the numerical performance of Algorithm 2 (NSSGM) on some benchmark test problems in comparison with two existing algorithms of similar characteristics. On the other hand, in the other subsection, Algorithm 2 is implemented to solve problems arising from 2D robotic motion control. All experiments are conducted on a personal computer with an Intel Core(TM) i5-8250u processor with 4 GB of RAM and a CPU 1.60 GHz.

Table 1List of zero and nonzero test problems used for the experiment in Section 3.1.

S/N	Problem name	Initial points	Size	Reference
Zero and N	onzero test problems			
1	Penalty function I	$(3,3,\ldots,3)^T$	Large	[23]
2	Variably dimension	$(1-1/n, 1-2/n, \dots, 0)^T$	Large	[24]
3	Trigonometric function	$(1, 1, \dots, 1)^T$	Large	[24]
4	Linear function-full rank	$(1,1,\ldots,1)^T$	Large	[24]
5	Problem 202	$(2,2,\ldots,2)^T$	Large	[25]
6	Problem 212	$(1/2, 1/2, \dots, 1/2)^T$	Large	[25]
7	Strictly convex function I	$(1/n, 1/n, \dots, 1/n)^T$	Large	[26]
8	Sin function II	$(1,1,\ldots,1)^T$	Large	[27]
9	Exponential function I	$(n/n-1, n/n-1, \dots, n/n-1)^T$	Large	[23]
10	Exponential function II	$(1/n^2, 1/n^2, \dots, 1/n^2)^T$	Large	[23]
11	Logarithmic function I	$(1,1,\ldots,1)^T$	Large	[23]
12	Trigonometric exponential function	$(1/2, 1/2, \dots, 1/2)^T$	Large	[25]
13	Extended Powell function	$(1.5E - 4, \dots, 1.5E - 4)^T$	Large	[23]
14	Function 21	$(-1, -1, \dots, -1)^T$	Large	[23]
15	Extended Rosenbrock function	$(-1, -1, \dots, -1)^T$	Large	[24]
16	Extended Himmelblau function	$(-1, 1, -1, 1, \dots, -1, 1)^T$	Large	[28]
17	Function 27	$(100, \frac{1}{n^2}, \frac{1}{n^2}, \dots, \frac{1}{n^2})$	Large	[23]
18	Trigonometric logarithmic function	$(1, 1, \dots, 1)^T$	Large	[23]
19	Zero Jacobian function	for $i = 1$, $\frac{100(n-100)}{n}$, for $i \ge 2$, $\frac{(n-1000)(n-500)}{(60n)^2}$	Large	[23]
20	Exponential function	$(1/2, 1/2, \dots, 1/2)^T$	Large	[23]
21	Function 18	$(1,1,\ldots,1)^T$	Large	[23]
22	Brown almost linear function	$(1/n, 1/n, \dots, 1/n)^T$	Large	[24]
23	Brown Badly Scaled function	$(1,1)^T$	Small	[24]
24	Jennrich and Sampson function	$(1,1)^T$	Small	[24]
25	Box three-dimensional function	$(1,1,1)^T$	Small	[24]
26	Rank deficient function	$(1,1)^T$	Small	[24]
27	Rosenbrock function	$(1,1)^T$	Small	[24]
28	Parameterized problem	$(1,1)^T$	Small	[29]
29	Freudenstein and Roth function	$(1,1)^T$	Small	[24]
30	Beale Function	$(1,1)^T$	Small	[24]

3.1. Numerical performance on benchmark test problems

The first efficiency test for NSSGM is done by implementing it to solve some benchmark test problems and then comparing its numerical performance with the SSHBB algorithm developed in [20] and the SSGM2 proposed in [19]. The comparison test is done based on #iter (the number of iterations), #fval (the number of function evaluations), #nmvp (the number of matrix-vector products) and #time (the CPU time) recorded. It is crucial to mention here that all the NSSGM, SSHBB, and SSGM2 are coded in MATLAB (R2019b) such that, for each test problem considered, the components of the structured spectral parameters are computed directly as a matrix-vector product without the need to explicitly form or store any matrix throughout the iteration process. This means that the NSSGM, SSHBB, and SSGM2 are implemented as matrix-free algorithms.

