
CiteScore

5.4 =

Calculated on 05 May, 2024

CiteScoreTracker 2024

4.8 =

Last updated on 05 April, 2025 • Updated monthly

Source details

Journal of Computational and Applied Mathematics
Years currently covered by Scopus: from 1975 to 2025

Publisher: Elsevier

ISSN: 0377-0427

Subject area: Mathematics: Applied Mathematics Mathematics: Computational Mathematics

Source type: Journal

 View all documents ▻  Set document alert   Save to source list

CiteScore 2023

5.4


SJR 2023

0.858 

SNIP 2023

1.410 

CiteScore CiteScore rank & trend Scopus content coverage

2023 

11,303 Citations 2020 - 2023

2,104 Documents 2020 - 2023



10,195 Citations to date

2,143 Documents to date

CiteScore rank 2023

Category Rank Percentile

Mathematics  

#85/635 86th

 

Mathematics  

#36/189 81st

 



Applied

Mathematics

Computational

Mathematics

 ▻View CiteScore methodology  ▻CiteScore FAQ  🔗Add CiteScore to your site

Feedback

https://www.scopus.com/source/citedby.uri?sourceId=23847&docType=ar,re,cp,dp,ch&citedYear=2024,2023,2022,2021&years=2024,2023,2022,2021&pubstageExclusions=aip
https://www.scopus.com/source/search/docType.uri?sourceId=23847&years=2024,2023,2022,2021&docType=ar,re,cp,dp,ch&pubstageExclusions=aip
https://www.scopus.com/standard/help.uri?topic=14880
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/home.uri?zone=header&origin=sourceinfo
https://www.scopus.com/freelookup/form/author.uri?zone=TopNavBar&origin=NO%20ORIGIN%20DEFINED


Terms and conditions Privacy policy Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. , its licensors, and contributors. All rights are reserved, including those for

text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content.By continuing, you agree to the use of cookies .

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/elsevier-website-terms-and-conditions?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
https://www.scopus.com/cookies/policy.uri
http://www.relx.com/
https://www.elsevier.com/products/scopus?dgcid=RN_AGCM_Sourced_300005030
https://www.elsevier.com/products/scopus/content?dgcid=RN_AGCM_Sourced_300005030
https://blog.scopus.com/
https://dev.elsevier.com/
https://www.elsevier.com/legal/privacy-policy?dgcid=RN_AGCM_Sourced_300005030
https://www.scopus.com/personalization/switch/Japanese.uri?origin=sourceinfo&zone=footer&locale=ja_JP
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_CN
https://www.scopus.com/personalization/switch/Chinese.uri?origin=sourceinfo&zone=footer&locale=zh_TW
https://www.scopus.com/personalization/switch/Russian.uri?origin=sourceinfo&zone=footer&locale=ru_RU
https://www.scopus.com/standard/contactUs.uri?pageOrigin=footer
https://service.elsevier.com/app/answers/detail/a_id/14799/supporthub/scopus/
https://service.elsevier.com/app/overview/scopus/


Scimago Journal & Country Rank

Home Journal Rankings Journal Value Country Rankings Viz Tools Help About Us

Journal of Computational and Applied Mathematics

COUNTRY

Netherlands

SUBJECT AREA AND CATEGORY

Mathematics

PUBLISHER

Elsevier B.V.

SJR 2024

0.688 Q2

H-INDEX

149

PUBLICATION TYPE

Journals

ISSN

03770427

COVERAGE

1975-2025

INFORMATION

Homepage

How to publish in this journal

Contact

SCOPE

The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and

applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving

scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and

algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by

nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational

properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and

engineers.

Join the conversation about this journal

Enter Journal Title, ISSN or Publisher Name

Universities and research

institutions in Netherlands

Media Ranking in

Netherlands

Applied Mathematics

Computational

Mathematics

Quartiles

Ads by 

Stop seeing this ad Why this ad? 
We'll try not to show that ad againAd closed by 

Ads by 

C
lo
se

https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scimagojr.com/index.php
https://www.scimagojr.com/journalrank.php
https://www.scimagojr.com/journalvalue.php
https://www.scimagojr.com/countryrank.php
https://www.scimagojr.com/viztools.php
https://www.scimagojr.com/help.php
https://www.scimagojr.com/aboutus.php
https://www.scimagojr.com/journalrank.php?country=NL
https://www.scimagojr.com/journalrank.php?area=2600
https://www.scimagojr.com/journalsearch.php?q=Elsevier%20B.V.&tip=pub
https://www.journals.elsevier.com/journal-of-computational-and-applied-mathematics
https://ees.elsevier.com/cam/
https://www.journals.elsevier.com/journal-of-computational-and-applied-mathematics/editorial-board/yalchin-efendiev
https://www.scimagoir.com/rankings.php?country=NLD
https://www.scimagomedia.com/rankings.php?country=Netherlands
https://www.scimagojr.com/journalrank.php?category=2604
https://www.scimagojr.com/journalrank.php?category=2605
https://www.scimagojr.com/journalrank.php?category=2605
https://www.scimagojr.com/
https://www.scimagoir.com/
https://www.scimagomedia.com/
https://www.scimagoiber.com/
https://www.scimagorc.com/
https://www.graphica.app/
https://www.scimagoepi.com/
https://www.scimagolab.com/
https://www.scimagolab.com/
https://adssettings.google.com/whythisad?source=display&reasons=AZ-QMKFJ1ZQsgvqZ-KZVMjDccCkPO2qR5NAABbeM0BCSXIKUKdvn5bgKjrE7AiQxMqMQpXWz8Vp4l0wM9I-PNYrnKj5mz8uTH8HC9nvIt8ltIOk3dRJ7Fud2tOf-fgXeUnh9loMm6F17R7Y13iAOf3qNKd3BHVotRgRkVAP72pGj2W-QDEl7R46mPEFIm4HuwdJzlKdaCaq_1lDoE_TkfTb7x7G4un6DY2WW-opwph7hb9hM-ca67F863oyWMOtzzU2XDYGTe2aJ3PQSBna6LR8wtSW1-afm3DyIU_ck42qZj7WiIVVqXqviZNCblZxGTdzwgTQ9g-sBgPHh7RSkay9xISGFB70dYxEcWtOyM8JrvvQakxQ6u5mnFvogZES4Gz695Fam48pzMbuYKDm4nnqhQNzCntDiHoWBK1ytaX6krOlBk5-vcQ_qsvLsNuyHJCCDx5D9jNYz3x-H3EP7z6eZUYTHiWfUP-DEqEgm5MkLY1iH-BS2vUm0xlf58bo33Tuwu-xafTgGZVJg7ZeVJmz6HYW6lNg2bWa9Jnv3EyRfJ8p8cV5y7HKlHX-KVKcrMUy7sxu5USCeUnqOmx87x3ELyf3Xvk08ozgMEJNDS7SGNxpz2LexzF4JSVJY80i4YVvJEsOY2E8xByp6ucqA8BTSexSwEOKk3xEFF0mpYQJW5O3K2u52JmUrVg38WgGey2JUo83OvCJFrznULeH7JLQiZthSM2EahftTmAafJ5kLq4_gFOklr0mrplG9SyfupUnOpH9EKU24jGbrC7HQS4w_hWljSx-Ai_ko8MeQHuVtw7hcj95K2YadiIS219wbF2BfX-4Gx2OOaNND8wi8H1rZeERaBJDWssQ-klY00W5aQmkQ5NrzkM4GCHvAhdnmOKDk-_GE6ATVRqHJmejBRpgrhGyjtpmEZEF7NGHVfJ7eTsQG7gBbcFQjBlwcrobzlwVqvzaUQQqaxIpF9RCpwQ0XL-XZ-BLWoJ4RQogv-lAHOfk0dr3ytJ8tnoJKZYLN1fYm3GJ1PJtMgaS9S4BZBcaMca5Ef8E-yGS1IpaCsgW3vsYU9rOH4CLPJVrnGFVxlKrI8vcB19_sOLaNOVm13kFfFhCaZdtXIvVk8hCaogKWBqoDiWVMfsp1OXm7a8gIpWdqlKsuE4QtFkKazK2az3aXx750X92e5bYEJx0UuKABOUEzHiMsx2fdQeOWwP0hLYDCR6ooUXnPztRmetcjASahxWMpHeQjUXjUeIUt76OQuKmvqvbyA4H4m3vIEcLpwLdDrGvrKg8wKAyTZZMqn-kixG6xTa8d9Cj7liZxspcRywbbL4onl7Ld5eCebVskddXKWsMOZz4rWRqlnE-DTVWxL-zEf0jjypFYYruG2DuwxyA30QSWQi-FU0g4r2Ws3YhucODIgCCXFf7aaPtmtizg93Qw-EGv-S9UCSfDSJ-1LFLIkqHmY634bJseWL3xrr-qgPlfszsOE7jRISKjk6sKV1h8hNMTik_RNWKRskMg27K4NGk0C59CGkilnZe7wEe4KTs8VOeFPR9RjgU9CGrypCWQeTDsQ9WFMg9-_wEjwmgqavoaFc_gAUJzPyMm_wYFBRuoFi6QcJl0fecpUPEQv-XhuZB19iLhyYh8EA5_VKA9xjz4Buh8_FjcdYWRTMHIA4m5CbukHLadaFJmaZJztcSl95JFVPZ9a_zPZSDVzSG8b_m6I2Eoz1NrD5ZP6FQ2Jqv-ClXZ1s2dj_yb9gFdq-THe8GYwa2z2qhpPMYOXXo55vwLZyLwi-7D87ShOYpWqdEAYV424EWwXEHqT09kkuwl4xNh9ZdkMWEIJRHmUsxK7E4aLc47GIddzeW2sLRKLgycA2QG5eh0HfXmMKw_u-PqynPikv6L18FV938HjprkSlqTIxY_b8Li-hJBi614MAvn7mhxZICTxQHm7-OdMQ8RfYFuDfE-qJw-dS2Zbx0SDAASJdVzTszx5Ng&opi=122715837
https://clickio.com/?utm_source=www.scimagojr.com&utm_medium=banner_ad&utm_campaign=hor_sticky_desktop


FIND SIMILAR JOURNALS 

1

Applied Numerical

Mathematics

NLD

82%
similarity

2

Numerical Algorithms

NLD

79%
similarity

3

International Journal of

Computer Mathematics

GBR

76%
similarity

4

Journal of Computational

Mathematics

CHN

74%
similarity

SJR

The SJR is a size-independent prestige indicator that

ranks journals by their 'average prestige per article'. It is

based on the idea that 'all citations are not created

equal'. SJR is a measure of scientific influence of

journals that accounts for both the number of citations

received by a journal and the importance or prestige of

the journals where such citations come from It measures

the scientific influence of the average article in a journal,

it expresses how central to the global scientific

Total Documents

Evolution of the number of published documents. All

types of documents are considered, including citable and

non citable documents.

