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Dear SCImago Team,

I would like to bring to your attention concerns regarding the editorial process of Journal of
Computational and Applied Mathematics. Our manuscript was rejected on grounds of citation
errors and similarity to external sources, but the provided feedback lacked clarity, evidence, and
professionalism. The similarity index was 17%, well within acceptable academic thresholds, and

citation issues could have been addressed during the review process.

Furthermore, after the revisions were made, the reviewers' feedback was positive ags by clickio Still
e
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_ Nuttapol Pakkaranang <nuttapol.pak@pcru.ac.th>
UKI3NENAUSTBANIWESYSH

Your Submission
1 98@AN

Computational and Applied Mathematics <em@editorialmanager.com> 26 f{uan 2568 1181 20:19
maunauliss: Computational and Applied Mathematics <support@elsevier.com>
9 Nuttapol Pakkaranang <nuttapol.pak@pcru.ac.th>

Ms. Ref. No.: ELSCAM-D-24-02173R1

Title: New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems
Journal of Computational and Applied Mathematics

Dear Dr. Pakkaranang,

| am pleased to confirm that your paper "New structured spectral gradient methods for nonlinear least squares with application in
robotic motion control problems" has been accepted for publication in Journal of Computational and Applied Mathematics.

Comments from the Editor and Reviewers can be found below.

Thank you for submitting your work to this journal.

We encourage authors of original research papers to share the research objects — including raw data, methods, protocols, software,
hardware and other outputs — associated with their paper. More information on how our open access Research Elements journals
can help you do this is available at https://www.elsevier.com/authors/tools-and-resources/research-elements-journals?
dgcid=ec_em_research_elements_email.

With kind regards,

Luigi Brugnano

Principal Editor

Journal of Computational and Applied Mathematics

Comments from the Editors and Reviewers:

Reviewer #1: The author has revised the manuscript and | think it is acceptable to publish it in JCAM.

For further assistance, please visit our customer support site at http://help.elsevier.com/app/answers/list/p/7923. Here you can
search for solutions on a range of topics, find answers to frequently asked questions and learn more about EM via interactive
tutorials. You will also find our 24/7 support contact details should you need any further assistance from one of our customer support
representatives.

At Elsevier, we want to help all our authors to stay safe when publishing. Please be aware of fraudulent messages requesting
money in return for the publication of your paper. If you are publishing open access with Elsevier, bear in mind that we will never
request payment before the paper has been accepted. We have prepared some guidelines (https://www.elsevier.com/
connect/authors-update/seven-top-tips-on-stopping-apc-scams ) that you may find helpful, including a short video on Identifying
fake acceptance letters (https://www.youtube.com/watch?v=05I8thDIXLE ). Please remember that you can contact Elsevier s
Researcher Support team (https://service.elsevier.com/app/home/supporthub/publishing/) at any time if you have questions about
your manuscript, and you can log into Editorial Manager to check the status of your manuscript (https://service.elsevier.com/
app/answers/detail/a_id/29155/c/10530/supporthub/publishing/kw/status/).

#AU_ELSCAM#

To ensure this email reaches the intended recipient, please do not delete the above code

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Remove my
information/details). Please contact the publication office if you have any questions.
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Principal Editors

Luigi Brugnano
University of Florence, viale Giovan Battista Morgagni 67/A, Firenze, 50121, Ttaly

Numerical solution of ordinary differential equations, Geometric Integration, Computational software,

Numerical linear algebra

> View full biography

Yalchin Efendiev
Texas A&M University Department of Mathematics, 400 Bizzell St, College Station, 77843, Texas, United States

Numerical analysis, Scientific Computing, Multiscale Simulation, Uncertainty Quantification

André Keller
University Paris 1 Panthéon-Sorbonne Statistics Analysis and Multidisciplinary Modelling, Paris, France

Circuit Analysis, Control Theory, Discrete Mathematics, Fuzzy Logic, Game Theory, Macroeconometric
Modeling, Metaheuristic Algorithms, Multiobjective Optimization, Time-Delay Systems, Time Series Analysis

Michael Ng
Hong Kong Baptist University Department of Mathematics, Hong Kong, Hong Kong

Numerical Linear Algebra, Imaging Science, Scientific Computing, Data science, Artificial Intelligence

Lucia Romani
University of Bologna Department of Mathematics, Piazza di Porta San Donato 5, Bologna, 40126, Italy

Numerical Methods in Computer Aided Geometric Design, Curve and Surface Modeling, Splines and their

Applications, Pythagorean Hodograph Curves, Subdivision Schemes, Interpolation Algorithms
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Fatih Tank
Atilim University, Ankara, 6830, Turkiye

Statistics, Probability, Actuarial Sciences, Optimization, Financial Mathematics, Reliability

Associate Editors

Lidia Aceto
University of Eastern Piedmont, Vercelli, Italy

Numerical Analysis

Francesca Bonizzoni
Polytechnic of Milan Department of Mathematics, Milano, Italy

Model Order Reduction, Finite Element Exterior Calculus, Uncertainty Quanfication, Numerical methods for
PDEs, Multiscale methods

Dimitri Breda
University of Udine, Udine, Italy

Numerical Methods for Stability and Bifurcation Analysis of Delay Equations

Adhemar Bultheel

KU Leuven, Leuven, Belgium

Moment problems, Rational approximation, Structured matrices

Victor Calo
Curtin University, Perth, Australia

Automatic adaptive finite element methods, Isogeometric analysis, Phase-field modeling, Multiphysics

simulation, Multiscale modeling, ,



Kwok-wing Chau

The Hong Kong Polytechnic University Department of Civil and Environmental Engineering, Hong Kong, Hong

Kong

Machine learning, Neural networks and neurocomputing, Data driven optimization, Intelligent systems and AI

in engineering

Dragana Cvetkovic Ilic

University of Nis, Ni$, Serbia

Raffaele D'Ambrosio
University of L'Aquila, L'Aquila, Italy

Numerical methods for ordinary differential equations, numerical methods for stochastic differential

equations, geometric numerical integration
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Jan Dhaene
KU Leuven, Leuven, Belgium

