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The effects of strain on mechanically deformed graphene are determined by looking at how the strain
affects the amplitude of the Schwinger two particle pair state. The influences of the lattice distortions,
such as isotropic tensile strain ¢, shear strain e, uniaxial armchair strain ¢, and zigzag strain ¢, on
the photon emission spectrum have been analyzed. We find that the intensities of the emission increases
or decreases when compared to those of the unstrained graphene, depending on the type of strain ap-
plied. Thus the structure of energy band, the frequencies of the photons and the emission spectrum can
be controlled by use of the different strains.
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1. Introduction

Graphene [1,2] is a new material having fascinating properties.
It ofters a challenge to both fundamental and applied sciences.
Many of its properties can be engineered to create novel physical
scenarios in condensed matter setting: its chiral and Dirac-like
energy dispersion relations close to the Fermi energy leads to
Klein tunneling {3}, Veselago lensing {4} and pseudo-magnetic
fields [5]. The last leads to prominent platforms for ultrafast
photonics and opto-electronics {6-8], etc.

Other interesting properties occur when strains are applied.
These occur when the crystal is compressed or stretched out of
equifibrium. The resulting stiffness tensor provides for a con-
stitutive relation between the applied stress and the final strain
state. The strain can significantly affect the Fermi line, e.g., de-
formed from the isotropic circle towards an elliptical shape. The
low-energy electronic properties are then described by a gen-
eralized two-dimensional Weyl Hamiltonian with two Fermi ve-
locities, defined along the principal directions {9}, Another effect of
the distortion of the crystal lattice is that the Dirac points are
displaced from the corners of the unstrained Brillouin {16} and
produce a gap in the energy dispersion when the order of strain is
20%.

Recently, the optoelectronic properties {10-12] of graphene
have been studied using a formulation based on treating the BCS
state as the result of the creation of an electron-positron pair. This
corresponds to the use of quantum electrodynamics as formulated
by Schwinger [13]. We use a generalized two dimensional Weyl
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Hamiltonian to describe a mechanically deformed (by pressure)
graphene sheet. The amplitude of the Schwinger pair can be
modified by applying a strain to the graphene.

The paper is organized as follows: we begin with a theoretical
discussion of the Weyl-Dirac Hamiltonian when the graphene is
strained by a tensile isotropic strain, a shear strain, a uniaxial
armchair strain or by a zigzag strain. In Section 2, we determine
the intensity of photon emission on the graphene's plane for eaclr
angle in Schwinger's pair creations, obtaining the effect of de-
formed lattices. We show the results of the calculations in Section
3. Finally the results are discussed in Section 4.

2. Asymmetric Weyl-Dirac fermions in deformed graphene

Our formulation takes into account the effects of deforming the
lattice. This will lead to a modification of the hopping. Modifica-
tion of the hopping energies between different sites will in turn
lead to new terms in the original Hamiltonian in the tight-binding
formulation:

= iA AT

H=- Y taah@' by +b;a,

(i 1)
where S; is the ith nearest-neighbor vector of the jth atom, and
t(!(_i;- ) is the strained hopping energy due to strain. The length and
direction of the three nearest-neighbor vector & transform under
strain according to ;.u ~(1+ c)?{o where 30 represents a nearest-
neighbor vector in the non-deformed graphene plane, and ¢ is the
strain tensor | 14]. In Cartesian coordinate system, we assume the
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x-axis is along graphene armchair direction and the y-axis is along
graphene's zigzag (Fig. 1). In reciprocal space, the variation
of hopping energy with inter carbon distance is
t(& N = toexpl — A5 1/a — 1)] with a=142A being the un-
strained nearest-neighbor separation, tp=27eV,and =3
{15,16]. The hopping perturbation 5 can be obtained by expand-
ing t(laj Iy and keeping the first order:

t(a+a) = to1 - Gl + 0 Fol - 15D, @

with Ady; being the variation of bond length. By introducing
Fourier transform of the creation and annihilation operators

