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Weaimed (o evaluate the ground-state and excite-state energy eigenvalue (En), wave function, and the time-independent correlation
function of the atomic density fluctuation of a particle under the harmonics oscillator Cosine asymmetric potential (Saad et al.
2013). Instead of using the 6-point kernel of 4 Green's function (Cherroret and Skipetrov, 2008), averaged over disorder, we use
the numerical shooting method (NSM to solve the Schrédinger equation of quantum mechanics system with Cosine asymmetric
potential. Since our approach does not use complicated formulas, it requires much less computational effort when compared to the
Green functions techniques (Cherroret and Skipetrov, 2008). We show that the idea of the program of evaluating ime-independent
correlation function of atomic density is underdamped motion for the Cosine asymmetric potential from the numerical shooting
method of this problem. Comparisun of the ime-independent correlation function obtained from numerical shooting method by
Boonchui and Hutem (2012) and correlation function experiment by Kasprzak et al. (2008). We show the intensity of atomic density
fluctuation (9n(x) = 7i(x) = Ai(x)) in harmonics oscillator Cosine asymmetric potential by numerical shooting method.

I. Introduction

Most problems encountered in quantum mechanics cannot
be solved exactly. Exact solutions of the Schrisdinger equation
exist only for a few idealized systems. To solve general prob-

lems, one must resort to approximation methods. A variety of

such methods have been developed, and cach has its own area
of applicability. There exist several means to study them, for
example, Wentzel-Kramers-Brillouin (1], perturbation [2),
the quasilinearization method (3], the variational method [4),
function analysis [5, 6], the cigenvalue moment method (7],
the analytical transfer matrix method [8-10], and numerical
shooting method [11, 12},

Grobe et al. 1994 [13] proposed a criterion to determine
the numerical degree of global correlation function of the
multiparities quantum system. They applied this method to
several situations, including electron-atom scattering and
strong-ficld photoionization. Lye et al. 2005 [14] discussed

the effect of a weak random potential, indicated by stripes in
the expanded density profile of the Bose-Einstein Condensate
and damped dipole oscillations. Henseler and Shapiro 2008
(15] defined the disorder-induced intensity-intensity corre-
LA, for the Bose-
Einstein Condensate for Fermi gas. Cherroret and Skipetrov
2008 [16] showed decay of the average atomic density
5

. o ” N Ry
lation function, C,(r,r') = [y (r)

\m = y(r, )] ) as a function of time. The density reaches
a maximum at the arrival time ¢, = 2:3/[)“, where D,
is the diffusion cocfficient in random potentials. Now, a
few works have concerned the expansion of Bose-Einstein
Condensate in three-dimensional potentials and evaluate
correlation function. Cherroret and Skipetrov 2009 [17] had
shown the tvpical diffusion coethicient of the Bose-Einstein
Condensate in a three-dimensional random potential. Beilin
et al. 2010 [18] considered diffusion of cold-atomic Fermi
gas in the presence of a random optical speckle potential,



Pezze et al. 2011 [19] numerically studied the dynamics
regimes of classical transport of cold atoms gases in a two-
dimensional anisotropic disorder potential. In this paper,
we consider approximation methods that deal with station-
ary states corresponding to time-independent Hamiltonian.
To study problem of stationary states, we focus on one
approximation method: numerical shooting method useful
to evaluate wave function and time-independent correlation
function of a particle around attraction by the harmonics
oscillator with Cosine asymmetric potential. The scheme
of the paper is as follows. In Section 2, we write the basic
time-independent Schrédinger equation in terms of finite
difference and the harmonics oscillator Cosine asymmetric
potential in terms of the new variable is given by

where 2¢§ +2a cos (b8) is the Cosine asymmetric potential. In
Section 3, we show the idea of writing a program for cvaluat-
ingenergy eigenvalue wave function and correlation function
of atomic density for the Cosine asymmetric potential via the
numerical shooting method (Asaithambi, Ledoux and van
Daele, Boonchui and Hutem [12, 20, 21}). Section 4 contains
vur conclusions.

2. Time-Independent Schriodinger Equation
in Finite Difference Formula for Harmonics
Oscillator Cosine Asymmetric Potential

We consider a particle of mass g moving on the x-axis in
a time-independent potential 77°(x). ‘The time-independent
Schrodinger equation corresponding to this one-dimensional
motion is

'y, (x
_}_f_w + 77 (x)y, (x)

&, (x), 2)
2 dx* Y (%) (

where & is the total energy cigenvalues of the particle. The
solution of this equation yields the allowed energy eigen-
values &, and the corresponding wave function v, (x). T
solve this partial differential equation, we need o specify the
potential 77(x) as well as the boundary condition; the beund
ary condition can be obtained from the physical require-
ment of the system.