Actuarial science, financial mathematics, quantitative risk management

Kai Diethelm

Technical University of Applied Sciences Wiirzburg-Schweinfurt, Wiirzburg, Germany

Numerical methods in fractional calculus, Approximation theory, Numerical integration

Luisa Fermo
University of Cagliari, Cagliari, Italy

Integral Equations, Numerical Integration, Orthogonal Polynomials

Daisuke Furihata

Osaka University Cybermedia Center Toyonaka Area, Toyonaka, Japan

Severiano Gonzalez-Pinto



University of La Laguna Faculty of Mathematics, Santa Cruz de Tenerife, Spain

Numerical analysis of ordinary differential equations, Stiff problems, Parabolic partial differential equations

Ken Hayami

National Institute of Informatics, Chiyoda-Ku, Japan

Guang-Da Hu
Shanghai University, Shanghai, China

Stability and numerical analysis of delay differential equations, Control theory

Chengming Huang
Huazhong University of Science and Technology, Wuhan, Hubei, China

Numerical solution of ordinary and functional differential equations, Volterra equations, Fractional differential

equations

Lijian Jiang
Tongji University, Shanghai, China

Numerical multiscale methods, Model reduction, Uncertainty quantification, Porous media applications

Abdul Khaliq
Middle Tennessee State University, Murfreesboro, Tennessee, United States

Numerical Analysis, Scientific Computing, Fractional PDEs, Computational Stochastics

Guanglian Li
The University of Hong Kong, Hong Kong, Hong Kong

Homogenization, Multiscale Finite Element Methods (MsFEM), Generalized Multiscale Finite Element Methods
(GMsFEM), Model Order Reduction (MOR), High Dimensional Approximation, Uncertainty Quantification
parareal algorithm

James Liu
Colorado State University, Fort Collins, Colorado, United States

Finite element methods, Flow and transport in porous media, Applied dynamical systems



Federica Porta
University of Modena and Reggio Emilia - Reggio Emilia Campus, Reggio Emilia, Italy

Numerical Methods for Optimization, Inverse Problems, Machine Learning

Luis RGndez
University of Zaragoza, Zaragoza, Spain

Numerical Methods for Ordinary Differential Equations, Stiff Problems, Oscillatory Problems

Lothar Reichel

Kent State University, Kent, Ohio, United States
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Yaroslav Sergeyev
University of Calabria, Arcavacata di Rende, Italy
Global Optimization, Fractals, Numerical Infinities and Infinitesimals
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Stefan Vandewalle
KU Leuven, Leuven, Belgium

Multigrid methods, Uncertainty quantification, Partial differential equations, Delay equations

Maria Vasilyeva

Texas A&M University Corpus Christi Department of Mathematics and Statistics, Corpus Christi, Texas, United
States

Multiscale methods, Upscaling, Homogenization, PDE, Numerical methods, Fractured porous media,

Perforated domains, Heterogeneous media, Machine learning

Guo-Cheng Wu
Chongging University of Posts and Telecommunications, Chongqing, China
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ARTICLE INFO ABSTRACT

MSC: The recently introduced structured spectral Barzilai-Borwein-like (BB-like) gradient algorithms
90C47 in (Optimization Methods and Software, 4(37), pp:1269-1288, 2022) which utilize substantial
90C90

information of the Hessian matrix are efficient for solving nonlinear least squares (NLS)

90C06 problems. However, a safeguarding technique is required for the spectral parameters in their

90C26 . . . . .

90030 formulation to be well-defined. In this paper, we present another spectral gradient algorithm

X i that improves the efficiency of those formulations where the proposed structured spectral
eywords:

parameter does not necessarily require a safeguarding strategy. Moreover, with the aid of
Iterative methods nonmonotone line search and some standard assumptions, we show the global convergence of
Nonlinear least squares the algorithm. In addition, the numerical results of the proposed algorithm on some benchmark
Structured spectral gradient methods problems are encouraging. Furthermore, we apply the algorithm to solving a motion control
Robotic motion control problem.

Optimization problems

1. Introduction

Consider the nonlinear least square (NLS) problems, which is a special class of the general unconstrained optimization,

m

min (), f&)= 3 DIE@P = JIF@IE xeR", .1

i=1
where for each i = 1,2,...,m, the residuals F; : R" — R is twice continuously differentiable functions which is bounded below.
The problem (1.1) has recently received much attention due to its special structure. The gradient g(x) = V f(x) and the Hessian
H(x) = V2f(x) of the objection function (1.1) are defined as follows:

£ = Y FVE®) = J()" F(), 1.2)

i=1
H(x) = Z VE,(x)VF(x)" + Z F(x)V2F,(x) = J(x)T J(x) + G(x), (1.3)
i=1 i=1

respectively. J(x) denotes the Jacobian matrix of the residual function F at x and G(x) = Z;”:l Fi(x)V?F;(x;), where F;(x) is
i—component of the residual vector F(x) and V?F;(x;) is the Hessian matrix of F;(x), for each i.
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Computing the Hessian, VZF,-, of the real valued-functions F;, i = 1,...,m, has been acknowledged to be a cumbersome task
as well as costly process. Therefore, as an alternative, researchers usually find some efficient ways of approximating it with a keen
interest in getting as much information about the objective function as possible. Moreover, the problem (1.1) is of particular interest
to many researchers due to its appearance in several applications such as robotic motion control, data fitting, parameter estimation,
imaging problems, stability and time delay-related problems, and so on [1-7].

The iterative scheme generally deployed to solve (1.1) is

Xeat1 = Xp +hpdy, k=0,1,2,..., (1.4)

where x; and x,; are the previous and current iterates, respectively, and d, is a search direction usually required to satisfy the
following descent condition g{dk < 0. The step length A, > 0 is usually computed using suitable line search strategies. The line
search strategy can be exact or inexact. The former is generally considered too expensive and therefore, researchers used the latter
which requires relatively less computational effort. Please note that throughout this paper, every vector, say x, is a column vector
while x” denotes its transpose. One of the efficient strategies developed for computing the step length h, is the inexact line search
by Zhang and Hager [8] as stated in the following algorithm

Algorithm 1: The Zhang and Hager [8] line search.