G =Y &eR AN, b =Y byei®@+5T /N,
Q Q

3)
the Hamiltonian Eg. {1} in the reciprocal space can be written as
e
A
H=Y (@ bo)H|, |
Q by 4

where Q is a wave vector in the first Brillouin zone and ‘H is a
tensor given by

0 ta+ Ag)e-iCF
H o — Z 4

=123 a + Ag)elQT) 0 (5)

By expanding e=105] with respect to §; and keeping only the first
order terms, we obtain the following single particle Hamiltonian
near the K points:

H= Z sz;:-Fa” + EKPSEF.
=12 E (6)

This is the Weyl-Dirac equation for the deformed graphene where
o#'s are the Pauli matrices, i.e.,

4_(0 1) 2_(0 —i)
o = ' o= ’
10 i o0 )

and the 2D-velocities V, = (v, v is defined by its components as

YA

ag direction

Zig:z

Armchair direction

Fig. 1. Schematic of graphene armchair and zigzag directions.
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As we have seen, the Weyl-Dirac Hamiltonian is described by the
velocities V; and v, which are defined in terms of four elements of
the strain tensors, €y, €y, €y and €,,. Those velocities reduce to
Vi=(0, %) and V3 = (%, 0) in the case of vanishing strain. Eq. (6},
thus, becomes the Dirac Hamiltonian with the pseudo-vector
potential 7\;,“ given by

- cvern(( 4 V] ) ( 4 B )
Apse = —— || —=¢€yy + =—(exx — €py) | | —=6xy + = d
pse - ([3\5% 2”(€n €yy 373 Xy ”€xy (10

The reciprocal space is shifted from the traditional Dirac points.
The nature of the contours of the strained band structure has been
discussed in ref. {17]. For non-uniform strain, the Landau level
structure is described as one modified by a non-uniform effective
magnetic field { 18]. For strongly deformed lattice { 19}, the effect of
hopping mechanism for next-nearest neighbors leads anti-sym-
metric properties of the energy spectrum to around zero energy.

In this paper, a moderate deformation, lel < 0.2, is assumed. This
allows for linearization of the hopping energy around its non-
deformed value t, and ot/da ~ — 5 eV/A. The essential point of our
approach is that the uniform strain in the graphene lattice is
capable of changing the velocities T;,"S . In case of uniform strain,
the pseudo-vector potential appeared in the Weyl-Dirac equation
is uniform and then there is no pseudo-magnetic field present

(1_3:,“ =V x Z;,SL. ). Thus the optical property can be controlled by
the mechanical strains. Thus, this draws our attention to the de-
formation of Fermi line from the isotropic circle to an elliptical
shape due to the applying strains (Fig. 2). Each item in the figure
shows the effects of different types of strain on the shape of the
Fermi line.

The general solution of the Weyl-Dirac equation, Eq. (6}, yields
the energy dispersion:

E(K) = xh| (VK2 + (Vo k 2 (1

where x = + 1 plays the role of the band index for positive or
negative energy, i.e., conduction or valence. Analogous to the
spinor, the two components eigenstates can be written as

b k) = %(e—mE))

K

(12)
where @ (k) = tan“(T/}-kJU}kN ) and k. is defined as the inplane
component given by

ke = ki (cos z/g_? + sin </;.f). (13)

Since Eq. {11} is the equation of the conic section of an ellipse.
Therefore, the semi-major, #,,, and the semi-minor, ¢ axis-
lengths are respectively given as follows:
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Fig. 2. The lengths of the major-axis (blue line) and minor-axis (red line} of the elliptical Fermi surface as a function of strain parameter ¢  [0.0.2] when (a) shear strain,
(b} tensile isotropic strain, (¢} uniaxial armchair strain, and {d) zigzag strain are applied on the graphene sheet. The inset in each frame is the schematic of the elliptical shape
transformed from the isotropic circular shape induced by the applied strains. (For interpretation of the references to color in this figure caption. the reader is referred to the

web version of this paper.)

