

Source details

Mathematics

Open Access

Years currently covered by Scopus: from 2013 to 2024

Publisher: Multidisciplinary Digital Publishing Institute (MDPI)

E-ISSN: 2227-7390

Subject area:

Source type: Journal

CiteScore 2023

4.0

SJR 2023

0.475

SNIP 2023

0.913

[View all documents >](#)

[Set document alert](#)

[Save to source list](#)

[CiteScore](#) [CiteScore rank & trend](#) [Scopus content coverage](#)

CiteScore 2023

4.0 =

Calculated on 05 May, 2024

CiteScoreTracker 2024

3.9 =

Last updated on 08 July, 2024 • Updated monthly

CiteScore rank 2023

Category	Rank	Percentile
Mathematics	#38/399	90th
General Mathematics		
Engineering	#62/204	69th
Engineering (miscellaneous)		

[View CiteScore methodology >](#) [CiteScore FAQ >](#) [Add CiteScore to your site](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗

All content on this site: Copyright © 2024 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies ↗.

 RELX™

Mathematics

Welcome. Please, turn your

ADBLOCK off!

It looks like you're using an ad blocker. That's okay—who doesn't? But without advertising income, we can't keep making this site awesome.

H-INDEX

68

COUNTRY

SUBJECT AREA AND CAT

g Institute

Switzerland

Computer Science

Thank You!

 Universities and research institutions in Switzerland

Computer Science

 Media Ranking in Switzerland

Engineering

REFRESH

Engineering (misc)

Mathematics

Mathematics (miscellaneous)

PUBLICATION TYPE

ISSN

COVERAGE

INFORMATION

Journals

22277390

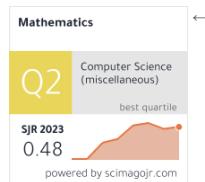
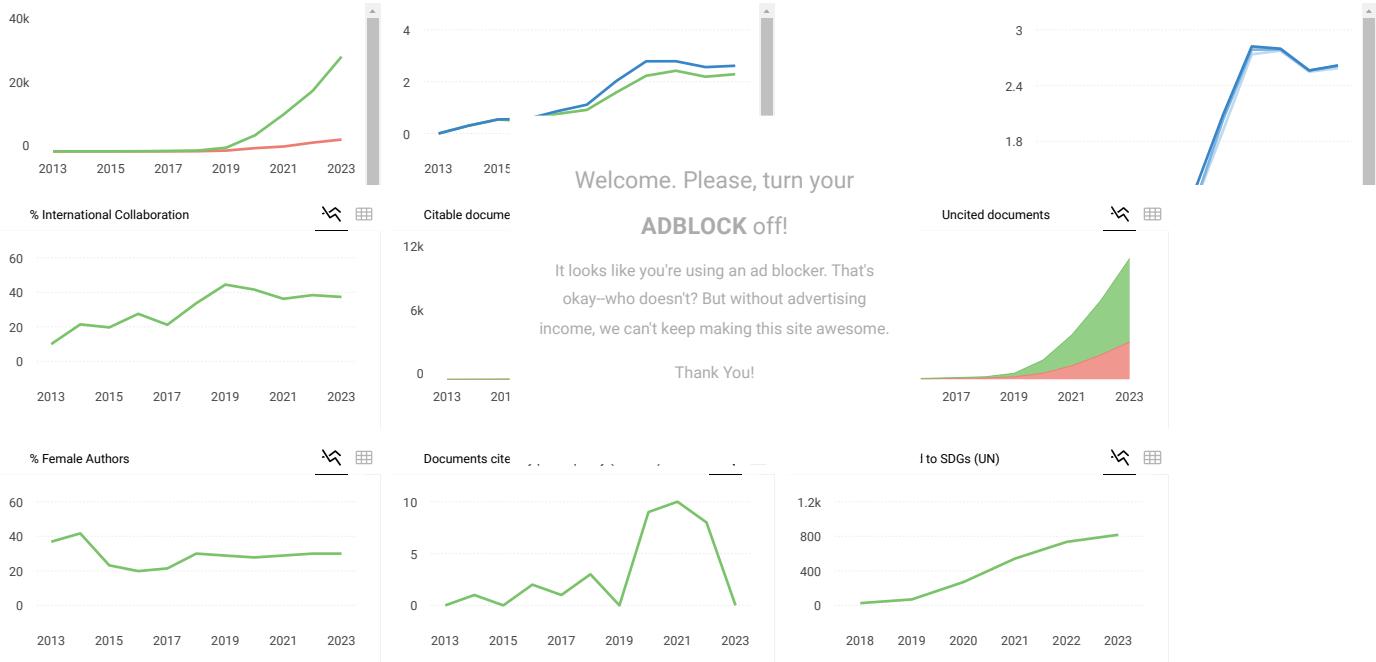
2013-2023

Homepage

How to publish in this journal

jtenreiromachado@gmail.com


SCOPE



-algebraic geometry- algebraic topology- analysis of PDEs- category theory- classical analysis and ODEs- combinatorics- commutative algebra- complex variables- differential geometry- dynamical systems- functional analysis- general mathematics- general topology- geometric topology- group theory- history and overview- information theory- K-theory and homology- logic- mathematical physics- metric geometry- number theory- numerical analysis- operator algebras- optimization and control- probability- quantum algebra- representation theory- rings and algebras- spectral theory- statistics theory- symplectic geometry- geometric analysis- variational problems- mathematical finance- harmonic analysis- computer science- quantum theory- mathematical and computational biology