Input : Objective f(x), the search direction vector d, at the point x, and positive real numbers 5 € (0,1), 0 < ppin < Hpax < 1,
Up=Jfo, &= ll; =L Wy=1p € [Hpin: Hax]-

Step 1: Compute W,,, and U,,, using the following

WU, + f(x
Uy = f(x) and Uy, = %ﬂ“‘) Wo=1 and Wy, =W, +1. 1.5)
k+1
Step 2: Set h =1, if

fGx, +hd,) <U, +6hg] d, (1.6)

then i, = h. Else, set h = h/2 and test (1.6) again.

Popular methods for solving (1.1) include Newton’s method, quasi-Newton methods, Gauss-Newton method, Levenberg—
Marquardt method and Structured quasi-Newton methods (see [9-13]). Some of these methods utilize the special structure of the
problem (1.1) while others do not [14,15]. The recent focus of researchers in this area deals with developing methods, for solving
NLS problems, that are based on structured diagonal matrix approximation of the Hessian (1.3) and those that mimic conjugate
gradient methods [16-18] as well as spectral gradient methods [19-21]. For example, Mohammad and Santos [22] coined a diagonal
Hessian approximation method by approximating both the first term and the second term of the Hessian (1.3) in such a way that
the structured secant condition, H;s,_; =~ y,_;, (s, Y, are given vectors) is fulfilled. However, to ensure sufficient decency of
the search directions generated by their algorithm, they employed safeguarding methodologies that contain several user-defined
parameters. This will certainly make their proposed search direction depend on user-defined parameters or at least be influenced
by them. This is a sort of deficiency. To ameliorate some of the shortcomings in [22], Yahaya et al. [3] proposed structured
quasi-Newton-based algorithms for solving (1.1) based on two formulations of the approximation of the Hessian (1.3). These two
approximations were then used to construct two diagonal updating formulas for generating the search directions. Interestingly,
unlike the method in [22], these algorithms require fewer user-defined parameters.

On the other hand, the structured spectral gradient-based approaches, for solving NLS problems, approximate the Hessian matrix
(1.3) with a scalar multiple of an identity matrix where the scalar is usually updated in every iteration. Some of the proposed
algorithms in this direction include the work of Mohammad and Waziri [19] which is based on the same structured vector used
in [20]. Moreover, the authors employed a safeguarding strategy to ensure the search direction defined by those two structured
parameters satisfied the descent condition. To improve upon the algorithms in [19], Awwal et al. [20] proposed another three
structured spectral gradient algorithms where unlike in [19], they considered approximating only the second term of (1.3) with
higher-order Taylor polynomial and retaining the exact structure of the first term. This means the algorithms in [20] utilize more
information of (1.3). However, despite the advantages of these algorithms, their formulations still require safeguarding techniques
to avoid negative curvature directions. To mitigate this shortcoming, we proposed a new structured spectral gradient algorithm that
does not require any safeguard. As safeguarding is completely avoided in the definition of the structured spectral parameter, it will
have more freedom to utilize the information gained from the preceding iteration. What follows is the summary of the contribution
of this research article:

» A new structured spectral gradient algorithm is proposed.

» The proposed algorithm does not require any safeguarding technique.

+ The global convergence of the proposal is shown under some standard assumptions.
+ The algorithm is applied to solve the motion control problem of a robotic arm.

The rest of the article is subdivided into the following sections: In the next section, the formulation of the new structured spectral
gradient algorithm and its convergence are outlined. More so, in Section 3, the numerical experiments are presented with some
comparison and application. Finally, in Section 4, the conclusion of this research is presented.
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2. Proposed NSSGM and its convergence

Consider the relation given by (1.3). Now, suppose that at a certain iteration say, k, we have
m
Glx) = Y Fix) V2 Fi(x), @1
i=1

where F,(x,) is i—component of the residual vector F(x,), and V2 F,(x,) is the Hessian matrix of F;(x,). Let g;(x,) denotes the gradient
of F;(x,), for each i, we seek to construct some estimates for G(x,), say D(x,) such that the following secant equation,

D(x;)s_y & G(X)Sp_| = V1> (2.2)

is satisfied, where s, is the difference between any two successive estimates of the solution and y is a structured vector to be
determined. This means that substituting (2.2) in (1.3), gives the following secant equation

H(x)sy = Jx)T T ()81 + Vet (2.3)

For simplicity, let G, J;, and D, denote G(x,), J(x;), and D(x,), respectively, with the gl’; = g;(x;) representing the gradient of the
ith component of the residual F(x,).

Now, we approximate G(x;,;) by employing a similar approach as presented in [17]. Since F; is a real-valued function, then
consider the higher order Taylor’s series expansion of F 11 as follows:

Fi) = Filx)+ VE () Gy = %0+ 5 0oy =307 V2 ()i = x)

] . \ (2.4)
+ g(xk_1 = x)" (T Gy = xp )0y = xp) + O(llxgy = xi 1)
Multiplying both sides of (2.4) by (x,_, — x;)" gives
(et = %) VE(xpep) = (omy = %07 VEF () = (K = x0T VEF(x)(Xpep = Xp0)
4 50t = x0T (TG = 5005k = 00+ Oy = 1) 2
where T,i is the tensor of Fi(x,), i =1,2,...,m. By setting s,_; = x; — x,_;, then (2.4) and (2.5) respectively become
Fi(x4_1) = Fi(x) = VF(x ) s + %s[_,vzfi(xk)sk,l + és[_l(T,isk,l)sk,l +O(llse_1 1IN, (2.6)
and
ST VE ) = 5T VG = 5T VRS0 + 351 (Tisicsir + Ol 1), @7
Now, adding (2.6) and (2.7) and truncating the term containing the tensor onward, we have
Sty V(e MV F () = VE G ) sy + 6(Fi (o) = Filx)
+3(VF,(xp) + VE G ) sy (2.8)

Now, we consider a simple approximation of V?F,(x,). That is, if we require that V2>F,(x,) ~ ;I, where I is an identity matrix and
«; is a scalar for each i, then (2.8) becomes

sp_ VEFGe)siy magsy_ ey & (VE (o) = VE o)) sy + 6(F;(e_p) = Fi(x,)
+3(VF.(x) + VE G ) sy (2.9)