; h . 5
bna = — |V + vIve) cos ¢ sin @ + (V2
IEc (k)
-1)2
+ (32 €S2 g + (v + (vHH)sin? )
(14)
and
fni = I i'_ ]( = 2(vpvif + vPvi)cos ¢ sin g + (V2 + (vEHD)
l 1E; (k)
-1/2
cos? iy + (v + (v§)?) sin® ¢ )}
: (15)

where ¢, is the angle between the major-axis and ky-axis given by

2009 v + vvi)
6 = %arctan[ Wi PRV )].

(V2 + (V3P2) = (v P + (v9)? (16)
Eqgs. {14) and (15) describe the changes in the semi-major and the
semi-minor axis lengths (Fig. 2) due to the distorted lattices,
tensile isotropic strain (¢;,). shear strain (eg), and uniaxial arm-
chair strain (egs), and zigzag strain (e.,), Tespectively:

€'=(£‘ 0) e_:(o er) . :(r 0) C~=(—L‘€‘ D)
N 0 ¢ ° e o) 0 —ve) ° 0 ¢/ (D

where v is Poisson’s ratio and ¢ is a strength of the strain.

We now take a closer look at the changes of semi-major, #na,
and the semi-minor, 7, axis lengths as a function of the strain
parameter, ¢, for each strain tensors. As shown in Fig. 2, the gra-
phene sheet is differently deformed under shear strain, tensile
isotropic strain, uniaxial armchair strain, and zigzag strain. We

found that the Fermi line deforms from the isotropic circle into an
ellipse. The reasons for such deformation can be given as follows.
In the seemingly elementary cases of shear strain, uniaxial arm-
chair strain, and zigzag strain, the ellipse results from the change
in opposite direction of reciprocal lattice parameters against the
real lattice parameters. Since these strains always cause the stretch
in one direction and the contraction in another perpendicular di-
rection. Thus, the circular Fermi's line is deformed into the ellipse.
On the contrary, the tensile isotropic strain stretches the graphene
sheet in both x and y directions. Nevertheless the nearest-neigh-
bor vectors do not extend in the same rate due to the nature of
honey-come lattices. This brings on anisotropic shrinkage of the
Brillouin zone and, also, results in the elliptical Fermi's line near
the Dirac points.

3. Electron-hole recombination rate in graphene under uni-
axial strains

To determine the angular dependence of the intensity of the
Schwingers pair state, we consider the electron-photon coupling
in terms of Feynman diagrams of quantum electro-dynamics { 10-
12]. We incorporate the electromagnetic field through the minimal
coupling p—p - e/T/c, treating the new vector potential term as
a quantized perturbation Hy, in the full Hamiltonian:

H= ) /d37’ @*(?)[Tj}-(—m@' - %A(,T))nﬂ]lﬁ('f) = Ho + Hint

u=12"

(18)

where (7)) is the two-component spinor written in terms of the

A At .
destruction (creation) operator (. (Cy ). the energy eigenstate
lx (k)), and ¢ (z), which is the confinement wave function of an
electron in the graphene:
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N = 1 A T i i A T
"’”’:Zf(c"“ L (keyyelteT=iect 4 Gy, (k)
= /A

eiﬁv-'r‘—mr),/,(z)' (19)

where the subscripts ¢ and v respectively stand for conduction and

valence bands. The vector potential A(T) is given by the mode
expansion such that

- T s t a BT
A (?) - Z C\/ ” (aky.j '/E\'j pike T—iayt ak(,)é\! e-ik-T +iay by
k

& Wk

20
where G, (ﬁk;'j ) is the photon annihilation (creation) operator and
J indexes the photons polarization state, ¢, is the relative permit-
tivity, V is the normalization volume, and «, = clk, 1. We define the
direction of radiation IE, and the polarization unit vectors, & ., as

follows:

k, = (sin 4 cos ¢, sin ¢ sin ¢, cos 4),

@1
&1 = (-sin ¢, cos ¢). 22)
and
&= (—cos ¢ oS ¢, — cos ¢ sin ¢, sin @), 23)

where ¢ is the azimuthal angle, and ¢ is the polar angle.