The three algorithms are implemented using the same parameters as presented in [20]. In the course of this experiment, thirty (30) benchmark test problems, where twenty-two (22) are large scale and the remaining are small scale, were solved. The dimensions of the large-scale problems are varied as 3000, 9000, and 15 000. Details of the test problems are given in Table 1. During the iteration process, a method is declared to have achieved an approximate solution of a particular problem whenever $\|g_k\| \le 10^{-6}$. However, if the number of iterations is in excess of 1000 iterations and the stopping criterion mentioned above has not been satisfied, then a failure is declared and is denoted as "_". The details of the numerical values recorded by each algorithm have been presented in Tables 2–4. Perusing Tables 2–4, it is very easy to note that the proposed NSSGM solves all the test problems considered, successfully, whereas, its competitors, SSHBB and SSGM2, failed in a number of cases. This suggests that the new NSSGM can be an alternative to the existing SSHBB and SSGM2 methods. Furthermore, although the numerical results in Tables 2–4 show that the three algorithms are competitive, we can confirm the relatively superior performance of NSSGM over SSHBB and SSGM2 as it solves all the test problems including those that could not be solved by others. This underscores the efficiency of the new NSSGM algorithm.

3.2. Application in 2D robotic motion control

Recently, applications of optimization algorithms to solve different types of problems are gaining more attention. One such application that is of interest to us, in this paper, is the 2-dimensional robotic motion control problem. In what follows, the new NSSGM is employed to track a two-joint planar robot manipulator. For a detailed description of the discrete-time kinematics equation of a two-joint planar robot manipulator, the reader may refer to the Ref. [30–33] and the references therein. The task at hand is to solve the following nonlinear least square problem:

$$\min_{F_k \in \mathbb{R}^2} \frac{1}{2} \left\| F_k - \widehat{F}_k \right\|^2, \tag{3.1}$$

Table 2
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.