Year Documents

1999 256

2000 324

2001 279

2002 352

Citations per document

This indicator counts the number of citations received by

documents from a journal and divides them by the total

number of documents published in that journal. The

chart shows the evolution of the average number of

times documents published in a journal in the past two,

three and four years have been cited in the current year.

The two years line is equivalent to journal impact factor

™ (Thomson Reuters) metric.

Cites per document Year Value

Cites / Doc. (4 years) 1999 0.495

Cites / Doc. (4 years) 2000 0.541

Cites / Doc. (4 years) 2001 0.643

Cites / Doc. (4 years) 2002 0.702

Cites / Doc. (4 years) 2003 0.829

Cites / Doc. (4 years) 2004 0.830

Cites / Doc. (4 years) 2005 0.894

Cites / Doc. (4 years) 2006 0.977

Cites / Doc. (4 years) 2007 1.108

Cites / Doc. (4 years) 2008 1.261

Total Cites  Self-Cites

Evolution of the total number of citations and journal's

self-citations received by a journal's published

documents during the three previous years.

Journal Self-citation is defined as the number of citation

from a journal citing article to articles published by the

same journal.

Cites Year Value

lf

External Cites per Doc  Cites per Doc

Evolution of the number of total citation per document

and external citation per document (i.e. journal self-

citations removed) received by a journal's published

documents during the three previous years. External

citations are calculated by subtracting the number of

self-citations from the total number of citations received

by the journal’s documents.

l

% International Collaboration

International Collaboration accounts for the articles that

have been produced by researchers from several

countries. The chart shows the ratio of a journal's

documents signed by researchers from more than one

country; that is including more than one country address.

Citable documents  Non-citable documents

Not every article in a journal is considered primary

research and therefore "citable", this chart shows the

ratio of a journal's articles including substantial research

(research articles, conference papers and reviews) in

three year windows vs. those documents other than

research articles, reviews and conference papers.
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safaa safouan 4 months ago

Dear SCImago Team,

I would like to bring to your attention concerns regarding the editorial process of Journal of

Computational and Applied Mathematics. Our manuscript was rejected on grounds of citation

errors and similarity to external sources, but the provided feedback lacked clarity, evidence, and

professionalism. The similarity index was 17%, well within acceptable academic thresholds, and

citation issues could have been addressed during the review process.

Furthermore, after the revisions were made, the reviewers' feedback was positive, yet the editor still

rejected the manuscript, citing vague and unsubstantiated reasons. This raises concerns that the

editor may be using their position in a manner inconsistent with professional and ethical

standards. Such actions suggest a lack of objectivity and transparency in the decision-making

Cited documents  Uncited documents

Ratio of a journal's items, grouped in three years

windows, that have been cited at least once vs. those not

cited during the following year.

Documents Year Value

Uncited documents 1999 509

Uncited documents 2000 492

Uncited documents 2001 512

Uncited documents 2002 507

% Female Authors

Evolution of the percentage of female authors.

Year Female Percent

1999 20.40

2000 18.40

2001 19.35

2002 18.23

2003 19.31

2004 20 36

Documents cited by public policy (Overton)

Evolution of the number of documents cited by public

policy documents according to Overton database.

Documents Year Value

Overton 1999 0

Overton 2000 0

Overton 2001 0

Overton 2002 0

Overton 2003 0

Documents related to SDGs (UN)

Evolution of the number of documents related to

Sustainable Development Goals defined by United

Nations. Available from 2018 onwards.

Documents Year Value

SDG 2018 23

SDG 2019 17

SDG 2020 15

SDG 2021 21

Estimated APC

It estimates the article processing charges (APCs) a

journal might charge, based on its visibility, prestige, and

impact as measured by the SJR. It does not reflect the

actual APC, but rather a calculated approximation based

on journal quality.

Year Est. APC (USD)

1999 3156

2000 3025

Estimated financial value

It represents the potential financial worth of a journal. It

is obtained by multiplying the journal's Estimated APC by

the total number of citable documents published over

the past five years. This value reflects the hypothetical

revenue a journal could generate based on its estimated

publication costs and scholarly output.

Year Est. value (USD)
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Nuttapol Pakkaranang <nuttapol.pak@pcru.ac.th>

Your Submission
1 ข้อความ

Computational and Applied Mathematics <em@editorialmanager.com> 26 มีนาคม 2568 เวลา 20:19
ตอบกลับไปยัง: Computational and Applied Mathematics <support@elsevier.com>
ถึง: Nuttapol Pakkaranang <nuttapol.pak@pcru.ac.th>

Ms. Ref. No.: ELSCAM-D-24-02173R1
Title: New structured spectral gradient methods for nonlinear least squares with application in robotic motion control problems
Journal of Computational and Applied Mathematics

Dear Dr. Pakkaranang,

I am pleased to confirm that your paper "New structured spectral gradient methods for nonlinear least squares with application in
robotic motion control problems" has been accepted for publication in Journal of Computational and Applied Mathematics.

Comments from the Editor and Reviewers can be found below.

Thank you for submitting your work to this journal.

We encourage authors of original research papers to share the research objects – including raw data, methods, protocols, software,
hardware and other outputs – associated with their paper. More information on how our open access Research Elements journals
can help you do this is available at https://www.elsevier.com/authors/tools-and-resources/research-elements-journals?
dgcid=ec_em_research_elements_email.

With kind regards,

Luigi Brugnano
Principal Editor
Journal of Computational and Applied Mathematics

Comments from the Editors and Reviewers:

Reviewer #1: The author has revised the manuscript  and I think it is acceptable to publish it in JCAM.

******************************************

For further assistance, please visit our customer support site at http://help.elsevier.com/app/answers/list/p/7923. Here you can
search for solutions on a range of topics, find answers to frequently asked questions and learn more about EM via interactive
tutorials. You will also find our 24/7 support contact details should you need any further assistance from one of our customer support
representatives.

At Elsevier, we want to help all our authors to stay safe when publishing. Please be aware of fraudulent messages requesting
money in return for the publication of your paper. If you are publishing open access with Elsevier, bear in mind that we will never
request payment before the paper has been accepted. We have prepared some guidelines (https://www.elsevier.com/
connect/authors-update/seven-top-tips-on-stopping-apc-scams ) that you may find helpful, including a short video on Identifying
fake acceptance letters (https://www.youtube.com/watch?v=o5l8thD9XtE ). Please remember that you can contact Elsevier s
Researcher Support team (https://service.elsevier.com/app/home/supporthub/publishing/) at any time if you have questions about
your manuscript, and you can log into Editorial Manager to check the status of your manuscript (https://service.elsevier.com/
app/answers/detail/a_id/29155/c/10530/supporthub/publishing/kw/status/).

#AU_ELSCAM#

To ensure this email reaches the intended recipient, please do not delete the above code

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Remove my
information/details). Please contact the publication office if you have any questions.
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Editorial board

Gender diversity of editors and editorial board members

57% man

30% woman

13% prefer not to disclose

0% non-binary or gender diverse

Data represents responses from 56.10% of 41 editors and editorial board members

Editorial board by country/region

41 editors and editorial board members in 14 countries/regions

1 Italy (9)

2 United States (7)

3 China (5)
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Principal Editors

University of Florence, viale Giovan Battista Morgagni 67/A, Firenze, 50121, Italy

Numerical solution of ordinary differential equations,   Geometric Integration,   Computational software,  

Numerical linear algebra
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 A B S T R A C T

The recently introduced structured spectral Barzilai–Borwein-like (BB-like) gradient algorithms 
in (Optimization Methods and Software, 4(37), pp:1269–1288, 2022) which utilize substantial 
information of the Hessian matrix are efficient for solving nonlinear least squares (NLS) 
problems. However, a safeguarding technique is required for the spectral parameters in their 
formulation to be well-defined. In this paper, we present another spectral gradient algorithm 
that improves the efficiency of those formulations where the proposed structured spectral 
parameter does not necessarily require a safeguarding strategy. Moreover, with the aid of 
nonmonotone line search and some standard assumptions, we show the global convergence of 
the algorithm. In addition, the numerical results of the proposed algorithm on some benchmark 
problems are encouraging. Furthermore, we apply the algorithm to solving a motion control 
problem.