The transition rate /iy which is the rate of the transition from
the initial electronic state Iy ) into the final electronic state Iy )
owing to the electron-photon interaction. It can be obtained from
the standard arguments of Fermi Golden Rule:

i —_ d 2
Iy = EEKW[ OIF )2, (24)

where

1 t
(we (DI (6) z—f dt () Hipe (E)lyz (£7)).
¢ ) in Jo Qwr () Hine (E)1yf (£)) (25)
Our calculation is based on the simplest tree-level Feynman dia-
gram. The vertex connects a photon with two electrons by means
of Fermi golden rule. However, the second order term, corre-
sponding to two-photon emission process, has an order of
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Fig. 3. Strain dependencies of (a) k{". and {b) k;?' calculated from Eq. {33} with ¢ € [0, 0.2].

magnitude (v [c)2. The very small of v [c, ~1/300, is responsible for
neglecting this term and higher order terms in the calculation of
fi.r. In the simplest approach, the electron transport is purely
ballistic process, thus neglecting impurities. It is able to get good
agreement for near zero temperature {20}. For a deeper analysis,
behavior of the conductivity and the number of electron-hole
pairs in the various regimes at finite electric field E was discussed
in ref. {21]. We, next, consider a process that creates a valence
electron Iy (t)) o« Iy, (hky)) {(in the valence band) and a photon
Ink, ) with polarization & whereby destroying a conduction elec-

tron ly; (£)) o« %(hﬁ )) {in the conduction band). To calculate the
differential rate di;.,, of the process defined by Eq. {24}, we insert
Eq. {25) into Eq. {24} and then multiply by dZE, d37<;:

22
i =( e2v?

]M(@». #. é‘)”(‘I'.c 1 - an&e))(l + 1y (fm

thtr wk

N A e
X | 8(hax + hoy — hac )82 (ke + k — ko) |d?ky d3k,.
(26)

The distribution of the energy eigenstates of the electrons in
conduction and valence bands are given by the Fermi-Dirac dis-
tribution functions. ny (E) and n, (l_c;) are the Bose-Einstein dis-
tribution functions. The photon emission distribution radiated
from the surface of the sample is characterized by the angular
matrix element, i.e.

1 - - 2
/H(Li,.z/;.e-):FZ G (k1Y 081y (ke )]

Fopj

(27)

and nC(E) and 1 - ny (E) respectively are the number of con-
duction electrons and the number of holes. It is obvious, from Eq.
{26}, that the recombination rate is proportional to the number of
conduction electrons ne (?C) and the number of holes 1 — ny (Fv ).

In evaluating Eq. (26}, we must keep in mind the energy con-
servation and the momentum conservation requirements. Those
are

E (k) = E (k) - hclk I,

(28)
and
b
1.8 T slhear I ‘ ]
e t@TISELC ~
L6r ..o armchair i
1.4F zigzag - )
12} M i
ONT | P
% 08} .
0.6} .
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strain ¢
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s mx ol

ke = ke =k, , (29)
-/ .

where k, is the photon momentum parallel the graphene plane.

Note that in the integration procedure of Eq. {26} we use the
relation

SN =Y,

1
—8(X = X); f(X)=0.
= of )

0Xi

(30)

We can define the strain dependent photon emission rate, which is
propositional to the radiation intensity, as

Loy (e vE
_dCT‘r(U = (l[—F—]/\'l((i,, )

e we

e (BT =y B+, (kO)IkDR,
i=1,2 31
where a = e?[ac denotes the fine-structure constant, i.e. an unit of
optical reflectivity or transmission magnitude {22]. Here k;""'s are
the photon momenta satisfying the energy conservation and the
momentum conservation conditions, given by