P	NSSGM						SSHBB						SSGM2					
	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE			
	6	7	19	0.1792	9.92E-08	6	7	19	0.216	1E-07	6	7	19	0.1925	9.92E-08			
1	5	6	16	0.1854	4.53E-05	5	6	16	0.206	5E-05	6	7	19	0.2056	4.53E-05			
•	5	6	16	0.0672	2.11E-05	5	6	16	0.068	2E-05	6	7	18	0.0958	2.11E-05			
	22	100	67	0.0690	3.01E-23	22	100	67	0.083	2E-24	22	100	67	0.0686	7.06E-23			
2	27	116	82	1.1052	5.9E-21	-	-	-	-	-	68	276	205	1.4511	1.25E-21			
_	79	527	238	1.7029	5.68E-22	-	-	-	-	-	80	543	262	1.9173	1.88E-21			
	93	154	280	0.5856	6.93E-08	-	-	-	-	-	101	170	304	0.8468	6.94E-08			
3	100	157	301	1.6796	2.16E-08	-	-	-	-	-	125	307	376	1.8596	2.16E-08			
0	27	55	82	0.6532	1.99E-10	28	56	85	0.778	2E-13	27	55	82	0.7322	2E-10			
	102	202	307	0.6568	4.2E-10	74	138	223	0.531	4E-10	102	202	307	0.4758	4.2E-10			
4	38	72	115	0.6394	6.45E-11	33	56	100	2.156	7E-11	38	72	115	0.5193	6.45E-11			
•	28	50	85	1.4876	4.71E-11	23	36	70	1.338	5E-11	28	50	85	0.5996	4.71E-11			
	1	2	4	0.0153	0.5	1	2	4	0.018	0.5	1	2	4	0.031	0.5			
5	1	2	4	0.0122	0.5	1	2	4	0.02	0.5	1	2	4	0.0086	0.5			
	1	2	4	0.0120	0.5	1	2	4	0.013	0.5	1	2	4	0.009	0.5			
	6	7	19	0.0260	1.3E-21	6	7	19	0.022	1E-21	6	7	19	0.0415	1.3E-21			
6	6	7	19	0.0402	4.54E-21	6	7	19	0.04	5E-21	6	7	19	0.0384	4.54E-21			
Ü	6	7	19	0.0522	7.77E-21	6	7	19	0.156	8E-21	6	7	19	0.061	7.77E-21			
	72	152	217	0.2600	7.55E-10	69	132	208	0.487	7E-10	72	152	217	0.2999	7.55E-10			
7	34	63	103	0.5783	1.48E-10	33	56	100	0.625	1E-10	34	63	103	0.4356	1.48E-10			
	28	49	85	0.5871	8.67E-11	23	36	70	0.729	1E-10	28	49	85	0.5917	8.67E-11			
	6	8	19	0.0216	1.71E-23	6	8	19	0.061	7E-24	6	8	19	0.04	1.71E-23			
8	6	8	19	0.0544	1.71E-23	6	8	19	0.101	1E-23	6	8	19	0.0449	1.71E-23			
Ü	6	8	19	0.0990	1.7E-23	6	8	19	0.177	1E-23	6	8	19	0.0768	1.7E-23			
	4	5	13	0.0439	1500	4	5	13	0.03	1500	4	5	13	0.0519	1500			
9	4	5	13	0.1026	4500	4	5	13	0.05	4500	4	5	13	0.0551	4500			
_	4	5	13	0.1674	7500	4	5	13	0.072	7500	4	5	13	0.0781	7500			
	5	6	16	0.0094	3.23E-29	5	6	16	0.047	3E-29	5	6	16	0.032	3.23E-29			
10	5	6	16	0.0311	9.7E-29	5	6	16	0.039	1E-28	5	6	16	0.036	9.7E-29			
	5	6	16	0.0389	1.62E-28	5	6	16	0.052	2E-28	5	6	16	0.0453	1.62E-28			

at each instantaneous time $t_k \in [0, t_{\text{final}}]$, where t_{final} is the final task duration,

$$F_k = \begin{bmatrix} \ell_1 \cos(x_1) + \ell_2 \cos(x_1 + x_2), & \ell_2 \sin(x_1) + \ell_2 \sin(x_1 + x_2) \end{bmatrix}^T,$$

 ℓ_i , i = 1, 2, denotes the length of the ith-rod and \hat{F}_k represents the end effector controlled track. For the purpose of this experiment, \hat{F}_k is controlled to track the following Lissajous curve

$$\widehat{F}_k = \left[\frac{3}{2} + \frac{1}{5} \sin(t_k), \quad \frac{\sqrt{3}}{2} + \frac{1}{5} \sin\left(2t_k + \left(\frac{\pi}{2}\right)\right) \right]^T.$$

To successfully execute the tracking process, the following additional parameters are set: the initial joint states $x_0 = [0, \frac{\pi}{3}]$, $\ell_1 = \ell_2 = 1$ and the task duration, $t_{\text{final}} = 10$ s is subdivided into 200 equal parts.

Numerical results generated by the NSSGM are plotted in Fig. 1 where Fig. 1(a) describes the synthesized robot trajectories, Fig. 1(b) gives the end effector trajectory and desired path. Also, Fig. 1(c) and (d) present the tracking residual error on the x-axis and y-axis, respectively. Looking at Fig. 1, it is evident that the new NSSGM algorithm completes the task of synthesizing the robot trajectories, successfully. The residual error recorded by the NSSGM on both x-axis and y-axis is below 10^{-10} . This affirms the suitability of NSSGM to deal with real-world problems.