1. Introduction

Consider the nonlinear least square (NLS) problems, which is a special class of the general unconstrained optimization, 

min 𝑓 (𝑥), 𝑓 (𝑥) =
1

2

𝑚∑
𝑖=1

[𝐹𝑖(𝑥)]
2 =

1

2
‖𝐹 (𝑥)‖2, 𝑥 ∈ R

𝑛, (1.1)

where for each 𝑖 = 1, 2,… , 𝑚, the residuals 𝐹𝑖 ∶ R
𝑛
→ R is twice continuously differentiable functions which is bounded below. 

The problem (1.1) has recently received much attention due to its special structure. The gradient 𝑔(𝑥) = ∇𝑓 (𝑥) and the Hessian 
𝐻(𝑥) = ∇2𝑓 (𝑥) of the objection function (1.1) are defined as follows:

𝑔(𝑥) =

𝑚∑
𝑖=1

𝐹𝑖(𝑥)∇𝐹𝑖(𝑥) = 𝐽 (𝑥)𝑇𝐹 (𝑥), (1.2)

𝐻(𝑥) =

𝑚∑
𝑖=1

∇𝐹𝑖(𝑥)∇𝐹𝑖(𝑥)
𝑇 +

𝑚∑
𝑖=1

𝐹𝑖(𝑥)∇
2𝐹𝑖(𝑥) = 𝐽 (𝑥)𝑇 𝐽 (𝑥) + 𝐺(𝑥), (1.3)

respectively. 𝐽 (𝑥) denotes the Jacobian matrix of the residual function 𝐹  at 𝑥 and 𝐺(𝑥) =
∑𝑚
𝑖=1 𝐹𝑖(𝑥)∇

2𝐹𝑖(𝑥𝑘), where 𝐹𝑖(𝑥) is 
𝑖−component of the residual vector 𝐹 (𝑥) and ∇2𝐹𝑖(𝑥𝑘) is the Hessian matrix of 𝐹𝑖(𝑥), for each 𝑖.
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Computing the Hessian, ∇2𝐹𝑖, of the real valued-functions 𝐹𝑖, 𝑖 = 1,… , 𝑚, has been acknowledged to be a cumbersome task 
as well as costly process. Therefore, as an alternative, researchers usually find some efficient ways of approximating it with a keen 
interest in getting as much information about the objective function as possible. Moreover, the problem (1.1) is of particular interest 
to many researchers due to its appearance in several applications such as robotic motion control, data fitting, parameter estimation, 
imaging problems, stability and time delay-related problems, and so on [1–7].

The iterative scheme generally deployed to solve (1.1) is 
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘𝑑𝑘, 𝑘 = 0, 1, 2,… , (1.4)

where 𝑥𝑘 and 𝑥𝑘+1 are the previous and current iterates, respectively, and 𝑑𝑘 is a search direction usually required to satisfy the 
following descent condition 𝑔𝑇

𝑘
𝑑𝑘 < 0. The step length ℎ𝑘 > 0 is usually computed using suitable line search strategies. The line 

search strategy can be exact or inexact. The former is generally considered too expensive and therefore, researchers used the latter 
which requires relatively less computational effort. Please note that throughout this paper, every vector, say 𝑥, is a column vector 
while 𝑥𝑇  denotes its transpose. One of the efficient strategies developed for computing the step length ℎ𝑘 is the inexact line search 
by Zhang and Hager [8] as stated in the following algorithm

Algorithm 1: The Zhang and Hager [8] line search.
Input : Objective 𝑓 (𝑥), the search direction vector 𝑑𝑘 at the point 𝑥𝑘 and positive real numbers 𝛿 ∈ (0, 1), 0 ≤ 𝜇min ≤ 𝜇max ≤ 1,

𝑈0 = 𝑓0, 𝜁0 = 𝛼∗
0
= 1, 𝑊0 = 1 𝜇𝑘 ∈ [𝜇min, 𝜇max].

Step 1: Compute 𝑊𝑘+1 and 𝑈𝑘+1 using the following 

𝑈0 = 𝑓 (𝑥0) 𝑎𝑛𝑑 𝑈𝑘+1 =
𝜇𝑘𝑊𝑘𝑈𝑘 + 𝑓 (𝑥𝑘+1)

𝑊𝑘+1

, 𝑊0 = 1 𝑎𝑛𝑑 𝑊𝑘+1 = 𝜇𝑘𝑊𝑘 + 1. (1.5)

Step 2: Set ℎ = 1, if 
𝑓 (𝑥𝑘 + ℎ𝑑𝑘) ≤ 𝑈𝑘 + 𝛿ℎ𝑔

𝑇
𝑘
𝑑𝑘 (1.6)

then ℎ𝑘 = ℎ. Else, set ℎ = ℎ∕2 and test (1.6) again.

Popular methods for solving (1.1) include Newton’s method, quasi-Newton methods, Gauss–Newton method, Levenberg–
Marquardt method and Structured quasi-Newton methods (see [9–13]). Some of these methods utilize the special structure of the 
problem (1.1) while others do not [14,15]. The recent focus of researchers in this area deals with developing methods, for solving 
NLS problems, that are based on structured diagonal matrix approximation of the Hessian (1.3) and those that mimic conjugate 
gradient methods [16–18] as well as spectral gradient methods [19–21]. For example, Mohammad and Santos [22] coined a diagonal 
Hessian approximation method by approximating both the first term and the second term of the Hessian (1.3) in such a way that 
the structured secant condition, 𝐻𝑘𝑠𝑘−1 ≈ 𝑦𝑘−1, (𝑠𝑘−1, 𝑦𝑘−1 are given vectors) is fulfilled. However, to ensure sufficient decency of 
the search directions generated by their algorithm, they employed safeguarding methodologies that contain several user-defined 
parameters. This will certainly make their proposed search direction depend on user-defined parameters or at least be influenced 
by them. This is a sort of deficiency. To ameliorate some of the shortcomings in [22], Yahaya et al. [3] proposed structured 
quasi-Newton-based algorithms for solving (1.1) based on two formulations of the approximation of the Hessian (1.3). These two 
approximations were then used to construct two diagonal updating formulas for generating the search directions. Interestingly, 
unlike the method in [22], these algorithms require fewer user-defined parameters.

On the other hand, the structured spectral gradient-based approaches, for solving NLS problems, approximate the Hessian matrix 
(1.3) with a scalar multiple of an identity matrix where the scalar is usually updated in every iteration. Some of the proposed 
algorithms in this direction include the work of Mohammad and Waziri [19] which is based on the same structured vector used 
in [20]. Moreover, the authors employed a safeguarding strategy to ensure the search direction defined by those two structured 
parameters satisfied the descent condition. To improve upon the algorithms in [19], Awwal et al. [20] proposed another three 
structured spectral gradient algorithms where unlike in [19], they considered approximating only the second term of (1.3) with 
higher-order Taylor polynomial and retaining the exact structure of the first term. This means the algorithms in [20] utilize more 
information of (1.3). However, despite the advantages of these algorithms, their formulations still require safeguarding techniques 
to avoid negative curvature directions. To mitigate this shortcoming, we proposed a new structured spectral gradient algorithm that
does not require any safeguard. As safeguarding is completely avoided in the definition of the structured spectral parameter, it will 
have more freedom to utilize the information gained from the preceding iteration. What follows is the summary of the contribution 
of this research article:

• A new structured spectral gradient algorithm is proposed.
• The proposed algorithm does not require any safeguarding technique.
• The global convergence of the proposal is shown under some standard assumptions.
• The algorithm is applied to solve the motion control problem of a robotic arm.

The rest of the article is subdivided into the following sections: In the next section, the formulation of the new structured spectral 
gradient algorithm and its convergence are outlined. More so, in Section 3, the numerical experiments are presented with some 
comparison and application. Finally, in Section 4, the conclusion of this research is presented.
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2. Proposed NSSGM and its convergence

Consider the relation given by (1.3). Now, suppose that at a certain iteration say, 𝑘, we have 

𝐺(𝑥𝑘) =

𝑚∑
𝑖=1

𝐹𝑖(𝑥𝑘)∇
2𝐹𝑖(𝑥𝑘), (2.1)

where 𝐹𝑖(𝑥𝑘) is 𝑖−component of the residual vector 𝐹 (𝑥𝑘), and ∇2𝐹𝑖(𝑥𝑘) is the Hessian matrix of 𝐹𝑖(𝑥𝑘). Let 𝑔𝑖(𝑥𝑘) denotes the gradient 
of 𝐹𝑖(𝑥𝑘), for each 𝑖, we seek to construct some estimates for 𝐺(𝑥𝑘), say 𝐷(𝑥𝑘) such that the following secant equation, 

𝐷(𝑥𝑘)𝑠𝑘−1 ≈ 𝐺(𝑥𝑘)𝑠𝑘−1 = 𝑦𝑘−1, (2.2)

is satisfied, where 𝑠𝑘 is the difference between any two successive estimates of the solution and 𝑦 is a structured vector to be 
determined. This means that substituting (2.2) in (1.3), gives the following secant equation 

𝐻(𝑥𝑘)𝑠𝑘−1 = 𝐽 (𝑥𝑘)
𝑇 𝐽 (𝑥𝑘)𝑠𝑘−1 + 𝑦𝑘−1. (2.3)

For simplicity, let 𝐺𝑘, 𝐽𝑘, and 𝐷𝑘 denote 𝐺(𝑥𝑘), 𝐽 (𝑥𝑘), and 𝐷(𝑥𝑘), respectively, with the 𝑔𝑖𝑘 = 𝑔𝑖(𝑥𝑘) representing the gradient of the 
𝑖th component of the residual 𝐹 (𝑥𝑘).