 Join the conversation about this journal

 Quartiles
FIND SIMILAR JOURNALS options

1 Axioms CHE	2 Open Mathematics DEU	3 AIMS Mathematics USA	4 Computational and Applied Mathematics USA	5 Filomat SRB
68% similarity	56% similarity	56% similarity	55% similarity	55% similarity

← Show this widget in your own website
 Just copy the code below and paste within your html code:
 <a href="https://www.scimagojr.com"

Metrics based on Scopus® data as of March 2024

M **mathematics is Q1 or Q2? frankly speaking** 2 months ago
 mathematics is Q1 or Q2? frankly speaking
 reply

 Melanie Ortiz 2 months ago
 SCImago Team
 Dear Sir/Madam, thank you very much for your request. You can consult that information just above. Best Regards, SCImago Team

Y **YAMNI** 6 months ago
 Our paper was accepted for publication in this journal in August 2023, but it hasn't been listed on Scopus yet. Does this mean that Scopus will not index this journal?
 reply

 Melanie Ortiz 6 months ago
 SCImago Team
 Dear Yamni,
 thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you contact the Scopus support team:
https://service.elsevier.com/app/answers/detail/a_id/14883/kw/scimago/supporthub/scopus/
 Best Regards, SCImago Team

T **Tiendung Vu** 9 months ago

Master Journal List[Search Journals](#)[Match Manuscript](#)[Downloads](#)[Help Center](#)[Setting](#)[Log Out](#)**NEW**

Check out our new metric to help you evaluate
journals!

[Dismiss](#)[Learn More](#)**General Information**[Web of Science Coverage](#)[Journal Citation Report](#)[Open Access Information](#)[Preprint Information](#)[Peer Review Information](#)[PubMed® Information](#)[Return to Search Results](#)**MATHEMATICS** [Share This Journal](#)ISSN / eISSN **2227-7390**Publisher **MDPI, ST ALBAN-ANLAGE 66, BASEL, SWITZERLAND, CH-4052****General Information****Journal Website** [Visit Site](#)**Publisher Website** [Visit Site](#)**1st Year Published** 2013**Frequency** Semi-monthly**Issues Per Year** 24**Country / Region** SWITZERLAND**Primary Language** English**Avg. Number of Weeks from Submission
to Publication** 6**Article DOIs** Yes**Web of Science Coverage**

Collection	Index	Category	Similar Journals
Core Collection	Science Citation Index Expanded (SCIE)	Mathematics	 Find Similar Journals
Current Contents	Physical, Chemical & Earth Sciences	Mathematics	 Find Similar Journals
Other	Essential Science Indicators	Mathematics	 Find Similar Journals

Search a topic within this journal

Journal Citation Report™ (JCR)

Journal Citation Reports™ 2024

Journal Impact Factor™ (JIF)

JCR SUBSCRIPTION NOT ACTIVE

2023

Not seeing a JIF? A JCR subscription is required to view the JIF for this journal. If this is an error, please use the "Check Subscription Status" button to contact support.

Category:
Mathematics

2022

Not seeing a JIF? A JCR subscription is required to view the JIF for this journal. If this is an error, please use the "Check Subscription Status" button to contact support.

Category:
Mathematics

Journal Citation Indicator (JCI)

NEW METRIC

The Journal Citation Indicator is a measure of the average Category Normalized Citation Impact (CNCI) of citable items (articles & reviews) published by a journal over a recent three year period. It is used to help you evaluate journals based on other metrics besides the Journal Impact Factor (JIF).

2023

2.16

Category:
Mathematics

2022

2.08

Category:
Mathematics

[Learn About Journal Citation Indicator](#)

Open Access Information

APC Fee 	2,600 CHF
Author Holds Copyright without Restrictions 	Yes
Deposit Policy Directory 	Sherpa/Romeo
Archiving 	CLOCKSS
Machine-Readable CC Licensing 	Yes
DOAJ Seal 	Yes
DOAJ Subjects 	Algebra, Science: Mathematics

Preprint Information

Preprint Policy 	The journal accepts articles that have previously been made available as preprints provided that they have not undergone peer review. A preprint is a draft... [show more]
Preprint Licensing Policy 	No restriction
Version of Paper Allowed in Preprint 	Any
Can Cite Preprints in Article 	Yes, in the reference list

Peer Review Information

Type of Peer Review	Double blind
Web of Science Reviewer Recognition	Yes
Claimed Reviews on Web of Science	68,091
Public Reports on Web of Science	Yes
Signed Reports on Web of Science	Yes
Transparent Peer Review on ScholarOne	No
Reports Published	Optional, Free to read (not paywalled), Under a Creative Commons License
Author Responses to Reviews Published	Optional, Free to read (not paywalled), Under a Creative Commons License
Editorial Decision Letters Published	No
Previous Versions of Manuscript Published	No
Reviewer Identities Published	Optional
Reviewer Identities Revealed to Author	No
Public Commenting	Optional
Reviewers Consult with Each Other	No

Editorial Disclaimer: As an independent organization, Clarivate does not become involved in and is not responsible for the editorial management of any journal or the business practices of any publisher. Publishers are accountable for their journal performance and compliance with ethical publishing standards. The views and opinions expressed in any journal are those of the author(s) and do not necessarily reflect the views or opinions of Clarivate. Clarivate remains neutral in relation to territorial disputes, and allows journals, publishers, institutes and authors to specify their address and affiliation details including territory.