4. Conclusion

In this research article, we have proposed a new spectral gradient-based algorithm for solving NLS problems called NSSGM. The proposal is an improvement upon the recently developed algorithms by Awwal et al. [20] for solving the same class of problems. Unlike in [20], the formulation of our spectral parameter in the proposed algorithm was shown to be independent of any safeguarding scheme. We then show theoretically the global convergence of the proposed NSSGM algorithm under some mild standard assumptions. Moreover, we also verify the efficiency of the NSSGM algorithm by solving some benchmark test problems in the literature and comparing the results with the best performing algorithm in [20], i.e., SSHBB and SSGM2 [19]. As future work, the structured vector γ_{k-1} can be incorporated into conjugate gradient-like algorithms such as [34,35] and explore their respective efficiencies. Finally, we show the applicability of this algorithm in motion control of the robotic arm problem.

Table 3
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.

P	NSSGM						SSHBB						SSGM2					
	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE			
	8	12	25	0.0186	3.16E-08	8	12	25	0.03	3E-08	8	12	25	0.0362	3.16E-08			
11	8	12	25	0.0474	9.57E-09	8	12	25	0.095	1E-08	8	12	25	0.0518	9.57E-09			
11	3	4	10	0.0256	7.93E-08	4	5	13	0.056	2E-08	4	5	13	0.039	7.93E-08			
	564	1262	1693	2.7219	5.83E-13	592	1320	1777	2.756	5E-13	582	1302	1742	1.9758	5.83E-13			
12	882	1921	2647	11.4496	1.79E-13	714	1587	2143	9.885	2E-13	882	1921	2647	9.5491	1.79E-13			
	717	1538	2152	10.7454	1.15E-13	625	1397	1876	13.73	1E-13	717	1538	2152	11.2624	1.15E-13			
	6	8	19	0.0294	3.58E-18	6	8	19	0.032	4E-18	6	8	19	0.058	3.58E-18			
13	6	8	19	0.0820	9.23E-18	6	8	19	0.037	9E-18	6	8	19	0.0572	9.23E-18			
10	6	8	19	0.0501	1.49E-17	6	8	19	0.054	1E-17	6	8	19	0.0726	1.49E-17			
	55	72	166	0.4069	9.77E-15	40	47	121	0.322	3E-16	55	72	166	0.664	9.77E-15			
14	40	47	121	1.8149	3.83E-15	44	51	133	2.323	2E-14	42	49	126	1.3627	3.83E-15			
- '	47	57	142	2.6355	1.42E-14	40	47	121	2.992	6E-15	47	57	142	2.1729	1.42E-14			
	23	45	70	0.1381	8.98E-12	16	25	49	0.056	2E-16	23	45	70	0.111	8.98E-12			
15	23	45	70	0.1991	1.51E-11	16	25	49	0.176	7E-16	23	45	70	0.2202	1.51E-11			
10	23	45	70	0.5087	4.43E-11	16	25	49	0.245	1E-15	23	45	70	0.3459	4.43E-11			
	2	9	7	0.0109	6.92E-12	2	9	7	0.029	7E-12	2	9	7	0.0788	6.92E-12			
16	2	9	7	0.0234	2.08E-11	2	9	7	0.027	2E-11	2	9	7	0.0314	2.08E-11			
10	2	9	7	0.1528	3.46E-11	2	9	7	0.045	3E-11	2	9	7	0.044	3.46E-11			
	29	39	88	0.7268	2.53E-13	25	34	76	0.201	1E-10	29	39	88	0.252	2.53E-13			
17	29	39	88	0.8700	7.6E-13	24	32	73	0.641	4E-13	29	39	88	0.7458	7.6E-13			
	29	39	88	0.7185	1.27E-12	24	32	73	0.957	6E-13	29	39	88	0.8161	1.27E-12			
	1	2	4	0.0117	0	1	2	4	0.308	0	1	2	4	0.0247	0			
18	1	2	4	0.0061	0	1	2	4	0.022	0	1	2	4	0.0095	0			
10	1	2	4	0.0094	0	1	2	4	0.042	0	1	2	4	0.0102	0			
	13	18	40	0.0251	3.26E-11	13	18	40	0.037	8E-16	13	18	40	0.0558	3.26E-11			
19	13	18	40	0.1883	9.86E-11	13	18	40	0.201	3E-15	13	18	40	0.0839	9.86E-11			
	13	18	40	0.1775	1.65E-10	13	18	40	0.171	5E-15	13	18	40	0.149	1.65E-10			
	21	36	64	0.2394	9.7E-10	21	36	64	0.071	1E-09	21	36	64	0.1044	9.7E-10			
20	21	36	64	0.5041	9.7E-10	21	36	64	0.247	1E-09	21	36	64	0.3	9.7E-10			
	21	36	64	0.8168	9.7E-10	21	36	64	0.542	1E-09	21	36	64	0.3651	9.7E-10			