Now, we approximate 𝐺(𝑥𝑘+1) by employing a similar approach as presented in [17]. Since 𝐹𝑖 is a real-valued function, then 
consider the higher order Taylor’s series expansion of 𝐹 𝑖

𝑘
 as follows: 

𝐹𝑖(𝑥𝑘−1) = 𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘)
𝑇 (𝑥𝑘−1 − 𝑥𝑘) +

1

2
(𝑥𝑘−1 − 𝑥𝑘)

𝑇∇2𝐹𝑖(𝑥𝑘)(𝑥𝑘−1 − 𝑥𝑘)

+
1

6
(𝑥𝑘−1 − 𝑥𝑘)

𝑇 (𝑇 𝑖
𝑘
(𝑥𝑘−1 − 𝑥𝑘))(𝑥𝑘−1 − 𝑥𝑘) + 𝑂(‖𝑥𝑘−1 − 𝑥𝑘‖4).

(2.4)

Multiplying both sides of (2.4) by (𝑥𝑘−1 − 𝑥𝑘)𝑇  gives 
(𝑥𝑘−1 − 𝑥𝑘)

𝑇∇𝐹𝑖(𝑥𝑘−1) = (𝑥𝑘−1 − 𝑥𝑘)
𝑇∇𝐹𝑖(𝑥𝑘) − (𝑥𝑘−1 − 𝑥𝑘)

𝑇∇2𝐹𝑖(𝑥𝑘)(𝑥𝑘−1 − 𝑥𝑘)

+
1

2
(𝑥𝑘−1 − 𝑥𝑘)

𝑇 (𝑇 𝑖
𝑘
(𝑥𝑘−1 − 𝑥𝑘))(𝑥𝑘−1 − 𝑥𝑘) + 𝑂(‖𝑥𝑘−1 − 𝑥𝑘‖4),

(2.5)

where 𝑇 𝑖
𝑘
 is the tensor of 𝐹𝑖(𝑥𝑘), 𝑖 = 1, 2,… , 𝑚. By setting 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1, then (2.4) and (2.5) respectively become 

𝐹𝑖(𝑥𝑘−1) = 𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘)
𝑇 𝑠𝑘−1 +

1

2
𝑠𝑇
𝑘−1

∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 +
1

6
𝑠𝑇
𝑘−1

(𝑇 𝑖
𝑘
𝑠𝑘−1)𝑠𝑘−1 + 𝑂(‖𝑠𝑘−1‖4), (2.6)

and 
𝑠𝑇
𝑘−1

∇𝐹𝑖(𝑥𝑘−1) = 𝑠𝑇
𝑘−1

∇𝐹𝑖(𝑥𝑘) − 𝑠
𝑇
𝑘−1

∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 +
1

2
𝑠𝑇
𝑘−1

(𝑇 𝑖
𝑘
𝑠𝑘−1)𝑠𝑘−1 + 𝑂(‖𝑠𝑘−1‖4). (2.7)

Now, adding (2.6) and (2.7) and truncating the term containing the tensor onward, we have
𝑠𝑇
𝑘−1

∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 ≈(∇𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1 + 6(𝐹𝑖(𝑥𝑘−1) − 𝐹𝑖(𝑥𝑘))

+ 3(∇𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1. (2.8)

Now, we consider a simple approximation of ∇2𝐹𝑖(𝑥𝑘). That is, if we require that ∇2𝐹𝑖(𝑥𝑘) ≈ 𝛼𝑖𝐼 , where 𝐼 is an identity matrix and 
𝛼𝑖 is a scalar for each 𝑖, then (2.8) becomes

𝑠𝑇
𝑘−1

∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 ≈𝛼𝑖𝑠
𝑇
𝑘−1

𝑠𝑘−1 ≈ (∇𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1 + 6(𝐹𝑖(𝑥𝑘−1) − 𝐹𝑖(𝑥𝑘))

+ 3(∇𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1. (2.9)

Since the scalar 𝑠𝑇
𝑘−1

𝑠𝑘−1 = ‖𝑠𝑘−1‖2 ≠ 0, otherwise, the solution of the problem in question has been achieved. Then dividing (2.9) 
by the scalar ‖𝑠𝑘−1‖2 gives 

𝛼𝑖 ≈
(∇𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘−1))

𝑇 𝑠𝑘−1 + 6(𝐹𝑖(𝑥𝑘−1) − 𝐹𝑖(𝑥𝑘)) + 3(∇𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1

‖𝑠𝑘−1‖2
. (2.10)

Therefore, the approximation of ∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 is 

∇2𝐹𝑖(𝑥𝑘)𝑠𝑘−1 ≈
(∇𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘−1))

𝑇 𝑠𝑘−1 + 6(𝐹𝑖(𝑥𝑘−1) − 𝐹𝑖(𝑥𝑘)) + 3(∇𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1

‖𝑠𝑘−1‖2
𝑠𝑘−1. (2.11)

Now, substituting (2.11) into (2.1) gives

𝐺𝑘𝑠𝑘−1 =
1

‖𝑠𝑘−1‖2
𝑚∑
𝑖=1

𝐹𝑖(𝑥𝑘)[(∇𝐹𝑖(𝑥𝑘) − ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1 + 6(𝐹𝑖(𝑥𝑘−1) − 𝐹𝑖(𝑥𝑘))

+ 3(∇𝐹𝑖(𝑥𝑘) + ∇𝐹𝑖(𝑥𝑘−1))
𝑇 𝑠𝑘−1]𝑠𝑘−1. (2.12)

Since ∇𝐹𝑖(𝑥) = 𝐽 (𝑥), then using (2.2), we have the following structured secant equation 
𝐷𝑘𝑠𝑘−1 = 𝑦𝑘−1, (2.13)

Journal of Computational and Applied Mathematics 469 (2025) 116671 

3 



A.M. Awwal and N. Pakkaranang

where

𝑦𝑘−1 = (𝐽𝑘 − 𝐽𝑘−1)
𝑇𝐹 (𝑥𝑘) +

𝜗𝑘−1

‖𝑠𝑘−1‖2
𝑠𝑘−1, (2.14)

𝜗𝑘−1 = 3𝐹 (𝑥𝑘)
𝑇 [(𝐽𝑘 − 𝐽𝑘−1)𝑠𝑘−1 − 2(𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘−1))]. (2.15)

Finally, combining (2.3) and (2.13) yields 
𝐻𝑘𝑠𝑘−1 = 𝛾𝑘−1, (2.16)

where 
𝛾𝑘−1 = 𝐽𝑇

𝑘
𝐽𝑘𝑠𝑘−1 + (𝐽𝑘 − 𝐽𝑘−1)

𝑇𝐹 (𝑥𝑘) +
𝜗𝑘−1

‖𝑠𝑘−1‖2
𝑠𝑘−1. (2.17)

Recently, as mentioned in the previous section, Awwal et al. [20] proposed three structured spectral gradient algorithms by 
incorporating the structured vector (2.17) into the BB spectral parameters as well as their convex combination. They defined the 
search directions as follows 

𝑑
(𝑖)

𝑘
= −𝜆

(𝑖)

𝑘
𝑔𝑘, 𝑖 = 1, 2, 3, and 𝑘 ≥ 1, (2.18)

where 

𝜆
(𝑖)

𝑘
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

‖𝑠𝑘−1‖2
𝑠𝑇
𝑘−1

𝛾𝑘−1
, for 𝑖 = 1,

𝑠𝑇
𝑘−1

𝛾𝑘−1

‖𝛾𝑘−1‖2 , for 𝑖 = 2,

𝑟𝑘
‖𝑠𝑘−1‖2
𝛾𝑇
𝑘−1

𝑠𝑘−1
+ (1 − 𝑟𝑘)

𝛾𝑇
𝑘−1

𝑠𝑘−1

‖𝛾𝑘−1‖2 , for 𝑖 = 3,

(2.19)

with the scalar 𝑟𝑘 ∈ [0, 1]. To avoid negative curvature directions, the authors replaced 𝑠𝑇
𝑘−1

𝛾𝑘−1 with the following safeguard 
strategy 

𝜏
(𝑖)

𝑘
= max{𝛽𝜆

(𝑖)

𝑘−1
, 2|𝑠𝑇

𝑘−1
𝛾𝑘−1| + ‖𝑠𝑘−1‖2 + ‖𝛾𝑘−1‖2}, 𝛽 > 0, (2.20)

whenever it is nonpositive, where 𝑖 = 1, 2, 3.
Now, using Cauchy Schwarz inequality on 𝜆(1)

𝑘
 and 𝜆(2)

𝑘
, we have 

𝜆
(1)

𝑘
=

‖𝑠𝑘−1‖2
𝑠𝑇
𝑘−1

𝛾𝑘−1
≥

‖𝑠𝑘−1‖
‖𝛾𝑘−1‖ , (2.21)

and 

𝜆
(2)

𝑘
=
𝑠𝑇
𝑘−1

𝛾𝑘−1

‖𝛾𝑘−1‖2
≤

‖𝑠𝑘−1‖
‖𝛾𝑘−1‖ . (2.22)

This means that 𝜆(1)
𝑘

≥ 𝜆
(2)

𝑘
 for all 𝑘. That is, the quantity 𝜆(1)

𝑘
− 𝜆

(2)

𝑘
 is nonnegative.

Motivated by this, we define the search direction of the new algorithm as 
𝑑𝑘 = −𝜓𝑘𝑔𝑘, 𝑘 ≥ 1, (2.23)

where 

𝜓𝑘 =
‖𝑠𝑘−1‖
‖𝛾𝑘−1‖ +

‖𝑠𝑘−1‖2
𝑠𝑇
𝑘−1

𝛾𝑘−1
−
𝑠𝑇
𝑘−1

𝛾𝑘−1

‖𝛾𝑘−1‖2
. (2.24)

To analyze the advantage of the parameter (2.24) as well as the convergence of the proposed algorithm, we require the following 
standard assumption. 