Since the scalar s[_] si_1 = lls,_1lI* # 0, otherwise, the solution of the problem in question has been achieved. Then dividing (2.9)
by the scalar ||s,_,||> gives

0 V)~ VE () s + 6(F (1) = Fi(xp)) + 3(VF(x) + VE () s

) (2.10)
' Isg—1 II?
Therefore, the approximation of V2 F;(x,)s;_; is
V2 Fi(x)85_y ~ (VF(xy) — VFi(xk—l))Tsk—l + 6(F;(x_1) — ?(Xk)) + 3(VFi(x)) + VFi(xk—l))TSk—] 5. (2.11)
syl
Now, substituting (2.11) into (2.1) gives
1 m
GieSk-1 TN D FGOIVE () = VEGxe) 1t + 6(Fi(xip) = Fi(x,)
k-1 i=1
+3(VF.(x) + VE G ) sy 15kt (2.12)
Since VF;(x) = J(x), then using (2.2), we have the following structured secant equation
Dysy_y = Vi1 (2.13)
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where

_ S
et = Ve = i) Flox) + =, 2.14)
k—1

9y =3F(x) [(Jy = e )suy = 2(F (x;) = F(xp )] (2.15)

Finally, combining (2.3) and (2.13) yields
Hysi_i =715 (2.16)
where

By
Vo1 = -’kTJkSk—l + (=D DT F(x) + s ||2Sk_1. (2.17)

k-1
Recently, as mentioned in the previous section, Awwal et al. [20] proposed three structured spectral gradient algorithms by
incorporating the structured vector (2.17) into the BB spectral parameters as well as their convex combination. They defined the

search directions as follows

A =—30g,, i=1,2,3, and k> 1, @19
where
2

I!I?k-lll , for i=1,

Sp_y k=1

T
@) _ ) Ske1Vk-t i =
Y=Y o for =2 o

T
i1 1% Vi1 Sk=1

T =7 + (=) >
T Skt 17kt 1l

for i=3,

with the scalar r, € [0, 1]. To avoid negative curvature directions, the authors replaced SZ_]Vk—l with the following safeguard
strategy

o =max{AL | 2sT_ yei ]+ st I+ Irea ) B> 0, (2.20)

whenever it is nonpositive, where i = 1,2, 3.
Now, using Cauchy Schwarz inequality on /111) and Af), we have

2
Sk Sp—
Ail): ”Tk 1l > Il 1||’ @2.21)
S 1Vi-1 7e—ill
and
T
Se1e=t sl
@) _ Tk=1 k=1
@ - el o ) (2.22)
171 7i—1 1l
This means that Ail) > Af) for all k. That is, the quantity Ag) - /15(2) is nonnegative.
Motivated by this, we define the search direction of the new algorithm as
dy=—-y g, k>1, (2.23)
where
2 T
Sp— Sp— Sg—17k=1
k=”k1” IIT“II Sk L (2.24)
171l S Vk=1 1711l

To analyze the advantage of the parameter (2.24) as well as the convergence of the proposed algorithm, we require the following
standard assumption.
Assumption 2.1. The following standard assumptions are useful in the convergence analysis of the proposed method.

Al. The level set D= {x € R" | f(x) < f(x)} is bounded. That is, ||x|| < w, holds for all x € D, where » > 0.
A2. There exist constants L; > 0 and L, > 0 such that for all x,y € D, we have

TG = IWI < Lyllx =yl (2.25)
IF(x) = FII < Lyllx =yl (2.26)

The two inequalities (2.25) and (2.26) give rise to the following conclusions

le@) —eWll < ix=yll. IFOI €@, 1T < @y, NlgGN <73,

where /, ;, w, and w; are positive constants.
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Lemma 2.2. Suppose that Assumption 2.1 (A2) holds. Let the structured vector y,_, be defined by (2.17), then there exists some positive
constant, say M > 0, such that

[17e=1ll < Mlse_yll. VY k. (2.27)
v, > 1/M, Yk (2.28)

Proof. Let w € [0, 1], by Assumption 2.1 and mean value theorem, we have
1911 = [3FC0T [y = icn)sims = 20F (o) = Flxp)) |
= [3Fe" [ = dieDsicr = 20 Gy + @5 psic|
SBINFEON | Tx = Tizp) = 2T Gy + 055D s |l (2.29)
S BIFGMIseoy I (11 = I (mg + @8-I+ 1djmy = I Gy + @5l
S3NFEOMsgot I [L1 (1 = )llsgy | + Lywllse_i 1l]
< 6LIC"1||Sk—1||2-
If we let m := 6L,w;, we obtain

1911 < mlls,_y 117, ¥ k. (2.30)

Again, using Assumption 2.1 (A2) and (2.30), we obtain

Yy
T s + [(Jk =T ) F(xp) + k—lllzsk—l] ”

l7e—1ll =
llsg—1
2 |19k—] |
S Nse—i l + 1 = T NIEF GOl + e sl
k=1
2 (2.31)
2 ml|s_; |
Sl sg—a I+ N = Tt IF N + ———= sl
g1l
< w%llsk_l Il + @i Lillsg—y Il + mllse_y |l
= (a)% + oLy +m)|lsi ]l
2 T
By letting M := w% + oL, + m, we get the desired result. Lastly, from (2.21) and (2.22), we have that w - % > 0, and
k1 Vh=1 k-1
. Isg—1ll s 1l 1
2.2 > > =—.
therefore using (2.27) y; > el 2 Ml = o [ ]
From Lemma 2.2, we see that the spectral parameter y, is strictly positive, for all k.
Algorithm 2: New Structured Spectral Gradient Method (NSSGM)
Input : Initial approximation x, € dom(f), 0 << ., << +co and Tol > 0.
Step 0: Compute f(x,) and d, = —g,. Set k = 0.
Step 1: Compute F(x,) and g,. If ||g.|| < Tol or k > k. stop.
Step 2: Compute Ak, using Algorithm 1.
Step 3: Update the next iterate using x,,; = x, + h,d,.
- 9
Step 4: Compute 7,_, = J7 Jy5,_y + (J, — )T F(x,) + Hlk__lllzs""’
Sk-1
where 8, | =3F(x,)T[(J, = J,_ )5,y — 2(F(x;) = F(x,_)].
Step 5: Update the search direction
di = =8 (2.32)
~ sl s IP S e
¥, = min L Tk =l =+ Winax (2.33)
||7k—1|| Si1Vk-1 llye-1ll

Step 6: Set k :=k+ 1 and go to step 1.