B+ (B2 - 4AC o _ —B - /B2 - 4AC
N e, MR i

2A ' 2A (32)

f\';h =

where A, B and C are defined as follows:
A=—c24 vy +vivy) sin@2g)sin? 6
+ (12 + () cos? g + (P + (v PDisin? ¢ )sin? 4, (33

_ 2ck
T on

B — 2k sin (),(((vl" 2+ (v5)%) cos ¢ cos ¢ + (v

+(vP)sin ¢ sin ¢ — vy + viv)) sin(g + ¢ )). 34)
B

n?
cos? ¢ + kE((v¢ R + (v 2 sin? ¢

+ kEfvy 4+ vEvy) sin@dp) + kEVER + (V3P

35)

Photon wave vectors k{! and k;"-’ arising from a particular strain
profile obey the following limitations: ’
limk!" =0, limk@®=k©®, k¥>0;i=1,2
o ! s==0 0 b4 4 3 (36)
where k® is a photon wave vector for unstrained graphene which
was calculated by Mecklenburg et al. in Ref. |10]. It has the
maximum value at ¢ = ¢;.

Let us consider the analytic expressions for the effects of the
lattice distortion on the photon wave vectors k!" and k' (Eq.

Y

}). For numerical calculation,we assume a perfect population
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Fig. 4. (a)-(c) Rotations of the radiation directions due to the applied strains (colors) compared to the radiation direction of unstrained graphene sheets (black)}, ¢ = #/4.(a}
The rotations attributed to k}“ in a.u. (b) and {¢) The rotations attributed to k;z’. (b} is separated from (¢) to distinguish its anticlockwise rotation from the clockwise ones.
(d) and (e) represent the azimuthal angles of ki and k}z‘ as a function of strain parameter respectively, and sets of upper lines are ¢4, whereas sets of lower ones are [
The colors indicate the types of strains. (For ihterpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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inversion, n. =1 and n, = 0,and a conduction electron energy
hae = 1eV. We first look at the effects of the strain tensors and
their strengths on the magnitude of photon wave vector krU" (per
unit kg = ax/c ). From the numerical evaluations with the strain
parameter ¢ € (0, 0.2],we found that in case of uniaxial armchair
strain k{" can be either positive number or negative number,but
the latter is not allowed,while it is only positive number other-
wise. In addition, k;“ — 0* for both armchair strain and shear
strain as the cases. These are the reasons why these cases are not
shown in Fig. 3(a). The strain dependencies of k;‘-’ and k;2' are

shown in Fig. 3. For tensile isotopic strain, k{! increases from 0 to

0.15 (a.u.) and k;z’ decreases from 1 to 0.2 (a.u.). The photon
emission intensity appears to be reduced as increasing ¢. For shear
strain, k;z’ slightly decreases and so the photon emission intensity
tends to be constant. For uniaxial zigzag strain, k;" increases from

0 to 0.05 (a.u.) whereas k;z‘ is constant at 1. The photon emission
intensity tends to increase, slightly, as increasing &. For uniaxial
armchair strain, k® increases from 1 to 1.8 (a.u.) which roughly is
twice its initial value. Thus, the photon emission intensity in-
creases as increasing €.

Second, we determine the directions that are attributed to the

= =5
radiation modes k!"'s. There are two contributions from k(" and

k;z’ modes to the intensity. We denote the intensities contributed

—

from k{" as I, Since [ is propositional to k™ the direction at

a

0.20 (x107)
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strain &
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=
|
(8]
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straine

0.10
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0 1 2 3
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which IV reaches its maximum can be determined by the condi-
tion (dk,‘.”/dtjz)\,,)%‘riax = 0. We found, from the numerical evaluation,

that ¢,%) = ¢+ Z. Furthermore, there are the rotations of the

S
radiation directions caused by the applied strains. The rotations of

kP and k{® radiation modes are both clockwise rotations with
respect to ¢ due to tensile isotropic strain and uniaxial zigzag

strain. Also, the radiation direction of k!#' mode is clockwise ro-
tation when shear strain is applied to the graphene sheet. Sur-