Table 4
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.

P	NSSGM										SSGM2					
	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE	#iter	#fval	#nmvp	#time	FVALUE	
	6	8	19	0.0557	3.06E-18	6	8	19	0.068	3E-18	6	8	19	0.0383	3.06E-18	
21	6	8	19	0.1007	8.76E-18	6	8	19	0.053	9E-18	6	8	19	0.0555	8.76E-18	
	6	8	19	0.1433	1.45E-17	6	8	19	0.076	1E-17	6	8	19	0.0751	1.45E-17	
	20	35	61	0.0427	7.08E-10	20	35	61	0.05	7E-10	20	35	61	0.0781	7.08E-10	
22	21	36	64	0.1450	5.51E-10	21	36	64	0.301	6E-10	21	36	64	0.1885	5.51E-10	
	21	36	64	0.2143	6.96E-10	21	36	64	0.41	7E-10	21	36	64	0.26	6.96E-10	
	23	38	70	0.0648	7.19E-07	23	38	70	0.07	1E-06	23	38	70	0.087	7.19E-07	
23	22	36	67	0.1897	405 000	15	38	46	0.147	405 000	22	36	67	0.2264	405 000	
23	24	39	73	0.5082	1125000	22	47	67	0.568	1E+06	24	39	73	0.3986	1125000	
	398	812	1195	3.0304	9.81E-09	230	489	691	1.711	9E-09	398	812	1195	2.6658	9.81E-09	
24	219	440	658	4.2371	1.33E-08	276	597	829	6.677	2E-08	219	440	658	3.587	1.33E-08	
27	289	599	868	7.4218	1.65E-08	303	641	910	12.29	5E-09	289	599	868	6.2345	1.65E-08	
	2	27	7	0.0210	1.39E-14	2	27	7	0.029	1E-14	2	27	7	0.0381	1.39E-14	
25	17	137	52	0.2718	1.84E-16	-	-	-	-	-	-	-	-	-	-	
26	39	327	118	0.0239	1.73E-18	24	150	73	0.053	4E-18	22	43	67	0.0282	0.19894	
27	1	11	4	0.0114	1010	1	11	4	0.028	1010	1	11	4	0.0139	1010	
28	508	1219	1525	0.2006	4.28E-11	-	-	-	-	-	512	1269	1598	0.2104	8.36E-14	
29	8	11	25	0.0051	1.2905	11	14	34	0.008	1.2905	11	14	34	0.0129	1.2905	
30	1	2	4	0.0077	0	1	2	4	0.019	0	1	2	4	0.0132	0	
31	14	30	43	0.0131	0.49999	13	29	40	0.013	0.5	15	38	52	0.0161	0.49999	
32	29	67	88	0.0171	24.4921	41	100	124	0.035	24.492	30	72	92	0.0131	24.4921	
33	29	47	88	0.0136	3.52E-15	28	45	85	0.023	5E-14	32	46	97	0.0145	3.9E-15	