Remark 2.3. From the definition of the spectral parameter (2.33) and Lemma 2.2, we see that @, is automatically bounded, i.e.
1 ~
ﬁ S ‘l/k S Wma)u V k (2-34)

This means that unlike the methods in [20], we do not require any special safeguarding strategy for the spectral parameter i,
defined by (2.33). In addition, it is not difficult to see that the following hold with regards to the search direction defined by (2.32)

1
g d, < —Hllgkllz- (2.35)
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lldill < wmax Il gill- (2.36)

Lemma 2.4. Let § € (0,1) and suppose d, is the search direction defined by (2.32) such that the inequalities (2.35) and (2.36) hold.
Suppose Assumption 2.1 holds, then the Algorithm 2 (NSSGM) is well-defined.

Proof. Let g, be the gradient of the objective function (1.1) generated by Algorithm 2 (NSSGM) at x, such that ||g.]| # 0. By the
fact that (2.35) holds for the search direction (2.32) then by Assumption 2.1, there exists a step length 4 sufficiently small enough
such that

fG + h*dy) < U, +8h*g] dj, (2.37)

holds, where the next iterate x| = x; + h*d; is well-defined.
Suppose for contradiction that, at a certain iteration, there exists some h ;20 for which the line search (1.6) does not hold, then
we have

fx+hydy) > Uy +6hgl dy, forall a; >0, (2.38)

where {h;} is a strictly decreasing sequence satisfying lim;_,, ; = 0.

j—oo M)
By the definition of the problem (1.1), we have f(x,) > 0, Vk. Since U, = f(x), (see, Algorithm 1) and the fact that U, is a
convex combination of U,_; and f(x,), it holds that U, >0 V k.
Now, since it holds from (2.36) that ||d; || < ypaxllgll, then (2.38) becomes
U, < fG + hydy) — 8h;g] dy
< fleg+ hydy) + 6hllgelllldill
< flx + hydp) + 6Wmah; llgell®
< FOoy + hydy) + 8w r3.
This means that taking the limit on both sides as j — oo gives

Uy < F(xp) (2.39)

However, since

_ Wi Uiy + f(x0)
Hi1 Wi +1

Uy

>

it means that U, lies between U,_; and f(x;). Merging this with (2.39) yields f(x;) = Uy. This further means that y,_; = 0, since
U,_, #0, and W,_, # 0. Therefore, the non-monotone line search turns into monotone. Thus, (2.38) turns to

FGy+hydy) > f(xy) + 8hyg) dy. (2.40)
this implies,
S+ hydy) = f(xg)

h;

> 8g] dy.

Now, taking limit as j — oo and using Assumption 2.1 gives gl d, > ég! d;. Since gl d; < 0, it must hold that § > 1, which is a
contradiction. Hence, the proof. [l

The following result is from [8] and is useful in proving the convergence result of the proposed method.

Lemma 2.5. Suppose the nonmonotone line search algorithm is employed with the search direction being descent such that ||V f(x) —
Vixll £ Ll|lx — x; || for all x on the line segment connecting x; and x; + hipd,, p >0, if phy <, u> 0, then

7201 —6) lgf dil
hy > mind K 20L=9) B AL (2.41)
p’ Lo |ldi?

Now, we state the convergence result of the proposed method. The proof follows directly from Theorem 2.2 [8]. We only repeat
it here for the benefit of the potential readers.

Theorem 2.6. Let {x,} be the sequence generated by Algorithm 2 and suppose f(x) is given by (1.1) such that Assumption 2.1 holds.
Then the sequence of iterates {x, } is contained in the level set and the following conclusions hold:

lim inf ||g,|| =0, and
k— o0

klim llgkll =0, if 0< Hmax < 1.
—00
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Proof. It was shown in Lemma 1.1 of [8] that for W, ., defined in Step 1 of Algorithm 1, we have

ki

Wi =1+ D [ tom <k +2. (2.42)
i=0 m=0
Next, consider the following cases:
Case 1. If phy >, then h; > %. By (1.6) and (2.35), it follows that

fq) S U + 6y gl dy

o
< Uy = gl

ou 5
<U,—- — .
S U= 3ol
Case 2. On the other hand, if ph, <, then by (2.41),

21 - &) l&] dl

2> . (2.43)
S PRNTPATE
From (2.35) and (2.36), we deduce |8de1<| > ﬁ”gkll2 and W > m. Combining with (1.6) gives
k max |18k
Fr) S Uy + g dy
5 21— 6) lgl dil el
sUk—— k
M Lp |ld|?
21-6) & llgl? 2
U - ———— ——llgdl
YL M2t
2(1-6) 6 2
<U; - —llgll*
Loy, M?
where the third and last inequalities follow from (2.35) and (2.36), respectively.
. _ o [ 20-8) & -
Setting v = mm{ M5 Loyl 32 }, yields
[ o) S Up = vllgell*. (2.44)
Combining the relation (1.5) in Step 1 of Algorithm 1 and (2.44), gives
MW U + f (xpq1)
U1 = A
k+1
< MW U+ Uy - vllglI?
B Wit
_ Wi+ DU, - vllggll?
Wi
2
v
_y, - sl 2.45)
Wit

From (2.44), we can deduce f(x;,;) < U, and by the fact that the objective function f is bounded from below, we have that
U, is bounded from below, Vk.
Now, from (2.45), we have that

Il gkl (2.46)

k=0 Wk+l
If || g, || were bounded away from 0, then (2.46) would be violated since W, ,; < k + 2. Hence, lim,_, ., inf ||g,|| = 0, holds.
If pip < 1, then by (2.42),

k k ) 1
" .
Wi = 1+ Z Hﬂk—i <I+ Z Hinax. < Z”l{nax ST (2.47)
Jj=0 i=0 j=0 Jj=0 max

Combining with (2.46), we have lim,_,, |lg,|| = 0, holds. [ ]
3. Numerical experiments and comparison

In this section, the numerical performance as well as computational efficiency of the proposed method shall be demonstrated.
The experiment is divided into two subsections. The first subsection discusses the numerical performance of Algorithm 2 (NSSGM)
on some benchmark test problems in comparison with two existing algorithms of similar characteristics. On the other hand, in
the other subsection, Algorithm 2 is implemented to solve problems arising from 2D robotic motion control. All experiments are
conducted on a personal computer with an Intel Core(TM) i5-8250u processor with 4 GB of RAM and a CPU 1.60 GHz.
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Table 1
List of zero and nonzero test problems used for the experiment in Section 3.1.