Suppose a particle is bound state to around of attraction

Figure 1):

P 1 > 5
77(x) = cpwx” +cx +acos (bx), (3)
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Fisure ©: 'The harmonics oscillator potential is perturbed by Cosine
asymmetric potential, with u = 5,6 = 10, and ¢ = 0.4,

with ¢x + acos (bx) that is called the Cosine asymmetric
putential [22], where ¢, a, and b are positive constants. Sub-
stituting the harmonics oscillator Cosine asvmmetric poten-
tial from (3) into (2) leads to the following equation:
» W dy, (x)
gnu"/x (x)= = —

2u o dx?
Fa ] 2 2 . i l B ) '\')
+ &E;m) X7+ cx +acos(ox) |y, (x).

For our approach (4) can be solved in the numerical
shooting method. It is convenient to simplity the arithmetic
mvolved in the shooting solution. We define some new
dimensionless variables. Then the position variable x s
replaced with the dimensionless variable &:

\'h h

With this definition, the second-derivative term can be writ
ten as

A'J!
~

d- h d°

s e (6)
A& pw dx? ‘
Substituting in for x in terms of § and setting € = 2E/hw and
selting i = ¢ = w = | into (4), we can rewrite the time-
independent Schradinger equation completely in terms of §
as tollows:

~J

2c€ = 2acos (b{)) v, (x) = 0. (

Also, the time-independent potential in terms of the new
variable 1s given by

5

ree

) -

Lo

7 + 2¢& + 2acos (bE). ($)
For the finite difference method, (7) is rewritten in the form ol
many small segment AL in the & domain length. The second-
derivative of the first term in (7) can be approximated in finite
difference form as follows:

d'y, (x) v,

FYi = 2y (9)

-y

d&s (AE)
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F1GURE 2: Figures (a)-(c) show plot of the time-independent wave function for the ground

a = 0, = 24.0, \lﬂd n=1u

-slatle energy (7 = 0} in case of varying a = 8, 10,

12 (the amplitude of barrier potential) in harmonics oscillator Cosine asymmelric potential. Figures (d)—(f) show the wave function for the
ground-state energy with varying b = 14, 18, 24 harmonics vscillator Cosine asymmelric putential.

We can obtain the form of the time-independent Schrodinger
cquation in terms of finite difference by substituting (9) into
(7), and we get

where & = AL +&, The special potential given by harmonics
oscillator Cosine asymmetric potential has been used in
caleulating (10) in the mathematica program (see Section 3).

3. Numerical Shooting Method and Results

We construe the new variable to be used in calculating the
ground-state energy cigenvalue, wave function, and the time
independent correlation function of the harmonics oscillator
G

sine asymmetric potential.
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FIGURE 3: Schematic representation for behavior of the wave function for the ground-state energy (= 0 and the second excited-state energy

(1= 2) in case of the harmonics oscillator Cosine asymmetric potential with varying ¢ = 0.3, 0.4, 0.5,

(1) & s the start position in the analysis range. The logic of the numerical shooting method evaluation of
o : i . energy eigenvalue, eigenfunction, and time-independent cor
(2) §av 18 the ultimate position in the analvsis range. by eigenvaluc, eig . . ber

v ‘ relation function for the harmonics oscillator Cosine asym-
(3) & is any position in the analysis range. metric potential is as follows.

(4) nrisanumber of very small bars in the analvsis range.

(i) Input values & and & . in mathematica pro-
SV AL ; gram for the harmonics oscillator Cosine asymmetric
(5) AL is the length of very small bars so that & N ‘ ' '

putential.

(1) Input the period amount.

(i) Input (10) into mathematica program.
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Froure 4: Plotof the wave function for the first excited-state energy (7 = 1) and the third excited-state energy (1 =

oscillator Sine asymmetric potential with varying ¢ = 0.3,0.4, 0.5,

Find the initial value for caleulation. Input the initial con-
dition by setting y, = 0 for the position imprisons and set
dy/d& = 1 from the slope of positions 1 and 2, so that

== e =y, x AL

(12)

By inputting v, and ys, as two initial values for calculation,
we can find y from (10). In the same way, we can find yr,
by substituting y, and y5 in the equation. As we keep doing
this, we can find v, (see Figure 2 in [12]).