Criteria for selection of newly submitted titles and re-evaluation of existing titles in the Web of Science are determined by the Web of Science Editors in their sole discretion. If a publisher's editorial policy or business practices negatively impact the quality of a journal, or its role in the surrounding literature of the subject, the Web of Science Editors may decline to include the journal in any Clarivate product or service. The Web of Science Editors, in their sole discretion, may remove titles from coverage at any point if the titles fail to maintain our standard of quality, do not comply with ethical standards, or otherwise do not meet the criteria determined by the Web of Science Editors. If a journal is deselected or removed from coverage, the journal will cease to be indexed in the Web of Science from a date determined by the Web of Science Editors in their sole discretion – articles published after that date will not be indexed. The Web of Science Editors' decision on all matters relating to journal coverage will be final.

Clarivate.™ Accelerating innovation.

© 2024 Clarivate

Legal center

Privacy notice

Cookie policy

Manage cookie preferences

Copyright notice

Help

[Mathematics] Manuscript ID: mathematics-3018590 - Accepted for Publication

1 ข้อความ

Mathematics Editorial Office <mathematics@mdpi.com>

17 มิถุนายน 2567 เวลา 08:15

ตอบกลับไปยัง: Daniel Dan <daniel.dan@mdpi.com>, Mathematics Editorial Office <mathematics@mdpi.com>

ถึง: Yadpirun Supharakonsakun <yadpirun.suph@pcru.ac.th>

สำเนา: Mathematics Editorial Office <mathematics@mdpi.com>, Daniel Dan <daniel.dan@mdpi.com>

Dear Dr. Supharakonsakun,

Congratulations on the acceptance of your manuscript, and thank you for submitting your work to Mathematics:

Manuscript ID: mathematics-3018590

Type of manuscript: Article

Title: Bayesian Control Chart for Number of Defect in Production Quality Control

Authors: Yadpirun Supharakonsakun *

Received: 3 May 2024

E-mails: yadpirun.suph@pcru.ac.th

https://susy.mdpi.com/user/manuscripts/review_info/c20f228a5a06666cbe27c07a89b87f1a

We will now edit and finalize your paper, which will then be returned to you for your approval. Within the next couple of days, an invoice concerning the article processing charge (APC) for publication in this open access journal will be sent by email from the Editorial Office in Basel, Switzerland.

If, however, extensive English edits are required to your manuscript, we will need to return the paper requesting improvements throughout.

We encourage you to set up your profile at SciProfiles.com, MDPI's researcher network platform. Articles you publish with MDPI will be linked to your SciProfiles page, where colleagues and peers will be able to see all of your publications, citations, as well as other academic contributions.

We also invite you to contribute to Encyclopedia (<https://encyclopedia.pub>), a scholarly platform providing accurate information about the latest research results. You can adapt parts of your paper to provide valuable reference information, via Encyclopedia, for others both within the field and beyond.

Kind regards,
Francisco Chiclana
Editor-in-Chief

Solutions to Noncoercive Nonlinear Elliptic Equations in Unbounded Domains

Volume 12 • Issue 12 • June • 2024

$$\begin{cases} -\operatorname{div}(b(x)\nabla u) + \mu u = H(x, \nabla u) + f(x) & \text{in } \Omega, \\ u \in W_0^{1,2}(\Omega), \end{cases}$$

[Sign In / Sign Up \(/user/login\)](#)

Submit (<https://susy.mdpi.com/user/manuscripts/upload?journal=mathematics>)

Search for Articles:

Advanced Search

[Journals \(/about/journals\)](#) [Mathematics \(/journal/mathematics\)](#) [Editorial Board](#) /

IMPACT FACTOR

2.3

CITESCORE

4.0

Journal

[▶ Journal Menu](#)

[\(/journal/mathematics/stats\)](#)

[\(https://www.scopus.com/sourceid/21100830702\)](https://www.scopus.com/sourceid/21100830702)

- [Mathematics Home \(/journal/mathematics\)](#)
- [MDPI \(\)](#)
- [Aims & Scope \(/journal/mathematics/about\)](#)
- [Editorial Board \(/journal/mathematics/editors\)](#)
- [Reviewer Board \(/journal/mathematics/submission_reviewers\)](#) ⤒⤓ (/toggle desktop layout cookie)
- [Topical Advisory Panel \(/journal/mathematics/topical_advisory_panel\)](#)
- [Instructions for Authors \(/journal/mathematics/instructions\)](#)
- [Special Issues \(/journal/mathematics/special_issues\)](#)
- [Topics \(/topics?journal=mathematics\)](#)
- [Sections & Collections \(/journal/mathematics/sections\)](#)
- [Article Processing Charge \(/journal/mathematics/apc\)](#)
- [Indexing & Archiving \(/journal/mathematics/indexing\)](#)
- [Editor's Choice Articles \(/journal/mathematics/editors_choice\)](#)
- [Most Cited & Viewed \(/journal/mathematics/most_cited\)](#)
- [Journal Statistics \(/journal/mathematics/stats\)](#)
- [Journal History \(/journal/mathematics/history\)](#)
- [Journal Awards \(/journal/mathematics/awards\)](#)
- [Society Collaborations \(/journal/mathematics/societies\)](#)
- [Conferences \(/journal/mathematics/events\)](#)
- [Editorial Office \(/journal/mathematics/editorial_office\)](#)

Journal Browser

► [Journal Browser](#)

volume

issue

Go

> [Forthcoming issue \(/2227-7390/12/13\)](#)

> [Current issue \(/2227-7390/12/12\)](#)

[Vol. 12 \(2024\) \(/2227-7390/12\)](#)