Assumption 2.1.  The following standard assumptions are useful in the convergence analysis of the proposed method.
A1. The level set  = {𝑥 ∈ R

𝑛 ∣ 𝑓 (𝑥) ≤ 𝑓 (𝑥0)} is bounded. That is, ‖𝑥‖ ≤ 𝜔, holds for all 𝑥 ∈ , where 𝜔 > 0.
A2. There exist constants 𝐿1 > 0 and 𝐿2 > 0 such that for all 𝑥, 𝑦 ∈ , we have

‖𝐽 (𝑥) − 𝐽 (𝑦)‖ ≤ 𝐿1‖𝑥 − 𝑦‖, (2.25)

‖𝐹 (𝑥) − 𝐹 (𝑦)‖ ≤ 𝐿2‖𝑥 − 𝑦‖. (2.26)

The two inequalities (2.25) and (2.26) give rise to the following conclusions
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝑙‖𝑥 − 𝑦‖, ‖𝐹 (𝑥)‖ ≤ 𝜔1, ‖𝐽 (𝑥)‖ ≤ 𝜔2, ‖𝑔(𝑥)‖ ≤ 𝛾3,

where 𝑙, 𝜔1, 𝜔2 and 𝜔3 are positive constants. 
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Lemma 2.2.  Suppose that Assumption  2.1 (A2) holds. Let the structured vector 𝛾𝑘−1 be defined by (2.17), then there exists some positive 
constant, say 𝑀 > 0, such that

‖𝛾𝑘−1‖ ≤𝑀‖𝑠𝑘−1‖, ∀ 𝑘. (2.27)

𝜓𝑘 ≥ 1∕𝑀, ∀ 𝑘. (2.28)

Proof.  Let 𝜔 ∈ [0, 1], by Assumption  2.1 and mean value theorem, we have 
|𝜗𝑘−1| = |||3𝐹 (𝑥𝑘)

𝑇
[
(𝐽𝑘 − 𝐽𝑘−1)𝑠𝑘−1 − 2(𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘−1))

]|||
=
|||3𝐹 (𝑥𝑘)

𝑇
[
(𝐽𝑘 − 𝐽𝑘−1)𝑠𝑘−1 − 2𝐽 (𝑥𝑘−1 + 𝜔𝑠𝑘−1)𝑠𝑘−1

]|||
≤ 3‖𝐹 (𝑥𝑘)‖ ‖‖(𝐽𝑘 − 𝐽𝑘−1) − 2𝐽 (𝑥𝑘−1 + 𝜔𝑠𝑘−1)

‖‖ ‖𝑠𝑘−1‖
≤ 3‖𝐹 (𝑥𝑘)‖‖𝑠𝑘−1‖

[‖𝐽𝑘 − 𝐽 (𝑥𝑘−1 + 𝜔𝑠𝑘−1)‖ + ‖𝐽𝑘−1 − 𝐽 (𝑥𝑘−1 + 𝜔𝑠𝑘−1)‖
]

≤ 3‖𝐹 (𝑥𝑘)‖‖𝑠𝑘−1‖
[
𝐿1(1 − 𝜔)‖𝑠𝑘−1‖ + 𝐿1𝜔‖𝑠𝑘−1‖

]

≤ 6𝐿1𝜔1‖𝑠𝑘−1‖2.

(2.29)

If we let 𝑚 ∶= 6𝐿1𝜔1, we obtain 
|𝜗𝑘−1| ≤ 𝑚‖𝑠𝑘−1‖2, ∀ 𝑘. (2.30)

Again, using Assumption  2.1 (A2) and (2.30), we obtain 

‖𝛾𝑘−1‖ =
‖‖‖‖‖
𝐽𝑇
𝑘
𝐽𝑘𝑠𝑘−1 +

[
(𝐽𝑘 − 𝐽𝑘−1)

𝑇𝐹 (𝑥𝑘) +
𝜗𝑘−1

‖𝑠𝑘−1‖2
𝑠𝑘−1

]‖‖‖‖‖
≤ ‖𝐽𝑘‖2‖𝑠𝑘−1‖ + ‖𝐽𝑘 − 𝐽𝑘−1‖‖𝐹 (𝑥𝑘)‖ +

|𝜗𝑘−1|
‖𝑠𝑘−1‖2

‖𝑠𝑘−1‖

≤ ‖𝐽𝑘‖2‖𝑠𝑘−1‖ + ‖𝐽𝑘 − 𝐽𝑘−1‖‖𝐹 (𝑥𝑘)‖ +
𝑚‖𝑠𝑘−1‖2
‖𝑠𝑘−1‖2

‖𝑠𝑘−1‖
≤ 𝜔2

2
‖𝑠𝑘−1‖ + 𝜔1𝐿1‖𝑠𝑘−1‖ + 𝑚‖𝑠𝑘−1‖

= (𝜔2
2
+ 𝜔1𝐿1 + 𝑚)‖𝑠𝑘−1‖.

(2.31)

By letting 𝑀 ∶= 𝜔2
2
+ 𝜔1𝐿1 + 𝑚, we get the desired result. Lastly, from (2.21) and (2.22), we have that ‖𝑠𝑘−1‖2

𝑠𝑇
𝑘−1

𝛾𝑘−1
−

𝑠𝑇
𝑘−1

𝛾𝑘−1

‖𝛾𝑘−1‖2 ≥ 0, and 
therefore using (2.27) 𝜓𝑘 ≥ ‖𝑠𝑘−1‖

‖𝛾𝑘−1‖ ≥
‖𝑠𝑘−1‖
𝑀‖𝑠𝑘−1‖ =

1

𝑀
. ■

From Lemma  2.2, we see that the spectral parameter 𝜓𝑘 is strictly positive, for all 𝑘.

Algorithm 2: New Structured Spectral Gradient Method (NSSGM)
Input : Initial approximation 𝑥0 ∈ dom(𝑓 ), 0 << 𝜓max << +∞ and 𝑇 𝑜𝑙 > 0.

Step 0: Compute 𝑓 (𝑥0) and 𝑑0 = −𝑔0. Set 𝑘 = 0.

Step 1: Compute 𝐹 (𝑥𝑘) and 𝑔𝑘. If ‖𝑔𝑘‖ ≤ 𝑇 𝑜𝑙 or 𝑘 ≥ 𝑘max, stop.
Step 2: Compute ℎ𝑘 using Algorithm 1.
Step 3: Update the next iterate using 𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘𝑑𝑘.

Step 4: Compute 𝛾𝑘−1 = 𝐽 𝑇
𝑘
𝐽𝑘𝑠𝑘−1 + (𝐽𝑘 − 𝐽𝑘−1)

𝑇𝐹 (𝑥𝑘) +
𝜗𝑘−1

‖𝑠𝑘−1‖2
𝑠𝑘−1,

where 𝜗𝑘−1 = 3𝐹 (𝑥𝑘)
𝑇 [(𝐽𝑘 − 𝐽𝑘−1)𝑠𝑘−1 − 2(𝐹 (𝑥𝑘) − 𝐹 (𝑥𝑘−1))].

Step 5: Update the search direction 
𝑑𝑘 = −𝜓̂𝑘𝑔𝑘, (2.32)

𝜓̂𝑘 = min

{
‖𝑠𝑘−1‖
‖𝛾𝑘−1‖ +

‖𝑠𝑘−1‖2
𝑠𝑇
𝑘−1
𝛾𝑘−1

−
𝑠𝑇
𝑘−1
𝛾𝑘−1

‖𝛾𝑘−1‖2
, 𝜓max

}
(2.33)

Step 6: Set 𝑘 ∶= 𝑘 + 1 and go to step 1. 

Remark 2.3.  From the definition of the spectral parameter (2.33) and Lemma  2.2, we see that 𝜓̂𝑘 is automatically bounded, i.e. 
1

𝑀
≤ 𝜓̂𝑘 ≤ 𝜓max, ∀ 𝑘. (2.34)

This means that unlike the methods in [20], we do not require any special safeguarding strategy for the spectral parameter 𝜓̂𝑘
defined by (2.33). In addition, it is not difficult to see that the following hold with regards to the search direction defined by (2.32)

𝑔𝑇
𝑘
𝑑𝑘 ≤ −

1

𝑀
‖𝑔𝑘‖2. (2.35)
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‖𝑑𝑘‖ ≤ 𝜓max‖𝑔𝑘‖. (2.36)

Lemma 2.4.  Let 𝛿 ∈ (0, 1) and suppose 𝑑𝑘 is the search direction defined by (2.32) such that the inequalities (2.35) and (2.36) hold. 
Suppose Assumption  2.1 holds, then the Algorithm 2 (NSSGM) is well-defined.

Proof.  Let 𝑔𝑘 be the gradient of the objective function (1.1) generated by Algorithm 2 (NSSGM) at 𝑥𝑘 such that ‖𝑔𝑘‖ ≠ 0. By the 
fact that (2.35) holds for the search direction (2.32) then by Assumption  2.1, there exists a step length ℎ∗

𝑘
 sufficiently small enough 

such that 
𝑓 (𝑥𝑘 + ℎ

∗𝑑𝑘) ≤ 𝑈𝑘 + 𝛿ℎ
∗𝑔𝑇
𝑘
𝑑𝑘, (2.37)

holds, where the next iterate 𝑥𝑘+1 = 𝑥𝑘 + ℎ
∗𝑑𝑘 is well-defined.