S/N Problem name Initial points Size Reference
Zero and Nonzero test problems

1 Penalty function I @3,3,...,3)7" Large [23]
2 Variably dimension (1=1/n,1=2/n,...,00" Large [24]
3 Trigonometric function a1,1,...,07 Large [24]
4 Linear function—full rank 1, 1,...,n7" Large [24]
5 Problem 202 2,2,....,27 Large [25]
6 Problem 212 (1/2,1/2,...,1/2)" Large [25]
7 Strictly convex function I (1/n,1/n, ..., 1/n)" Large [26]
8 Sin function II (1,1,...,07 Large [27]
9 Exponential function I (n/n—=1,n/n—1,....n/n—1)T Large [23]
10 Exponential function II (/n? 1 /n?, ..., 1 /n®)T Large [23]
11 Logarithmic function I 1,1,..., )" Large [23]
12 Trigonometric exponential function (1/2,1/2,...,1/2)" Large [25]
13 Extended Powell function (1.5E—4,...,15E —4)T Large [23]
14 Function 21 (=1,=1,...,-DT Large [23]
15 Extended Rosenbrock function -1,-1,...,-DT Large [24]
16 Extended Himmelblau function 1....,-1,D)T Large [28]
17 Function 27 . "7'2) Large [23]
18 Trigonometric logarithmic function DT Large [23]
19 Zero Jacobian function =1, 000 for i > 2, (”’10(‘:)?)’;)";500) Large [23]
20 Exponential function (1/2,1/2,...,1/2)T Large [23]
21 Function 18 (1,1,...,07 Large [23]
22 Brown almost linear function (/n,1/n, ..., 1/n)" Large [24]
23 Brown Badly Scaled function a1, nr Small [24]
24 Jennrich and Sampson function 1, nr Small [24]
25 Box three-dimensional function 1,1, nT Small [24]
26 Rank deficient function a1, nr Small [24]
27 Rosenbrock function a1, nr Small [24]
28 Parameterized problem a1, nr Small [29]
29 Freudenstein and Roth function a1, nr Small [24]
30 Beale Function a1, nr Small [24]

3.1. Numerical performance on benchmark test problems

The first efficiency test for NSSGM is done by implementing it to solve some benchmark test problems and then comparing
its numerical performance with the SSHBB algorithm developed in [20] and the SSGM2 proposed in [19]. The comparison test is
done based on #iter (the number of iterations), #fval (the number of function evaluations), #nmvp (the number of matrix—vector
products) and #time (the CPU time) recorded. It is crucial to mention here that all the NSSGM, SSHBB, and SSGM2 are coded in
MATLAB (R2019b) such that, for each test problem considered, the components of the structured spectral parameters are computed directly
as a matrix—vector product without the need to explicitly form or store any matrix throughout the iteration process. This means that the
NSSGM, SSHBB, and SSGM2 are implemented as matrix-free algorithms.

The three algorithms are implemented using the same parameters as presented in [20]. In the course of this experiment, thirty
(30) benchmark test problems, where twenty-two (22) are large scale and the remaining are small scale, were solved. The dimensions
of the large-scale problems are varied as 3000, 9000, and 15000. Details of the test problems are given in Table 1. During the
iteration process, a method is declared to have achieved an approximate solution of a particular problem whenever ||g.|| < 107°.
However, if the number of iterations is in excess of 1000 iterations and the stopping criterion mentioned above has not been satisfied,
then a failure is declared and is denoted as “_”. The details of the numerical values recorded by each algorithm have been presented in
Tables 2—4. Perusing Tables 2—4, it is very easy to note that the proposed NSSGM solves all the test problems considered, successfully,
whereas, its competitors, SSHBB and SSGM2, failed in a number of cases. This suggests that the new NSSGM can be an alternative to
the existing SSHBB and SSGM2 methods. Furthermore, although the numerical results in Tables 2-4 show that the three algorithms
are competitive, we can confirm the relatively superior performance of NSSGM over SSHBB and SSGM2 as it solves all the test
problems including those that could not be solved by others. This underscores the efficiency of the new NSSGM algorithm.

3.2. Application in 2D robotic motion control

Recently, applications of optimization algorithms to solve different types of problems are gaining more attention. One such
application that is of interest to us, in this paper, is the 2-dimensional robotic motion control problem. In what follows, the new
NSSGM is employed to track a two-joint planar robot manipulator. For a detailed description of the discrete-time kinematics equation
of a two-joint planar robot manipulator, the reader may refer to the Ref. [30-33] and the references therein. The task at hand is to
solve the following nonlinear least square problem:

oo 3 |-
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Table 2
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
P NSSGM SSHBB SSGM2
#iter  #fval #nmvp  #time FVALUE #iter  #fval #nmvp #time FVALUE  #iter #fval #nmvp  #time FVALUE
6 7 19 0.1792 9.92E-08 6 7 19 0.216 1E-07 6 7 19 0.1925  9.92E-08
1 5 6 16 0.1854 4.53E-05 5 6 16 0.206  5E-05 6 7 19 0.2056  4.53E-05
5 6 16 0.0672 2.11E-05 5 6 16 0.068 2E-05 6 7 18 0.0958 2.11E-05
22 100 67 0.0690 3.01E-23 22 100 67 0.083 2E-24 22 100 67 0.0686  7.06E-23
2 27 116 82 1.1052 5.9E-21 - - - - - 68 276 205 1.4511 1.25E-21
79 527 238 1.7029 5.68E-22 - - - - - 80 543 262 1.9173  1.88E-21
93 154 280 0.5856  6.93E-08 - - - - - 101 170 304 0.8468  6.94E-08
3 100 157 301 1.6796 2.16E-08 - - - - - 125 307 376 1.8596 2.16E-08
27 55 82 0.6532 1.99E-10 28 56 85 0.778  2E-13 27 55 82 0.7322  2E-10
102 202 307 0.6568  4.2E-10 74 138 223 0.531 4E-10 102 202 307 0.4758  4.2E-10
4 38 72 115 0.6394 6.45E-11 33 56 100 2.156 7E-11 38 72 115 0.5193 6.45E-11
28 50 85 1.4876  4.71E-11 23 36 70 1.338  5E-11 28 50 85 0.5996  4.71E-11
1 2 4 0.0153 0.5 1 2 4 0.018 0.5 1 2 4 0.031 0.5
5 1 2 4 0.0122 0.5 1 2 4 0.02 0.5 1 2 4 0.0086 0.5
1 2 4 0.0120 0.5 1 2 4 0.013 0.5 1 2 4 0.009 0.5
6 7 19 0.0260 1.3E-21 6 7 19 0.022 1E-21 6 7 19 0.0415 1.3E-21
6 6 7 19 0.0402 4.54E-21 6 7 19 0.04 5E-21 6 7 19 0.0384  4.54E-21
6 7 19 0.0522 7.77E-21 6 7 19 0.156  8E-21 6 7 19 0.061 7.77E-21
72 152 217 0.2600 7.55E-10 69 132 208 0.487 7E-10 72 152 217 0.2999 7.55E-10
7 34 63 103 0.5783 1.48E-10 33 56 100 0.625 1E-10 34 63 103 0.4356  1.48E-10
28 49 85 0.5871 8.67E-11 23 36 70 0.729 1E-10 28 49 85 0.5917  8.67E-11
6 8 19 0.0216 1.71E-23 6 8 19 0.061 7E-24 6 8 19 0.04 1.71E-23
8 6 8 19 0.0544 1.71E-23 6 8 19 0.101 1E-23 6 8 19 0.0449 1.71E-23
6 8 19 0.0990 1.7E-23 6 8 19 0.177 1E-23 6 8 19 0.0768  1.7E-23
4 5 13 0.0439 1500 4 5 13 0.03 1500 4 5 13 0.0519 1500
9 4 5 13 0.1026 4500 4 5 13 0.05 4500 4 5 13 0.0551 4500
4 5 13 0.1674 7500 4 5 13 0.072 7500 4 5 13 0.0781 7500
5 6 16 0.0094 3.23E-29 5 6 16 0.047  3E-29 5 6 16 0.032 3.23E-29
10 5 6 16 0.0311  9.7E-29 5 6 16 0.039 1E-28 5 6 16 0.036 9.7E-29
5 6 16 0.0389 1.62E-28 5 6 16 0.052 2E-28 5 6 16 0.0453 1.62E-28

at each instantaneous time 7, € [0, #5,,], Where 15, is the final task duration,

r T
Fy = [£) cos(x)) + £ cos(x) + xp), &5sin(x) + &, sin(x| + x2)] s

¢;, i=1,2, denotes the length of the ith—rod and ﬁk represents the end effector controlled track. For the purpose of this experiment,

~

F, is controlled to track the following Lissajous curve

s [3.1. V3o =\
F, = 7§+§sm(tk), —+—sm<2tk+<§>>] .

2 5

To successfully execute the tracking process, the following additional parameters are set: the initial joint states x, = [0, ’5’],
¢, = ¢, =1 and the task duration, #5,,; = 10 s is subdivided into 200 equal parts.

Numerical results generated by the NSSGM are plotted in Fig. 1 where Fig. 1(a) describes the synthesized robot trajectories,
Fig. 1(b) gives the end effector trajectory and desired path. Also, Fig. 1(c) and (d) present the tracking residual error on the x-axis
and y-axis, respectively. Looking at Fig. 1, it is evident that the new NSSGM algorithm completes the task of synthesizing the robot
trajectories, successfully. The residual error recorded by the NSSGM on both x-axis and y-axis is below 10~!0. This affirms the
suitability of NSSGM to deal with real-world problems.