[Vol. 11 \(2023\) \(/2227-7390/11\)](#)

[Vol. 10 \(2022\) \(/2227-7390/10\)](#)

[Vol. 9 \(2021\) \(/2227-7390/9\)](#)

[Vol. 8 \(2020\) \(/2227-7390/8\)](#)

[Vol. 7 \(2019\) \(/2227-7390/7\)](#)

[Vol. 6 \(2018\) \(/2227-7390/6\)](#)

[Vol. 5 \(2017\) \(/2227-7390/5\)](#)

[Vol. 4 \(2016\) \(/2227-7390/4\)](#)

[Vol. 3 \(2015\) \(/2227-7390/3\)](#)

[Vol. 2 \(2014\) \(/2227-7390/2\)](#)

[Vol. 1 \(2013\) \(/2227-7390/1\)](#)

Professional
English
editing to
prepare
your
research for
publication.

Get a quote
today!

Affiliated Society:

https://serve.mdpi.com/www/my_files/cliiik.php?oaparams

Editorial Board

- **Algebra, Geometry and Topology Section**
[\(/journal/mathematics/sectioneditors/algebraic_geometry_topology\)](/journal/mathematics/sectioneditors/algebraic_geometry_topology)
- **Computational and Applied Mathematics Section**
[\(/journal/mathematics/sectioneditors/computational_mathematics\)](/journal/mathematics/sectioneditors/computational_mathematics)
- **Difference and Differential Equations Section**
[\(/journal/mathematics/sectioneditors/difference_differential_equations\)](/journal/mathematics/sectioneditors/difference_differential_equations)
- **Dynamical Systems Section** [\(/journal/mathematics/sectioneditors/dynamic_systems\)](/journal/mathematics/sectioneditors/dynamic_systems)
- **Engineering Mathematics Section**
[\(/journal/mathematics/sectioneditors/engineering_mathematics\)](/journal/mathematics/sectioneditors/engineering_mathematics)
- **Financial Mathematics Section** [\(/journal/mathematics/sectioneditors/financial_mathematics\)](/journal/mathematics/sectioneditors/financial_mathematics)

- [Functional Interpolation Section \(/journal/mathematics/sectioneditors/functional_interpolation\)](#)
[MDPI](#) (/)
- [Fuzzy Sets, Systems and Decision Making Section](#)
(/journal/mathematics/sectioneditors/fuzzy_sets_theory)
- [Mathematical Biology Section \(/journal/mathematics/sectioneditors/mathematical_biology\)](#)
- [Mathematical Physics Section \(/journal/mathematics/sectioneditors/mathematical_physics\)](#)
- [Mathematics and Computer Science Section](#)
(/journal/mathematics/sectioneditors/mathematics_computers_science)
- [Network Science Section \(/journal/mathematics/sectioneditors/network_science\)](#)
- [Probability and Statistics Section](#)
(/journal/mathematics/sectioneditors/probability_and_statistics_theory)

Please note that the order in which the Editors appear on this page is alphabetical, and follows the structure of the editorial board presented on the MDPI website under information for editors: [editorial board responsibilities \(/editors#Editorial Board Responsibilities\)](#).

Members

Search by first name, last name, affiliation,

 Dr. Francisco Chiclana *

 <https://recognition.webofsciencegroup.com/awards/highly-cited/2020/>) [Website](#)
<http://www.tech.dmu.ac.uk/~chiclana/>)

Editor-in-Chief

School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, UK

Interests: fuzzy decision making; fuzzy preference modeling; decision support systems; consensus; recommender systems; social networks; rationality/consistency; aggregation; type-2 fuzzy logic; opinion dynamics; trust propagation

* Section: Fuzzy Sets, Systems and Decision Making

[Special Issues, Collections and Topics in MDPI journals](#)

 Dr. Adolfo Ballester-Bolinches *

https://www.researchgate.net/profile/Adolfo_Ballester-Bolinches)

Section Editor-in-Chief

Departament de Matemàtiques, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain

Interests: abstract group theory; finite groups; infinite groups; braces; Yang-Baxter equation; automata theory; formal language theory

* Section: Algebra, Geometry and Topology

[Special Issues, Collections and Topics in MDPI journals](#)

 Dr. Michel Chipot *

<http://user.math.uzh.ch/chipot/>)

Section Editor-in-Chief

MDPI (I)

Institut für Mathematik, Angewandte Mathematik, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Interests: variational inequalities; nonlinear problems; elliptic equations and systems; parabolic equations; calculus of variations; applications; numerical analysis (toggle desktop layout cookie)

* Section: Dynamical Systems

Dr. Manuel De León *

<http://shorturl.at/lrKTX>

Section Editor-in-Chief

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Calle Nicolás Cabrera, 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain

Interests: differential geometry; geometric mechanics; mathematical physics

* Section: Mathematical Physics

Special Issues, Collections and Topics in MDPI journals

Dr. Antonio Di Crescenzo *

<https://docenti.unisa.it/005305/home>

Section Editor-in-Chief

Department of Mathematics, University of Salerno, I-84100 Salerno, Italy

Interests: stochastic processes; applied probability; probability theory; stochastic models

* Section: Probability and Statistics

Special Issues, Collections and Topics in MDPI journals

Dr. Massimiliano Ferrara *

<https://www.unirc.it/documentazione/curriculum/curriculum787.pdf>

Section Editor-in-Chief

1. Department of Law Economics and Human Sciences, University “Mediterranea” of Reggio Calabria, 89124 Reggio Calabria, Italy