Suppose for contradiction that, at a certain iteration, there exists some ℎ𝑗 ≥ 0 for which the line search (1.6) does not hold, then 
we have 

𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) > 𝑈𝑘 + 𝛿ℎ𝑗𝑔
𝑇
𝑘
𝑑𝑘, for all 𝛼𝑗 ≥ 0, (2.38)

where {ℎ𝑗} is a strictly decreasing sequence satisfying lim𝑗→∞ ℎ𝑗 = 0.
By the definition of the problem (1.1), we have 𝑓 (𝑥𝑘) ≥ 0, ∀𝑘. Since 𝑈0 = 𝑓 (𝑥0), (see, Algorithm 1) and the fact that 𝑈𝑘 is a 

convex combination of 𝑈𝑘−1 and 𝑓 (𝑥𝑘), it holds that 𝑈𝑘 ≥ 0 ∀ 𝑘.
Now, since it holds from (2.36) that ‖𝑑𝑘‖ ≤ 𝜓max‖𝑔𝑘‖, then (2.38) becomes

𝑈𝑘 < 𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) − 𝛿ℎ𝑗𝑔
𝑇
𝑘
𝑑𝑘

≤ 𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) + 𝛿ℎ𝑗‖𝑔𝑘‖‖𝑑𝑘‖
≤ 𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) + 𝛿𝜓maxℎ𝑗‖𝑔𝑘‖2
≤ 𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) + 𝛿𝜓maxℎ𝑗𝛾

2
3
.

This means that taking the limit on both sides as 𝑗 → ∞ gives 
𝑈𝑘 ≤ 𝑓 (𝑥𝑘). (2.39)

However, since

𝑈𝑘 =
𝜇𝑘−1𝑊𝑘−1𝑈𝑘−1 + 𝑓 (𝑥𝑘)

𝜇𝑘−1𝑊𝑘−1 + 1
,

it means that 𝑈𝑘 lies between 𝑈𝑘−1 and 𝑓 (𝑥𝑘). Merging this with (2.39) yields 𝑓 (𝑥𝑘) = 𝑈𝑘. This further means that 𝜇𝑘−1 = 0, since 
𝑈𝑘−1 ≠ 0, and 𝑊𝑘−1 ≠ 0. Therefore, the non-monotone line search turns into monotone. Thus, (2.38) turns to 

𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) > 𝑓 (𝑥𝑘) + 𝛿ℎ𝑗𝑔
𝑇
𝑘
𝑑𝑘, (2.40)

this implies,
𝑓 (𝑥𝑘 + ℎ𝑗𝑑𝑘) − 𝑓 (𝑥𝑘)

ℎ𝑗
> 𝛿𝑔𝑇

𝑘
𝑑𝑘.

Now, taking limit as 𝑗 → ∞ and using Assumption  2.1 gives 𝑔𝑇
𝑘
𝑑𝑘 ≥ 𝛿𝑔𝑇

𝑘
𝑑𝑘. Since 𝑔𝑇𝑘 𝑑𝑘 < 0, it must hold that 𝛿 ≥ 1, which is a 

contradiction. Hence, the proof. ■

The following result is from [8] and is useful in proving the convergence result of the proposed method. 

Lemma 2.5.  Suppose the nonmonotone line search algorithm is employed with the search direction being descent such that ‖∇𝑓 (𝑥) −
∇𝑓 (𝑥𝑘)‖ ≤ 𝐿‖𝑥 − 𝑥𝑘‖ for all 𝑥 on the line segment connecting 𝑥𝑘 and 𝑥𝑘 + ℎ𝑘𝜌𝑑𝑘, 𝜌 > 0,  if 𝜌ℎ𝑘 ≤ 𝜇,  𝜇 > 0, then 

ℎ𝑘 ≥ min

{
𝜇

𝜌
,
2(1 − 𝛿)

𝐿𝜌

|𝑔𝑇
𝑘
𝑑𝑘|

‖𝑑𝑘‖2
}
. (2.41)

Now, we state the convergence result of the proposed method. The proof follows directly from Theorem 2.2 [8]. We only repeat 
it here for the benefit of the potential readers. 

Theorem 2.6.  Let {𝑥𝑘} be the sequence generated by Algorithm 2 and suppose 𝑓 (𝑥) is given by (1.1) such that Assumption  2.1 holds. 
Then the sequence of iterates {𝑥𝑘} is contained in the level set and the following conclusions hold:

lim
𝑘→∞

inf ‖𝑔𝑘‖ = 0, and

lim
𝑘→∞

‖𝑔𝑘‖ = 0, if 0 < 𝜇max < 1.
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Proof.  It was shown in Lemma 1.1 of [8] that for 𝑊𝑘+1 defined in Step 1 of Algorithm 1, we have 

𝑊𝑘+1 = 1 +

𝑘∑
𝑖=0

𝑖∏
𝑚=0

𝜇𝑘−𝑚 ≤ 𝑘 + 2. (2.42)

Next, consider the following cases:
Case 1. If 𝜌ℎ𝑘 ≥ 𝜇, then ℎ𝑘 ≥ 𝜇

𝜌
. By (1.6) and (2.35), it follows that

𝑓 (𝑥𝑘+1) ≤ 𝑈𝑘 + 𝛿ℎ𝑘𝑔
𝑇
𝑘
𝑑𝑘

≤ 𝑈𝑘 −
𝛿

𝑀
ℎ𝑘‖𝑔𝑘‖2

≤ 𝑈𝑘 −
𝛿𝜇

𝑀𝜌
‖𝑔𝑘‖2.

Case 2. On the other hand, if 𝜌ℎ𝑘 ≤ 𝜇, then by (2.41), 

ℎ𝑘 ≥
2(1 − 𝛿)

𝐿𝜌

|𝑔𝑇
𝑘
𝑑𝑘|

‖𝑑𝑘‖2
. (2.43)

From (2.35) and (2.36), we deduce |𝑔𝑇
𝑘
𝑑𝑘| ≥ 1

𝑀
‖𝑔𝑘‖2 and 1

‖𝑑𝑘‖2 ≥
1

𝜓2
𝑚𝑎𝑥‖𝑔𝑘‖2

. Combining with (1.6) gives

𝑓 (𝑥𝑘+1) ≤ 𝑈𝑘 + 𝛿ℎ𝑘𝑔
𝑇
𝑘
𝑑𝑘

≤ 𝑈𝑘 −
𝛿

𝑀

2(1 − 𝛿)

𝐿𝜌

|𝑔𝑇
𝑘
𝑑𝑘|

‖𝑑𝑘‖2
‖𝑔𝑘‖2

≤ 𝑈𝑘 −
2(1 − 𝛿)

𝐿𝜌

𝛿

𝑀2

‖𝑔𝑘‖2
‖𝑑𝑘‖2

‖𝑔𝑘‖2

≤ 𝑈𝑘 −
2(1 − 𝛿)

𝐿𝜌𝜓2
𝑚𝑎𝑥

𝛿

𝑀2
‖𝑔𝑘‖2,

where the third and last inequalities follow from (2.35) and (2.36), respectively.
Setting 𝑣 = min

{
𝛿𝜇

𝑀𝜌
,

2(1−𝛿)

𝐿𝜌𝜓2
𝑚𝑎𝑥

𝛿

𝑀2

}
, yields 

𝑓 (𝑥𝑘+1) ≤ 𝑈𝑘 − 𝑣‖𝑔𝑘‖2. (2.44)

Combining the relation (1.5) in Step 1 of Algorithm 1 and (2.44), gives

𝑈𝑘+1 =
𝜇𝑘𝑊𝑘𝑈𝑘 + 𝑓 (𝑥𝑘+1)

𝑊𝑘+1

≤
𝜇𝑘𝑊𝑘𝑈𝑘 + 𝑈𝑘 − 𝑣‖𝑔𝑘‖2

𝑊𝑘+1

=
(𝜇𝑘𝑊𝑘 + 1)𝑈𝑘 − 𝑣‖𝑔𝑘‖2

𝑊𝑘+1

= 𝑈𝑘 −
𝑣‖𝑔𝑘‖2
𝑊𝑘+1

. (2.45)

From (2.44), we can deduce 𝑓 (𝑥𝑘+1) ≤ 𝑈𝑘, and by the fact that the objective function 𝑓 is bounded from below, we have that 
𝑈𝑘 is bounded from below, ∀𝑘.

Now, from (2.45), we have that 
∞∑
𝑘=0

‖𝑔𝑘‖2
𝑊𝑘+1

<∞. (2.46)

If ‖𝑔𝑘‖ were bounded away from 0, then (2.46) would be violated since 𝑊𝑘+1 ≤ 𝑘 + 2. Hence, lim𝑘→∞ inf ‖𝑔𝑘‖ = 0, holds.
If 𝜇max < 1, then by (2.42), 

𝑊𝑘+1 = 1 +

𝑘∑
𝑗=0

𝑗∏
𝑖=0

𝜇𝑘−𝑖 ≤ 1 +

𝑘∑
𝑗=0

𝜇
𝑗+1
max ≤

∞∑
𝑗=0

𝜇
𝑗
max =

1

1 − 𝜇max

. (2.47)

Combining with (2.46), we have lim𝑘→∞ ‖𝑔𝑘‖ = 0, holds.  ■

3. Numerical experiments and comparison

In this section, the numerical performance as well as computational efficiency of the proposed method shall be demonstrated. 
The experiment is divided into two subsections. The first subsection discusses the numerical performance of Algorithm 2 (NSSGM) 
on some benchmark test problems in comparison with two existing algorithms of similar characteristics. On the other hand, in 
the other subsection, Algorithm 2 is implemented to solve problems arising from 2D robotic motion control. All experiments are 
conducted on a personal computer with an Intel Core(TM) i5-8250u processor with 4 GB of RAM and a CPU 1.60 GHz.