=
prisingly, when the armchair strain is applied the rotation of k;z’
mode is counterclockwise rotation, see Fig. 4(a)-(c). The influence
of strains to the radiation directions is shown in Fig. 4(d) and (e).
Moreover, since lk;"!2<lk;2‘|2 the direction of total radiation can

approximately be identified by ¢2,. That is g, =~ h2

Finally, we consider the relative photon emission rate in the xy
plane compared to the unstrained distribution of the Schwinger
pair creation. For the unstrained case, ¢ = 0, the photon emission
depends on the azimuthal angle ¢ measured from the armchair
direction of graphene sheet similar to the radiation from ac-
celerated charged particles, as discussed in ref. {1(]. The relative
photon emission rate, which is propositional to the relative ra-
diation intensity, is given by

drg, e) dii.v(p.e) dli.v(g, 0)
o, — do do, (37)

Fig. 5 shows the relative intensity, obtained from Eq. {37} as a

0.20
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Fig. 5. Contour plot of relative radiation intensity under {a) shear strain, (b) tensile isotropic strain, (¢) uniaxial armchair strain, and (d) zigzag strain, with varied strength of
the strain ¢ and an angle ¢, the angle measured, counterclockwise from the k-axis. With initial o = 1 and v = 0 in calculating Eq.(32), this process corresponds to the

emission from an initial electron moving along k- with ¢ = /4.
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function of the strength of the strain ¢ and ¢. It clearly shows that
the applied shear strain and tensile isotropic strain soften the ra-
diation intensity, Fig. 5(a) and (b). In contrast, the uniaxial arm-
chair strain strengthens the radiation intensity, fig. 5(c). Sensa-
tionally, the zigzag strain can alternatively induce both intensity
softening and strengthening. This depends on the strength of ap-
plied strain. The intensity strengthening is in the strain range
£+ e (0,0.13) while the intensity softening is in the range
e e (0.13, 2), approximately. To simply illustrate the time scales
t=[(e)"! for decay spontaneously emission in electron-hole re-
combination, we numerically integrate Eq. {37} over all directions

of k.. Since ¥ [k is fairly uniform function of ¢ the superb result

can be easily carried out by fixing k{ = k" (4, ). We approxi-
mately obtain

2
I =ane); ne)=ILoMe Y |k (@m™, e — 1
i=1 i (38)

where Iy = 8v#k¢[3& we, and Al(e) is the characteristic function of
the angular matrix element for each type of strains given by

M(e) = ae + be? + ce + d. (39)

The coefficients a, b, ¢, and d, for each strain, are given as follows:
a=0b=-2052,¢c=245 and d=1 for zigzag strain;
a=17493, b = - 68.46, c = 2.96, and d=1 for uniaxial armchair
strain; a=0,b=0,c=-4.768, and d=1 for tensile isotropic
strain; and a =0, b = 0, ¢ = 0.59, and d=1 for shear strain. These
set forth that M(e) is a polynomial function of ¢ with different
degrees for each applied strains. It is quadratic function for zigzag
strain, cubic function for armchair strain, and linear function for
tensile and shear strains.

4. Conclusions

In this work, we have investigated the electron dynamics of
electrons hopping on the honeycomb lattice of graphene which
had been deformed. The underlying dynamics is governed by a
nearest-neighbor tight-binding Hamiltonian, which for graphene
is the Weyl-Dirac equations. Deformation of the lattice leads to

modified hopping energy and to shifts in the lattice points. These
modifications are treated as a slowly varying perturbation to the
Hamiltonian. We find that the corrections to two velocities can be
described in terms of four parameters which depend on the strain
tensor ¢. For strains of the order of 20% the Fermi line is deformed
from the isotropic circular shape to an elliptic shape. It is also
shown that the structure of energy band, the frequency of the
photon and emission distribution can be controlled by the me-
chanical strains.
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