(i) The next task is to calculate wave function in (10)
(., ) so that it approaches zero as closely as desired.
Normally, we assign a small value as the standard to
make sure that wave function in (10) gets close enough

107,

to zero. For example, if |y,,,| < we stop

(1

(1i1)

{1v)

-

(vi)

(vii

3} in case of the harmonics

the caleulation and accept the final energy as the
numerical solution.

Plot the wave function by the graph related to 1.

Piot the wave function that is normalized by the graph
related to i

Plot the probability of the average atomic density
i(x) = Jy(x)]* for the harmonics oscillator Cosine
asymmetric potential.

) Input values &, and &, in the mathematica pro-

gram for the harmonics oscillator potential.

; ) 3
Input equation y; ) = 2y =y, = (AG)"(¢ = &)y, into
the mathematica program for the harmonics oscil-
lator potential.

For example, if Jy(x)] < 107%, we stop the evaluation
and accept the final energy as the numerical solution,
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Froure 5t Figures (a)-(c) show plotof the time-independent correlation function for the ground-state energy i = 0) in case ol varying a = 8,

16,12 (the amplitude of barrier potential) in harmonics oscillator Cosine asymmetric potential. Figures (0)-(f) show the correlation function
for the ground-state energy with varving b = 14, 18, 24 harmonics oscillator Cosine asymumetric potential.

(viii) Plot the wave function that is normalized for the har-
monics oscillator potential by the graph related to 1.

(ix) Plot the probability of the average atomic density

mix) = |ylx)]? for the harmonics oscillator potential.

(x) Plot the time-independent atomic density fluctuation
Snlx) = fi(x) - m{x) [16] by the graph related to i,

{(xi) Plot the time-independent  correlation function

Clx, x) = n(x)8nl ) /il nlx) [16].

4, Conclusion

In conclusion, we then represented the method by obtaining
numerical solution of the one-dimensional harmonic vscilla-
tor, perturbed from a set of the Cosine asymmetric potentials.
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Figure 6: Schematic representation for behavior of the time-independent correlation function for the ground-state energy (n

second excited-state energy (1 = 2

In our calculation, we can obtain the time-independent cor-
relation function corresponding with the Green functions
techniques [16]. Although the numerical shooting method
does not use complicated formulas, it requires much less
computational effort when compared to the Green functions
techniques. Generally, regarded as one of the most efficient
methods, the numerical shooting method [12] gives very
accurate results because it integrates the Schrdinger equation
directly, though in the numerical sense.

2) in case of the harmonics vscillator Cosine asymmetric potential with varying ¢ = 0.3, 0.4, 0

0.002
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Distance S
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0) and the

5

In this case, the wave function of the harmonics oscillator
Cosine asymmetric potential is different from that in case of a
typical harmonics oscillator potential (77(x) = (1/2)pw’x%)
(see Figures 2-4}. In this case, the time-independent cor-
relation function (C(8)) of the harmonics oscillator Cosine
asymmetric potential via numerical shooting method and
the intensity correlation experiment by reference [23] have
the same appearance (sec Figures 5-7). From Figures 2(a)-
2(c), it the values of the amplitude barrier potential o
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incline, the ground-state energy eigenvalues (En) lessen, but
the amplitude of the wave function has supplement and
in Figures 5(a)-5(c) the values of the time-independent
correlation function (C(8)) (part of positive) incline and
the time-independent correlation function is underdamped
motion. From Figures 2(d)-2(f) if the values of b increase,
the ground-state energy eigenvalues (En) have supplement,

but in Figures 5(d)-5(f) the values of the time-independent
correlation function lessen.

From Figures 3(a)-3(f), if the values of the ¢ parameter
increase, the ground-state (n =

= 0) and the second excited-
state (n = 2) energy eigenvalues (En) lessen, but in Figures
6(a)-6(f) the values of the time-independent correlation
function have supplement. From Figures 4(a)-4(f), if the
values of the ¢ parameter increase, the first excited-state
{n = 1) and the third excited-state (1 = 3) energy eigenvalues
(En) lessen, but in Figures 7(a)-7(f) the values of the time-
independent correlation function have supplement. Irom
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Friure 8: Schematic representation for behavior of the time-independent atomic density fluctuation dn(x) = 7i(x)—m(x) for the ground-state
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Figures 8(a)-8(c) if the values of the ¢, a, and b parameters
increase, the time-independent atomic density fluctuation
(On(x)) for the ground-state (n = 0) has supplement.
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