Journal of Computational and Applied Mathematics 469 (2025) 116671 

7 



A.M. Awwal and N. Pakkaranang

Table 1
List of zero and nonzero test problems used for the experiment in Section 3.1.
 S/N Problem name Initial points Size Reference 
 Zero and Nonzero test problems
 1 Penalty function I (3, 3,… , 3)𝑇 Large [23]  
 2 Variably dimension (1 − 1∕𝑛, 1 − 2∕𝑛,… , 0)𝑇 Large [24]  
 3 Trigonometric function (1, 1,… , 1)𝑇 Large [24]  
 4 Linear function–full rank (1, 1,… , 1)𝑇 Large [24]  
 5 Problem 202 (2, 2,… , 2)𝑇 Large [25]  
 6 Problem 212 (1∕2, 1∕2,… , 1∕2)𝑇 Large [25]  
 7 Strictly convex function I (1∕𝑛, 1∕𝑛,… , 1∕𝑛)𝑇 Large [26]  
 8 Sin function II (1, 1,… , 1)𝑇 Large [27]  
 9 Exponential function I (𝑛∕𝑛 − 1, 𝑛∕𝑛 − 1,… , 𝑛∕𝑛 − 1)𝑇 Large [23]  
 10 Exponential function II (1∕𝑛2 , 1∕𝑛2 ,… , 1∕𝑛2)𝑇 Large [23]  
 11 Logarithmic function I (1, 1,… , 1)𝑇 Large [23]  
 12 Trigonometric exponential function (1∕2, 1∕2,… , 1∕2)𝑇 Large [25]  
 13 Extended Powell function (1.5𝐸 − 4,… , 1.5𝐸 − 4)𝑇 Large [23]  
 14 Function 21 (−1,−1,… ,−1)𝑇 Large [23]  
 15 Extended Rosenbrock function (−1,−1,… ,−1)𝑇 Large [24]  
 16 Extended Himmelblau function (−1, 1,−1, 1,… ,−1, 1)𝑇 Large [28]  
 17 Function 27 (100,

1

𝑛2
,

1

𝑛2
,… ,

1

𝑛2
) Large [23]  

 18 Trigonometric logarithmic function (1, 1,… , 1)𝑇 Large [23]  
 19 Zero Jacobian function for 𝑖 = 1,

100(𝑛−100)

𝑛
, for 𝑖 ≥ 2,

(𝑛−1000)(𝑛−500)

(60𝑛)2
Large [23]  

 20 Exponential function (1∕2, 1∕2,… , 1∕2)𝑇 Large [23]  
 21 Function 18 (1, 1,… , 1)𝑇 Large [23]  
 22 Brown almost linear function (1∕𝑛, 1∕𝑛,… , 1∕𝑛)𝑇 Large [24]  
 23 Brown Badly Scaled function (1, 1)𝑇 Small [24]  
 24 Jennrich and Sampson function (1, 1)𝑇 Small [24]  
 25 Box three-dimensional function (1, 1, 1)𝑇 Small [24]  
 26 Rank deficient function (1, 1)𝑇 Small [24]  
 27 Rosenbrock function (1, 1)𝑇 Small [24]  
 28 Parameterized problem (1, 1)𝑇 Small [29]  
 29 Freudenstein and Roth function (1, 1)𝑇 Small [24]  
 30 Beale Function (1, 1)𝑇 Small [24]  

3.1. Numerical performance on benchmark test problems

The first efficiency test for NSSGM is done by implementing it to solve some benchmark test problems and then comparing 
its numerical performance with the SSHBB algorithm developed in [20] and the SSGM2 proposed in [19]. The comparison test is 
done based on #iter (the number of iterations), #fval (the number of function evaluations), #nmvp (the number of matrix–vector 
products) and #time (the CPU time) recorded. It is crucial to mention here that all the NSSGM, SSHBB, and SSGM2 are coded in 
MATLAB (R2019b) such that, for each test problem considered, the components of the structured spectral parameters are computed directly 
as a matrix–vector product without the need to explicitly form or store any matrix throughout the iteration process. This means that the 
NSSGM, SSHBB, and SSGM2 are implemented as matrix-free algorithms.

The three algorithms are implemented using the same parameters as presented in [20]. In the course of this experiment, thirty 
(30) benchmark test problems, where twenty-two (22) are large scale and the remaining are small scale, were solved. The dimensions 
of the large-scale problems are varied as 3000, 9000, and 15000. Details of the test problems are given in Table  1. During the 
iteration process, a method is declared to have achieved an approximate solution of a particular problem whenever ‖𝑔𝑘‖ ≤ 10−6. 
However, if the number of iterations is in excess of 1000 iterations and the stopping criterion mentioned above has not been satisfied, 
then a failure is declared and is denoted as ‘‘_’’. The details of the numerical values recorded by each algorithm have been presented in 
Tables  2–4. Perusing Tables  2–4, it is very easy to note that the proposed NSSGM solves all the test problems considered, successfully, 
whereas, its competitors, SSHBB and SSGM2, failed in a number of cases. This suggests that the new NSSGM can be an alternative to 
the existing SSHBB and SSGM2 methods. Furthermore, although the numerical results in Tables  2–4 show that the three algorithms 
are competitive, we can confirm the relatively superior performance of NSSGM over SSHBB and SSGM2 as it solves all the test 
problems including those that could not be solved by others. This underscores the efficiency of the new NSSGM algorithm.

3.2. Application in 2D robotic motion control

Recently, applications of optimization algorithms to solve different types of problems are gaining more attention. One such 
application that is of interest to us, in this paper, is the 2-dimensional robotic motion control problem. In what follows, the new 
NSSGM is employed to track a two-joint planar robot manipulator. For a detailed description of the discrete-time kinematics equation 
of a two-joint planar robot manipulator, the reader may refer to the Ref. [30–33] and the references therein. The task at hand is to 
solve the following nonlinear least square problem: 

min
𝐹𝑘∈R

2

1

2

‖‖‖𝐹𝑘 − 𝐹𝑘
‖‖‖
2
, (3.1)
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Table 2
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
 P NSSGM SSHBB SSGM2

 #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE  
 
1

6 7 19 0.1792 9.92E−08 6 7 19 0.216 1E−07 6 7 19 0.1925 9.92E−08 
 5 6 16 0.1854 4.53E−05 5 6 16 0.206 5E−05 6 7 19 0.2056 4.53E−05 
 5 6 16 0.0672 2.11E−05 5 6 16 0.068 2E−05 6 7 18 0.0958 2.11E−05 
 
2

22 100 67 0.0690 3.01E−23 22 100 67 0.083 2E−24 22 100 67 0.0686 7.06E−23 
 27 116 82 1.1052 5.9E−21 – – – – – 68 276 205 1.4511 1.25E−21 
 79 527 238 1.7029 5.68E−22 – – – – – 80 543 262 1.9173 1.88E−21 
 
3

93 154 280 0.5856 6.93E−08 – – – – – 101 170 304 0.8468 6.94E−08 
 100 157 301 1.6796 2.16E−08 – – – – – 125 307 376 1.8596 2.16E−08 
 27 55 82 0.6532 1.99E−10 28 56 85 0.778 2E−13 27 55 82 0.7322 2E-10  
 
4

102 202 307 0.6568 4.2E−10 74 138 223 0.531 4E−10 102 202 307 0.4758 4.2E−10  
 38 72 115 0.6394 6.45E−11 33 56 100 2.156 7E−11 38 72 115 0.5193 6.45E−11 
 28 50 85 1.4876 4.71E−11 23 36 70 1.338 5E−11 28 50 85 0.5996 4.71E−11 
 
5

1 2 4 0.0153 0.5 1 2 4 0.018 0.5 1 2 4 0.031 0.5  
 1 2 4 0.0122 0.5 1 2 4 0.02 0.5 1 2 4 0.0086 0.5  
 1 2 4 0.0120 0.5 1 2 4 0.013 0.5 1 2 4 0.009 0.5  
 
6

6 7 19 0.0260 1.3E−21 6 7 19 0.022 1E−21 6 7 19 0.0415 1.3E−21  
 6 7 19 0.0402 4.54E−21 6 7 19 0.04 5E−21 6 7 19 0.0384 4.54E−21 
 6 7 19 0.0522 7.77E−21 6 7 19 0.156 8E−21 6 7 19 0.061 7.77E−21 
 
7

72 152 217 0.2600 7.55E−10 69 132 208 0.487 7E−10 72 152 217 0.2999 7.55E−10 
 34 63 103 0.5783 1.48E−10 33 56 100 0.625 1E−10 34 63 103 0.4356 1.48E−10 
 28 49 85 0.5871 8.67E−11 23 36 70 0.729 1E−10 28 49 85 0.5917 8.67E−11 
 
8

6 8 19 0.0216 1.71E−23 6 8 19 0.061 7E−24 6 8 19 0.04 1.71E−23 
 6 8 19 0.0544 1.71E−23 6 8 19 0.101 1E−23 6 8 19 0.0449 1.71E−23 
 6 8 19 0.0990 1.7E−23 6 8 19 0.177 1E−23 6 8 19 0.0768 1.7E−23  
 
9

4 5 13 0.0439 1500 4 5 13 0.03 1500 4 5 13 0.0519 1500  
 4 5 13 0.1026 4500 4 5 13 0.05 4500 4 5 13 0.0551 4500  
 4 5 13 0.1674 7500 4 5 13 0.072 7500 4 5 13 0.0781 7500  
 
10

5 6 16 0.0094 3.23E−29 5 6 16 0.047 3E−29 5 6 16 0.032 3.23E−29 
 5 6 16 0.0311 9.7E−29 5 6 16 0.039 1E−28 5 6 16 0.036 9.7E−29  
 5 6 16 0.0389 1.62E−28 5 6 16 0.052 2E−28 5 6 16 0.0453 1.62E−28 

at each instantaneous time 𝑡𝑘 ∈ [0, 𝑡final], where 𝑡final is the final task duration,

𝐹𝑘 =

[
𝓁1 cos(𝑥1) + 𝓁2 cos(𝑥1 + 𝑥2), 𝓁2 sin(𝑥1) + 𝓁2 sin(𝑥1 + 𝑥2)

]𝑇
,

𝓁𝑖, 𝑖 = 1, 2, denotes the length of the 𝑖th−rod and 𝐹𝑘 represents the end effector controlled track. For the purpose of this experiment, 
𝐹𝑘 is controlled to track the following Lissajous curve

𝐹𝑘 =

[
3

2
+

1

5
sin(𝑡𝑘),

√
3

2
+

1

5
sin

(
2𝑡𝑘 +

(
𝜋

2

))]𝑇
.