2. The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship (ICRIOS), Bocconi University, Via Sarfatti, 25, 20136 Milano, Italy

Interests: mathematical economics; dynamical systems; game theory; epidemics modeling

* Section: Financial Mathematics

Special Issues, Collections and Topics in MDPI journals

Dr. Paolo Mercorelli *

<https://www.leuphana.de/en/institutes/ppi/staff/paolo-mercorelli.html>

Section Editor-in-Chief

Institute for Production Technology and Systems (IPTS), Leuphana Universität Lüneburg, 21335 Lüneburg, Germany

Interests: control systems; mechatronics; actuators; engines control; signal processing; wavelets; Kalman filter; optimal energy control

* Section: Engineering Mathematics. Associate Editor

Special Issues, Collections and Topics in MDPI journals

Dr. Milan Mernik *

[Website](https://ps://recognition.webofsciencegroup.com/awards/highly-cited/2020/)

(<https://lpm.feri.um.si/en/members/mernik/>)

☒ (toggle desktop layout cookie) Q ≡

Section Editor-in-Chief

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia

Interests: concepts and implementation of programming languages; formal language definition, attribute grammars; compiler generators; domain specific languages; grammar-based systems; grammatical inference; meta-heuristics, single and multi-objective optimization

* Section: Mathematics and Computer Science

Special Issues, Collections and Topics in MDPI journals

Dr. Daniele Mortari *

[Website](http://mortari.tamu.edu/) (<http://mortari.tamu.edu/>)

Section Editor-in-Chief

Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX 77843-3141, USA

Interests: attitude and position determination systems; satellite constellations design; sensor data processing; algorithms and linear algebra

* Section: Functional Interpolation

Special Issues, Collections and Topics in MDPI journals

Dr. Matjaz Perc *

[Website](https://ps://recognition.webofsciencegroup.com/awards/highly-cited/2020/)

(<http://www.matjazperc.com/>)

Section Editor-in-Chief

Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia

Interests: statistical physics; cooperation; complex systems; evolutionary game theory; network science

* Section: Network Science

Special Issues, Collections and Topics in MDPI journals

Dr. Sergei Petrovskii *

[Website](https://l.ac.uk/people/sergei-petrovskii) (<https://l.ac.uk/people/sergei-petrovskii>)

Section Editor-in-Chief

Department of Mathematics, University of Leicester, University Road Leicester, Leicester LE1 7RH, UK

Interests: mathematical ecology; theoretical ecology; biological invasions; spatial ecology; movement ecology

* Section: Mathematical Biology

Special Issues, Collections and Topics in MDPI journals

Dr. Ramón Torregrosa Sánchez *

Site (<http://damres.webs.upv.es>)

Section Editor-in-Chief

[\(toggle desktop layout cookie\)](#)

Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain

Interests: iterative processes; matrix analysis; numerical analysis

* Section: Computational and Applied Mathematics

Special Issues, Collections and Topics in MDPI journals

Dr. Tadashi Dohi

Site (<http://seeds.office.hiroshima-u.ac.jp/profile/en.4f7bb9c13738bd7f520e17560c007669.html>)

Associate Editor

Graduate School of Engineering, Hiroshima University, Hiroshima, Japan

Interests: dependable computing; software reliability; performance evaluation; reliability analysis; operations research; maintenance model; stochastic model

Special Issues, Collections and Topics in MDPI journals

Dr. Yang-Hui He

Site (https://en.wikipedia.org/wiki/Yang-Hui_He)

Associate Editor

1. London Institute for Mathematical Sciences, Royal Institution, London W1S 4BS, UK
2. Merton College, University of Oxford, Oxford OX1 4JD, UK

Interests: AI-assisted mathematics; mathematical physics; string theory; algebraic geometry; number theory

Special Issues, Collections and Topics in MDPI journals

Ivanka Stamova

Site (<https://sciences.utsa.edu/faculty/profiles/stamova-ivanka.html>)

Associate Editor

Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA

Interests: nonlinear analysis; mathematical modeling; fractional order systems

Special Issues, Collections and Topics in MDPI journals

Dr. Michel L. Lapidus

Site (<https://math.ucr.edu/~lapidus/>)

Advisory Board Member

Department of Mathematics, University of California, Riverside 900 Big Springs Road, Surge 231, Riverside, CA 92521-0135, USA

Interests: mathematical physics; functional and harmonic analysis; geometric analysis; partial differential equations (PDEs); dynamical systems; spectral geometry; fractal geometry; connections with number theory; geometry and spectral theory; arithmetic geometry and noncommutative geometry

Special Issues, Collections and Topics in MDPI journals

Theodore E. Simos

★ <https://recognition.webofsciencegroup.com/awards/highly-cited/2020/> [Website](#)

[\(http://theodoresimos.org/\)](http://theodoresimos.org/)

☒ (toggle desktop layout cookie) [Q](#) [≡](#)

Advisory Board Member

1. Laboratory of Applied Mathematics for Solving Interdisciplinary Problems of Energy Production, Ulyanovsk State Technical University, Severny Venetz Street 32, 432027 Ulyanovsk, Russia
2. Digital Industry REC, South Ural State University, 76, Lenin Avenue, 454080 Chelyabinsk, Russia
3. Section of Mathematics, Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Interests: numerical analysis; scientific computing; applied numerical analysis; computational chemistry; computational material sciences; computational physics; parallel algorithm and expert systems

Special Issues, Collections and Topics in MDPI journals

Dr. James A. Yorke

Profile (https://ipst.umd.edu/people/james-a-yorke)