4. Conclusion

In this research article, we have proposed a new spectral gradient-based algorithm for solving NLS problems called NSSGM.
The proposal is an improvement upon the recently developed algorithms by Awwal et al. [20] for solving the same class of
problems. Unlike in [20], the formulation of our spectral parameter in the proposed algorithm was shown to be independent of
any safeguarding scheme. We then show theoretically the global convergence of the proposed NSSGM algorithm under some mild
standard assumptions. Moreover, we also verify the efficiency of the NSSGM algorithm by solving some benchmark test problems in
the literature and comparing the results with the best performing algorithm in [20], i.e., SSHBB and SSGM2 [19]. As future work,
the structured vector y,_, can be incorporated into conjugate gradient-like algorithms such as [34,35] and explore their respective
efficiencies. Finally, we show the applicability of this algorithm in motion control of the robotic arm problem.
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Table 3
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
P NSSGM SSHBB SSGM2
#iter  #fval #nmvp  #time FVALUE #iter  #fval #nmvp  #time FVALUE #iter #fval #nmvp #time FVALUE
8 12 25 0.0186 3.16E-08 8 12 25 0.03 3E-08 8 12 25 0.0362 3.16E-08
11 8 12 25 0.0474 9.57E-09 8 12 25 0.095 1E-08 8 12 25 0.0518 9.57E-09
3 4 10 0.0256 7.93E-08 4 5 13 0.056  2E-08 4 5 13 0.039 7.93E-08
564 1262 1693 27219 5.83E-13 592 1320 1777 2.756  5E-13 582 1302 1742 1.9758 5.83E-13
12 882 1921 2647 11.4496 1.79E-13 714 1587 2143 9.885 2E-13 882 1921 2647 9.5491 1.79E-13
717 1538 2152 10.7454 1.15E-13 625 1397 1876 13.73 1E-13 717 1538 2152 11.2624 1.15E-13
6 8 19 0.0294 3.58E-18 6 8 19 0.032  4E-18 6 8 19 0.058 3.58E-18
13 6 8 19 0.0820 9.23E-18 6 8 19 0.037  9E-18 6 8 19 0.0572 9.23E-18
6 8 19 0.0501 1.49E-17 6 8 19 0.054 1E-17 6 8 19 0.0726 1.49E-17
55 72 166 0.4069 9.77E-15 40 47 121 0.322  3E-16 55 72 166 0.664 9.77E-15
14 40 47 121 1.8149 3.83E-15 44 51 133 2.323 2E-14 42 49 126 1.3627 3.83E-15
47 57 142 2.6355 1.42E-14 40 47 121 2.992 6E—-15 47 57 142 2.1729 1.42E-14
23 45 70 0.1381 8.98E-12 16 25 49 0.056  2E-16 23 45 70 0.111 8.98E-12
15 23 45 70 0.1991 1.51E-11 16 25 49 0.176 7E-16 23 45 70 0.2202 1.51E-11
23 45 70 0.5087 4.43E-11 16 25 49 0.245  1E-15 23 45 70 0.3459 4.43E-11
2 9 7 0.0109 6.92E-12 2 9 7 0.029  7E-12 2 9 7 0.0788 6.92E-12
16 2 9 7 0.0234 2.08E-11 2 9 7 0.027 2E-11 2 9 7 0.0314 2.08E-11
2 9 7 0.1528 3.46E-11 2 9 7 0.045  3E-11 2 9 7 0.044 3.46E-11
29 39 88 0.7268 2.53E-13 25 34 76 0.201 1E-10 29 39 88 0.252 2.53E-13
17 29 39 88 0.8700 7.6E-13 24 32 73 0.641 4E-13 29 39 88 0.7458 7.6E-13
29 39 88 0.7185 1.27E-12 24 32 73 0.957 6E-13 29 39 88 0.8161 1.27E-12
1 2 4 0.0117 0 1 2 4 0.308 0 1 2 4 0.0247 0
18 1 2 4 0.0061 0 1 2 4 0.022 0 1 2 4 0.0095 0
1 2 4 0.0094 0 1 2 4 0.042 0 1 2 4 0.0102 0
13 18 40 0.0251 3.26E-11 13 18 40 0.037 8E-16 13 18 40 0.0558 3.26E-11
19 13 18 40 0.1883 9.86E-11 13 18 40 0.201  3E-15 13 18 40 0.0839 9.86E-11
13 18 40 0.1775 1.65E-10 13 18 40 0.171  5E-15 13 18 40 0.149 1.65E-10
21 36 64 0.2394 9.7E-10 21 36 64 0.071 1E-09 21 36 64 0.1044 9.7E-10
20 21 36 64 0.5041 9.7E-10 21 36 64 0.247  1E-09 21 36 64 0.3 9.7E-10
21 36 64 0.8168 9.7E-10 21 36 64 0.542  1E-09 21 36 64 0.3651 9.7E-10
Table 4
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
P NSSGM SSHBB SSGM2
#iter  #fval #nmvp  #time FVALUE #iter  #fval #nmvp  #time FVALUE  #iter #fval #nmvp  #time FVALUE
6 8 19 0.0557 3.06E-18 6 8 19 0.068  3E-18 6 8 19 0.0383  3.06E-18
21 6 8 19 0.1007 8.76E-18 6 8 19 0.053 9E-18 6 8 19 0.0555 8.76E-18
6 8 19 0.1433 1.45E-17 6 8 19 0.076 1E-17 6 8 19 0.0751  1.45E-17
20 35 61 0.0427  7.08E-10 20 35 61 0.05 7E-10 20 35 61 0.0781  7.08E-10
22 21 36 64 0.1450 5.51E-10 21 36 64 0.301 6E-10 21 36 64 0.1885 5.51E-10
21 36 64 0.2143  6.96E-10 21 36 64 0.41 7E-10 21 36 64 0.26 6.96E-10
23 38 70 0.0648  7.19E-07 23 38 70 0.07 1E-06 23 38 70 0.087 7.19E-07
23 22 36 67 0.1897 405000 15 38 46 0.147 405000 22 36 67 0.2264 405000
24 39 73 0.5082 1125000 22 47 67 0.568 1E+06 24 39 73 0.3986 1125000
398 812 1195 3.0304 9.81E-09 230 489 691 1.711 9E-09 398 812 1195 2.6658  9.81E-09
24 219 440 658 4.2371 1.33E-08 276 597 829 6.677  2E-08 219 440 658 3.587 1.33E-08
289 599 868 7.4218 1.65E-08 303 641 910 12.29  5E-09 289 599 868 6.2345  1.65E-08
2 27 7 0.0210 1.39E-14 2 27 7 0.029 1E-14 2 27 7 0.0381 1.39E-14
25 a7 137 52 0.2718  1.84E-16 - - - - - - - - - -
26 39 327 118 0.0239 1.73E-18 24 150 73 0.053  4E-18 22 43 67 0.0282  0.19894
27 1 11 4 0.0114 1010 1 11 4 0.028 1010 1 11 4 0.0139 1010
28 508 1219 1525 0.2006  4.28E-11 - - - - - 512 1269 1598 0.2104  8.36E-14
29 8 11 25 0.0051  1.2905 11 14 34 0.008 1.2905 11 14 34 0.0129  1.2905
30 1 2 4 0.0077 0 1 2 4 0.019 0 1 2 4 0.0132 0
31 14 30 43 0.0131  0.49999 13 29 40 0.013 0.5 15 38 52 0.0161  0.49999
32 29 67 88 0.0171  24.4921 41 100 124 0.035  24.492 30 72 92 0.0131  24.4921
33 29 47 88 0.0136  3.52E-15 28 45 85 0.023  5E-14 32 46 97 0.0145  3.9E-15
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Fig. 1. Numerical results recorded by NSSGM method where: (a) Synthesized robot trajectories. (b) End effector trajectory and desired path. (c) Tracking residual
error on the x-axis. (d) Tracking residual error on the y-axis.

Code availability

The MATLAB codes for the implementation of the proposed algorithm are available upon request.
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