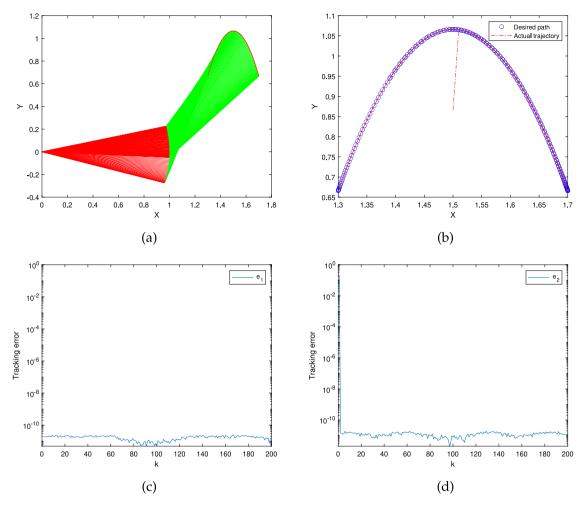


Fig. 1. Numerical results recorded by NSSGM method where: (a) Synthesized robot trajectories. (b) End effector trajectory and desired path. (c) Tracking residual error on the *x*-axis. (d) Tracking residual error on the *y*-axis.

Code availability

The MATLAB codes for the implementation of the proposed algorithm are available upon request.

Acknowledgments

The authors would like to thank the reviewers and the editors for their valuable suggestions which improved the earlier version of this paper.

Data availability

No data was used for the research described in the article.

References

- [1] G. Golub, V. Pereyra, Separable nonlinear least squares: the variable projection method and its applications, Inverse Problems 19 (2) (2003) R1-R26.
- [2] S.-J. Kim, K. Koh, M.I Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale ℓ₁−regularized least squares, IEEE J. Sel. Top. Signal Process. 1 (4) (2007) 606–617.
- [3] M.M. Yahaya, P. Kumam, A.M. Awwal, S. Aji, A structured quasi-Newton algorithm with nonmonotone search strategy for structured NLS problems and its application in robotic motion control, J. Comput. Appl. Math. 395 (2021) 113582.
- [4] J. Li, F. Ding, G. Yang, Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems, Math. Comput. Modelling 55 (3–4) (2012) 442–450.