Advisory Board Member

Department of Mathematics and Department of Physics, University of Maryland, College Park, MD 20742, USA

Interests: chaos theory; genome research; population dynamics; nonlinear dynamics

Dr. Ravi P. Agarwal

★ <https://recognition.webofsciencegroup.com/awards/highly-cited/2020/> [Website1](#)

<https://www.scirp.org/Journal/detailedInfoforEditorialboard.aspx?personid=8574> [Website2](#)

https://cikd.ca/former_associations/ravi-p-agarwal/

Editorial Board Member

Emeritus Research Professor of Department of Mathematics and Systems Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Interests: boundary value problems; nonlinear analysis; differential and difference equations; fixed point theory; general inequalities

Special Issues, Collections and Topics in MDPI journals

Dr. Pietro Aiena

Profile (https://www.researchgate.net/profile/Pietro-Aiena)

Editorial Board Member

Dipartimento d'Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Interests: functional analysis; operator theory; spectral theory

Dr. Bedreddine Ainseba

Profile (https://www.math.u-bordeaux.fr/imb/fiche-personnelle?uid=bainse100p&lang=fr)

Editorial Board Member

Institut de Mathématiques de Bordeaux (IMB) UMR CNRS 5251, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France

Interests: population dynamics; age structured models; control theory

MDPI (1)

 Dr. Javier Alcaraz

[Profile \(http://cio.edu.umh.es/en/investigadores/javier-alcaraz\)](http://cio.edu.umh.es/en/investigadores/javier-alcaraz)

↗ ↘ (toggle desktop layout cookie)

Q

≡

Editorial Board Member

Department of Statistics, Mathematics and Informatics, Miguel Hernandez University, 03202 Elche, Alicante, Spain

Interests: operations research; mathematical programming; data envelopment analysis (DEA); location; scheduling; algorithms; metaheuristics; rankings

 Dr. Moldoveanu Alin

[Profile1 \(https://3d.pub.ro/team.html\)](https://3d.pub.ro/team.html) [Website2 \(https://scholar.google.ro/citations?user=K0w4SGAAAAAJ\)](https://scholar.google.ro/citations?user=K0w4SGAAAAAJ)

Editorial Board Member

Faculty of Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania

Interests: VR; AR; MR; assistive systems; eHealth; eCulture; eLearning; software engineering

Special Issues, Collections and Topics in MDPI journals

 Dr. David Edmund Allen

[Profile \(https://www.sydney.edu.au/science/about/our-people/academic-staff/d-allen.html\)](https://www.sydney.edu.au/science/about/our-people/academic-staff/d-allen.html)

Editorial Board Member

School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia

Interests: finance; investments; financial econometrics; financial economics; time-series

Special Issues, Collections and Topics in MDPI journals

 Dr. George Anastassiou

[Profile \(https://www.memphis.edu/msci/people/ganastss.php\)](https://www.memphis.edu/msci/people/ganastss.php)

Editorial Board Member

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Interests: computational analysis; approximation theory; probability; theory of moments

 Dr. Ioannis Antoniou

[Profile \(http://users.auth.gr/~iantonio/IAEnglish.html\)](http://users.auth.gr/~iantonio/IAEnglish.html)

Editorial Board Member

Department of Statistics and Operational Research, Faculty of Sciences, School of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Interests: complex systems; networks; statistical mechanics; dynamical systems; chaos

 Dr. Chris G. Antonopoulos

[Profile \(https://www.essex.ac.uk/people/anton17606/chris-antonopoulos\)](https://www.essex.ac.uk/people/anton17606/chris-antonopoulos)

Editorial Board Member

Special Issues, Collections and Topics in MDPI journals

F. Juan Aparicio

[ORCID iD](https://orcid.org/0000-0002-0867-0004) (<https://orcid.org/0000-0002-0867-0004>)

Editorial Board Member

Center of Operations Research, Miguel Hernandez University, 03202 Elche, Alicante, Spain

Interests: efficiency; productivity; data envelopment analysis

M. Mar Arenas-Parra

[ORCID iD](#)

https://econo.uniovi.es/infoacademica/profesorado/-/asset_publisher/l2wl/content/arenas-parra-maria-del-mar?redirect=%2Finfoacademica%2Fprofesorado

Editorial Board Member

Department of Quantitative Economics, University of Oviedo, Avda. Cristo, s/n. 33006 Oviedo, Spain

Interests: fuzzy decision making; fuzzy sets; multicriteria decision-making; fuzzy multi-criteria programming; possibilistic multi-criteria programming; economic-business applications

Ioannis K. Argyros

[Faculty Page](https://www.cameron.edu/computing-and-mathematical-sciences/faculty-staff) (<https://www.cameron.edu/computing-and-mathematical-sciences/faculty-staff>)

Editorial Board Member

Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA

Interests: numerical analysis; numerical functional analysis; iterative methods for solving equations and systems of equations

Special Issues, Collections and Topics in MDPI journals

Displaying Editorial board member 1-30 on page 1 of 35.