To successfully execute the tracking process, the following additional parameters are set: the initial joint states 𝑥0 = [0,
𝜋

3
], 

𝓁1 = 𝓁2 = 1 and the task duration, 𝑡final = 10 s is subdivided into 200 equal parts.
Numerical results generated by the NSSGM are plotted in Fig.  1 where Fig.  1(a) describes the synthesized robot trajectories, 

Fig.  1(b) gives the end effector trajectory and desired path. Also, Fig.  1(c) and (d) present the tracking residual error on the 𝑥-axis 
and 𝑦-axis, respectively. Looking at Fig.  1, it is evident that the new NSSGM algorithm completes the task of synthesizing the robot 
trajectories, successfully. The residual error recorded by the NSSGM on both 𝑥-axis and 𝑦-axis is below 10−10. This affirms the 
suitability of NSSGM to deal with real-world problems.

4. Conclusion

In this research article, we have proposed a new spectral gradient-based algorithm for solving NLS problems called NSSGM. 
The proposal is an improvement upon the recently developed algorithms by Awwal et al. [20] for solving the same class of 
problems. Unlike in [20], the formulation of our spectral parameter in the proposed algorithm was shown to be independent of 
any safeguarding scheme. We then show theoretically the global convergence of the proposed NSSGM algorithm under some mild 
standard assumptions. Moreover, we also verify the efficiency of the NSSGM algorithm by solving some benchmark test problems in 
the literature and comparing the results with the best performing algorithm in [20], i.e., SSHBB and SSGM2 [19]. As future work, 
the structured vector 𝛾𝑘−1 can be incorporated into conjugate gradient-like algorithms such as [34,35] and explore their respective 
efficiencies. Finally, we show the applicability of this algorithm in motion control of the robotic arm problem.
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Table 3
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
 P NSSGM SSHBB SSGM2

 #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE  
 
11

8 12 25 0.0186 3.16E−08 8 12 25 0.03 3E−08 8 12 25 0.0362 3.16E−08 
 8 12 25 0.0474 9.57E−09 8 12 25 0.095 1E−08 8 12 25 0.0518 9.57E−09 
 3 4 10 0.0256 7.93E−08 4 5 13 0.056 2E−08 4 5 13 0.039 7.93E−08 
 
12

564 1262 1693 2.7219 5.83E−13 592 1320 1777 2.756 5E−13 582 1302 1742 1.9758 5.83E−13 
 882 1921 2647 11.4496 1.79E−13 714 1587 2143 9.885 2E−13 882 1921 2647 9.5491 1.79E−13 
 717 1538 2152 10.7454 1.15E−13 625 1397 1876 13.73 1E−13 717 1538 2152 11.2624 1.15E−13 
 
13

6 8 19 0.0294 3.58E−18 6 8 19 0.032 4E−18 6 8 19 0.058 3.58E−18 
 6 8 19 0.0820 9.23E−18 6 8 19 0.037 9E−18 6 8 19 0.0572 9.23E−18 
 6 8 19 0.0501 1.49E−17 6 8 19 0.054 1E−17 6 8 19 0.0726 1.49E−17 
 
14

55 72 166 0.4069 9.77E−15 40 47 121 0.322 3E−16 55 72 166 0.664 9.77E−15 
 40 47 121 1.8149 3.83E−15 44 51 133 2.323 2E−14 42 49 126 1.3627 3.83E−15 
 47 57 142 2.6355 1.42E−14 40 47 121 2.992 6E−15 47 57 142 2.1729 1.42E−14 
 
15

23 45 70 0.1381 8.98E−12 16 25 49 0.056 2E−16 23 45 70 0.111 8.98E−12 
 23 45 70 0.1991 1.51E−11 16 25 49 0.176 7E−16 23 45 70 0.2202 1.51E−11 
 23 45 70 0.5087 4.43E−11 16 25 49 0.245 1E−15 23 45 70 0.3459 4.43E−11 
 
16

2 9 7 0.0109 6.92E−12 2 9 7 0.029 7E−12 2 9 7 0.0788 6.92E−12 
 2 9 7 0.0234 2.08E−11 2 9 7 0.027 2E−11 2 9 7 0.0314 2.08E−11 
 2 9 7 0.1528 3.46E−11 2 9 7 0.045 3E−11 2 9 7 0.044 3.46E−11 
 
17

29 39 88 0.7268 2.53E−13 25 34 76 0.201 1E−10 29 39 88 0.252 2.53E−13 
 29 39 88 0.8700 7.6E−13 24 32 73 0.641 4E−13 29 39 88 0.7458 7.6E−13  
 29 39 88 0.7185 1.27E−12 24 32 73 0.957 6E−13 29 39 88 0.8161 1.27E−12 
 
18

1 2 4 0.0117 0 1 2 4 0.308 0 1 2 4 0.0247 0  
 1 2 4 0.0061 0 1 2 4 0.022 0 1 2 4 0.0095 0  
 1 2 4 0.0094 0 1 2 4 0.042 0 1 2 4 0.0102 0  
 
19

13 18 40 0.0251 3.26E−11 13 18 40 0.037 8E−16 13 18 40 0.0558 3.26E−11 
 13 18 40 0.1883 9.86E−11 13 18 40 0.201 3E−15 13 18 40 0.0839 9.86E−11 
 13 18 40 0.1775 1.65E−10 13 18 40 0.171 5E−15 13 18 40 0.149 1.65E−10 
 
20

21 36 64 0.2394 9.7E−10 21 36 64 0.071 1E−09 21 36 64 0.1044 9.7E−10  
 21 36 64 0.5041 9.7E−10 21 36 64 0.247 1E−09 21 36 64 0.3 9.7E−10  
 21 36 64 0.8168 9.7E−10 21 36 64 0.542 1E−09 21 36 64 0.3651 9.7E−10  

Table 4
Results obtained by NSSGM, SSHBB and SSGM2 for experiment in Section 3.1.
 P NSSGM SSHBB SSGM2

 #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE #iter #fval #nmvp #time FVALUE  
 
21

6 8 19 0.0557 3.06E−18 6 8 19 0.068 3E−18 6 8 19 0.0383 3.06E−18 
 6 8 19 0.1007 8.76E−18 6 8 19 0.053 9E−18 6 8 19 0.0555 8.76E−18 
 6 8 19 0.1433 1.45E−17 6 8 19 0.076 1E−17 6 8 19 0.0751 1.45E−17 
 
22

20 35 61 0.0427 7.08E−10 20 35 61 0.05 7E−10 20 35 61 0.0781 7.08E−10 
 21 36 64 0.1450 5.51E−10 21 36 64 0.301 6E−10 21 36 64 0.1885 5.51E−10 
 21 36 64 0.2143 6.96E−10 21 36 64 0.41 7E−10 21 36 64 0.26 6.96E−10 
 
23

23 38 70 0.0648 7.19E−07 23 38 70 0.07 1E−06 23 38 70 0.087 7.19E−07 
 22 36 67 0.1897 405000 15 38 46 0.147 405000 22 36 67 0.2264 405000  
 24 39 73 0.5082 1125000 22 47 67 0.568 1E+06 24 39 73 0.3986 1125000 
 
24

398 812 1195 3.0304 9.81E−09 230 489 691 1.711 9E−09 398 812 1195 2.6658 9.81E−09 
 219 440 658 4.2371 1.33E−08 276 597 829 6.677 2E−08 219 440 658 3.587 1.33E−08 
 289 599 868 7.4218 1.65E−08 303 641 910 12.29 5E−09 289 599 868 6.2345 1.65E−08 
 
25

2 27 7 0.0210 1.39E−14 2 27 7 0.029 1E−14 2 27 7 0.0381 1.39E−14 
 17 137 52 0.2718 1.84E−16 – – – – – – – – – –  
 26 39 327 118 0.0239 1.73E−18 24 150 73 0.053 4E−18 22 43 67 0.0282 0.19894  
 27 1 11 4 0.0114 1010 1 11 4 0.028 1010 1 11 4 0.0139 1010  
 28 508 1219 1525 0.2006 4.28E−11 – – – – – 512 1269 1598 0.2104 8.36E−14 
 29 8 11 25 0.0051 1.2905 11 14 34 0.008 1.2905 11 14 34 0.0129 1.2905  
 30 1 2 4 0.0077 0 1 2 4 0.019 0 1 2 4 0.0132 0  
 31 14 30 43 0.0131 0.49999 13 29 40 0.013 0.5 15 38 52 0.0161 0.49999  
 32 29 67 88 0.0171 24.4921 41 100 124 0.035 24.492 30 72 92 0.0131 24.4921  
 33 29 47 88 0.0136 3.52E−15 28 45 85 0.023 5E−14 32 46 97 0.0145 3.9E−15  
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Fig. 1. Numerical results recorded by NSSGM method where: (a) Synthesized robot trajectories. (b) End effector trajectory and desired path. (c) Tracking residual 
error on the 𝑥-axis. (d) Tracking residual error on the 𝑦-axis.
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