- [5] A. Cornelio, Regularized nonlinear least squares methods for hit position reconstruction in small gamma cameras, Appl. Math. Comput. 217 (12) (2011) 5589-5595
- [6] D.C. López, T. Barz, S. Körkel, Günter Wozny, et al., Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design, Comput. Chem. Eng. 77 (2015) 24–42.
- [7] L.M. Tang, A regularization homotopy iterative method for il-posed nonlinear least squares problem and its application, in: Applied Mechanics and Materials, 90, Trans Tech Publ, 2011, pp. 3268–3273.
- [8] H. Zhang, W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 (4) (2004) 1043-1056.
- [9] C.X. Xu, Hybrid method for nonlinear least-square problems without calculating derivatives, J. Optim. Theory Appl. 65 (3) (1990) 555-574.
- [10] H. Zhang, A.R. Conn, On the local convergence of a derivative-free algorithm for least-squares minimization, Comput. Optim. Appl. 51 (2) (2012) 481–507.
- [11] H. Zhang, A.R. Conn, K. Scheinberg, A derivative-free algorithm for least-squares minimization, SIAM J. Optim. 20 (6) (2010) 3555-3576.
- [12] Y.-X. Yuan, Subspace methods for large scale nonlinear equations and nonlinear least squares, Optim. Eng. 10 (2) (2009) 207-218.
- [13] R. Fletcher, C. Xu, Hybrid methods for nonlinear least squares, IMA J. Numer. Anal. 7 (3) (1987) 371-389.
- [14] H. Mohammad, M.Y. Waziri, S.A. Augusta Santos, A brief survey of methods for solving nonlinear least-squares problems, Numer. Algebra, Control. Optim. 9 (1) (2019) 1–13.
- [15] Y.-X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares, Numer. Algebra Control Optim. 1 (1) (2011) 15–34.
- [16] M. Kobayashi, Y. Narushima, H. Yabe, Nonlinear conjugate gradient methods with structured secant condition for nonlinear least squares problems, J. Comput. Appl. Math. 234 (2) (2010) 375–397.
- [17] R. Dehghani, N. Mahdavi-Amiri, Scaled nonlinear conjugate gradient methods for nonlinear least squares problems, Numer. Algorithms 82 (1) (2019) 1–20.
- [18] P. Kumam, A.B. Abubakar, A.H. Ibrahim, H.U. Kura, B. Panyanak, N. Pakkaranang, Another hybrid approach for solving monotone operator equations and application to signal processing. Math. Methods Appl. Sci. 45 (12) (2022) 7897–7922.
- [19] H. Mohammad, M.Y. Waziri, Structured two-point stepsize gradient methods for nonlinear least squares, J. Optim. Theory Appl. 181 (1) (2019) 298-317.
- [20] A.M. Awwal, P. Kumam, L. Wang, M.M. Yahaya, H. Mohammad, On the barzilai-borwein gradient methods with structured secant equation for nonlinear least squares problems, Optim. Methods Softw. 37 (4) (2022) 1269–1288.
- [21] P. Kumam, A.B. Abubakar, M. Malik, A.H. Ibrahim, N. Pakkaranang, B. Panyanak, A hybrid HS-LS conjugate gradient algorithm for unconstrained optimization with applications in motion control and image recovery, J. Comput. Appl. Math. 433 (2023) 115304.
- [22] H. Mohammad, S.A. Santos, A structured diagonal hessian approximation method with evaluation complexity analysis for nonlinear least squares, Comput. Appl. Math. 37 (5) (2018) 6619–6653.
- [23] W. La Cruz, J.M. Martínez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp. 75 (2006) 1429–1448.
- [24] J.J. Moré, B.S. Garbow, K.E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Softw. 7 (1) (1981) 17-41.
- [25] L. Lukšan, J. Vlček, Test problems for unconstrained optimization, Acad. Sci. the Czech Repub. Inst. Comput. Sci. Tech. Rep. (2003) 897.
- [26] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1) (1997) 26-33.
- [27] A.M. Awwal, P. Kumam, A.B. Abubakar, Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations, Appl. Math. Comput. 362 (2019) 124514.
- [28] M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimization problems, J. Math. Model. Numer. Optim. 4 (2) (2013) 150-194.
- [29] J. Huschens, On the use of product structure in secant methods for nonlinear least squares problems, SIAM J. Optim. 4 (1) (1994) 108-129.
- [30] Y. Zhang, L. He, C. Hu, J. Guo, J. Li, Y. Shi, General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization, J. Comput. Appl. Math. 347 (2019) 314–329.
- [31] M. Sun, J. Liu, Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng. 2020 (2020) 9175496.
- [32] A.M. Awwal, I.M. Sulaiman, M. Malik, M. Mamat, P. Kumam, K. Sitthithakerngkiet, A spectral rmil+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9 (2021) 75398–75414
- [33] G.-Y. Tang, L. Sun, C. Li, M.-Q. Fan, Successive approximation procedure of optimal tracking control for nonlinear similar composite systems, Nonlinear Anal. 70 (2) (2009) 631–641.
- [34] X. Jiang, L. Pan, M. Liu, J. Jian, A family of spectral conjugate gradient method with strong convergence and its applications in image restoration and machine learning, J. Franklin Inst. 361 (13) (2024) 107033.
- [35] A.M. Awwal, M.M. Yahaya, N. Pakkaranang, N. Pholasa, A new variant of the conjugate descent method for solving unconstrained optimization problems and applications, Mathematics. 12 (15) (2024) 2430.