Go to page [1](#) [2](#) ([/journal/mathematics/editors?page_no=2](#)). [3](#) ([/journal/mathematics/editors?page_no=3](#)). [4](#) ([/journal/mathematics/editors?page_no=4](#)). [5](#) ([/journal/mathematics/editors?page_no=5](#)). >[1](#) ([/journal/mathematics/editors?page_no=35](#))

Mathematics ([/journal/mathematics](#)), EISSN 2227-7390, Published by MDPI

[RSS](#) ([/rss/journal/mathematics](#)) [Content Alert](#) ([/journal/mathematics/toc-alert](#))

Further Information

[Article Processing Charges](#) ([/apc](#))

[Pay an Invoice](#) ([/about/payment](#))

[Open Access Policy](#) ([/openaccess](#))

[Contact MDPI \(/about/contact\)](#)

 MDPI (/)

[Jobs at MDPI \(<https://careers.mdpi.com>\)](#)

 (/toggle_desktop_layout_cookie)

Guidelines

[For Authors \(/authors\)](#)

[For Reviewers \(/reviewers\)](#)

[For Editors \(/editors\)](#)

[For Librarians \(/librarians\)](#)

[For Publishers \(/publishing_services\)](#)

[For Societies \(/societies\)](#)

[For Conference Organizers \(/conference_organizers\)](#)

MDPI Initiatives

[Sciforum \(<https://sciforum.net>\)](#)

[MDPI Books \(<https://www.mdpi.com/books>\)](#)

[Preprints.org \(<https://www.preprints.org>\)](#)

[Scilit \(<https://www.scilit.net>\)](#)

[SciProfiles \(<https://sciprofiles.com>?\)](#)

[utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative](#)

[Encyclopedia \(<https://encyclopedia.pub>\)](#)

[JAMS \(<https://jams.pub>\)](#)

[Proceedings Series \(/about/proceedings\)](#)

Follow MDPI

[LinkedIn \(<https://www.linkedin.com/company/mdpi>\)](#)

[Facebook \(<https://www.facebook.com/MDPIOpenAccessPublishing>\)](#)

[Twitter \(<https://twitter.com/MDPIOpenAccess>\)](#)

Subscribe to receive issue release
notifications and newsletters from
MDPI journals

Select options

Enter your email address...

Subscribe

[Disclaimer](#)

[Terms and Conditions \(/about/terms-and-conditions\)](#)

[Privacy Policy \(/about/privacy\)](#)

[Toggle desktop layout cookie](#)

[Journals \(/about/journals\)](#)[Topics \(/topics\)](#)[Information \(/authors\)](#)[Author Services \(/authors/english\)](#)[Initiatives \(/about/initiatives\)](#)[About \(/about\)](#)[Sign In / Sign Up \(/user/login\)](#)[Submit \(<https://susy.mdpi.com/user/manuscripts/upload?journal=mathematics>\)](#)

Search for Articles:

[Advanced Search](#)[Journals \(/about/journals\)](#) / [Mathematics \(/journal/mathematics\)](#) / [Volume 12 \(2027-7390/12\)](#) / [Issue 12](#) /[Submit to Mathematics](#)[\(/journal/mathematics\)](#)[Review for Mathematics](#)

IMPACT FACTOR

2.3

CITESCORE

4.0

[\(https://www.scopus.com/sourceid/21100830702\)](https://www.scopus.com/sourceid/21100830702)

Journal Menu

► Journal Menu

- [Mathematics Home \(/journal/mathematics\)](#)
- [Aims & Scope \(/journal/mathematics/about\)](#)
- [Editorial Board \(/journal/mathematics/editors\)](#)
- [Reviewer Board \(/journal/mathematics/submission_reviewers\)](#)
- [Topical Advisory Panel \(/journal/mathematics/topical_advisory_panel\)](#)
- [Instructions for Authors \(/journal/mathematics/instructions\)](#)
- [Special Issues \(/journal/mathematics/special_issues\)](#)
- [Topics \(/topics?journal=mathematics\)](#)
- [Sections & Collections \(/journal/mathematics/sections\)](#)
- [Article Processing Charge \(/journal/mathematics/apc\)](#)
- [Indexing & Archiving \(/journal/mathematics/indexing\)](#)
- [Editor's Choice Articles \(/journal/mathematics/editors_choice\)](#)
- [Most Cited & Viewed \(/journal/mathematics/most_cited\)](#)
- [Journal Statistics \(/journal/mathematics/stats\)](#)
- [Journal History \(/journal/mathematics/history\)](#)
- [Journal Awards \(/journal/mathematics/awards\)](#)
- [Society Collaborations \(/journal/mathematics/societies\)](#)
- [Conferences \(/journal/mathematics/events\)](#)
- [Editorial Office \(/journal/mathematics/editorial_office\)](#)

Journal Browser

► Journal Browser

[Back to Top](#)

Article

Bayesian Control Chart for Number of Defects in Production Quality Control

Yadpirun Supharakonsakun

Department of Applied Mathematics and Statistics, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand; yadpirun.suph@pcru.ac.th

Abstract: This study investigates the extension of the c-chart control chart to Bayesian methodology, utilizing the gamma distribution to establish control limits. By comparing the performance of the Bayesian approach with that of two existing methods (the traditional frequentist method and the Bayesian with Jeffreys method), we assess its effectiveness in terms of the average run lengths (ARLs) and false alarm rates (FARs). Simulation results indicate that the proposed Bayesian method consistently outperforms the existing techniques, offering larger ARLs and smaller FARs that closely approximate the expected nominal values. While the Bayesian approach excels in most scenarios, challenges may arise with large values of the λ parameter, necessitating adjustments to the hyperparameters of the gamma prior. Specifically, smaller values of the rate parameter are recommended for optimal performance. Overall, our findings suggest that the Bayesian extension of the c-chart provides a promising alternative for enhanced process monitoring and control.

Keywords: c-chart; Bayesian approach; Poisson distribution; nonconformity; average run length

MSC: 46N30; 62F15

1. Introduction

Citation: Supharakonsakun, Y. Bayesian Control Chart for Number of Defects in Production Quality Control. *Mathematics* **2024**, *12*, 1903. <https://doi.org/10.3390/math12121903>

Academic Editor: Manuel Alberto M. Ferreira

Received: 3 May 2024

Revised: 27 May 2024

Accepted: 17 June 2024

Published: 19 June 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

The control chart, a fundamental tool in quality control, is utilized in production management to assess the stability of manufacturing or business processes. Often referred to as Shewhart charts, they were pioneered by Walter A. Shewhart in the early 1920s and remain widely employed today. These charts serve as graphical devices for statistical process monitoring, with the aim of enhancing or maintaining process quality by reducing the variability in the product or service characteristics. Traditionally, they are primarily used to monitor process parameters when the underlying process distributions are well understood. The versatility of control charts is evident in their ability to handle various process characteristics, including numeric data, under the assumption of a normal distribution or non-Gaussian distributions such as binomial or Poisson data.

The c-chart is recognized as a foundational tool within the realm of control charts for the tracking of nonconformities. It finds widespread application across various industries, serving to monitor and uphold the process integrity by tallying the occurrence of defects or nonconformities within a sample unit of production. Through the systematic recording and analysis of these data over time, manufacturing operators can effectively identify trends and deviations from the expected performance and take proactive measures to enhance process reliability and product quality.

The primary objective when employing the c-chart is to distinguish between common cause variation arising from inherent fluctuations within the process and special cause variation arising from identifiable factors outside the norm. By establishing control limits on the c-chart, operators and quality control personnel can discriminate between random fluctuations and significant changes in process performance. This differentiation is critical to making informed decisions, implementing corrective actions, and ultimately ensuring that products meet or exceed customer expectations.

The establishment of control limits on the c-chart is typically based on the estimation of the average number of nonconformities in an initial sample λ . It is denoted by $\bar{\lambda}$. The control limits can be defined as follows [1]:

$$\begin{aligned} UCL &= \bar{\lambda} + 3\sqrt{\bar{\lambda}}, \\ CL &= \bar{\lambda}, \\ LCL &= \bar{\lambda} - 3\sqrt{\bar{\lambda}}. \end{aligned} \quad (1)$$

The statistical boundaries mentioned above help to determine whether a process is in a state of statistical control, even when the value of λ is unknown, by identifying when the number of defects per unit is significantly lower or higher than expected. Deviations beyond these control limits suggest the presence of special causes of variation, which may require investigation and corrective action. By effectively utilizing the c-chart, organizations can maintain a high level of process control, swiftly detect issues, and make data-driven improvements, ensuring consistent product quality and operational efficiency.

The aforementioned control limits of control charts were proposed based on their performance through the evaluation of the average run length (ARL) values. The ARL is a statistical measurement commonly used in quality control and process monitoring; it considers the number of observations taken before an out-of-control signal is detected. A higher ARL is desired when a process is in control, as it leads to fewer false alarm signals.

However, even when a process operates within the expected parameters, there is an approximately 0.27% probability that a data point will exceed the 3-sigma control limits. The run lengths follow a geometric distribution [2]. Consequently, even a well-monitored process depicted on a well-constructed control chart may trigger a warning regarding the potential existence of an unusual occurrence, even if no event has occurred. For the Shewhart control chart using 3-sigma limits, this false alarm rate occurs, on average, once every 1/0.0027 or 370.4 observations. Therefore, the average run length (ARL) of a Shewhart chart under normal conditions is 370.4.

Many researchers have utilized the average run lengths (ARLs) to compare the performance of control charts, as the average typically follows a geometric distribution for both the classical and Bayesian approaches. Chakraborti and Human [3] proposed the false alarm rate (FAR) and ARL of the c-chart through the classical estimation of the true unknown average number of nonconformities in an inspection unit, denoted by 'c'. Their results revealed significant differences in the performance of the chart in terms of both the FAR and the in-control ARL. Particularly in cases where 'c' is small, the actual FAR and in-control ARL can deviate substantially from the nominal expected values, such as 0.0027 for FAR or 370.4 for ARL. Subsequently, Raubenheimer and Merwe [4] extended the conventional operation of the c-chart by introducing a Bayesian approach. They used a noninformative Jeffreys prior to derive the predictive density in order to obtain the upper and lower control limits of the chart. A simulation study compared the unconditional ARLs and FARs using their proposed Bayesian method with the frequentist approach [3]. The upper and lower control limits were calculated for given values of inspection unit m and parameter λ , consistent with those used by Chakraborti and Human. The results indicated that the Bayesian approach yielded larger values of the unconditional ARL and smaller values of the unconditional FAR than the classical method for most variations in m and λ , with the exception of λ values of 8, 10, and 20.

Bayesian methods have been recommended due to their effectiveness over classical methods in predictive tasks and uncertainty management, their flexibility in accommodating complex models and sequential situations, and the ease of integrating prior information, as described by Bayrri and Garcia-Donato [5]. Several studies by Calabrese [6], Taylor [7], and Taylor [8] also support the superiority of Bayesian methods over classical methods regarding action decisions, the sampling size, and the frequency, based on posterior probability determination during out-of-control states. Additionally, Bayesian approaches have been applied to control charts for the mean of a normal distribution, utilizing predictive distributions to derive rejection regions and construct control charts, as proposed by Menzefricke [9,10].

This approach has been extended to the development of combined exponentially weighted moving average charts for the mean and variance of a normal distribution, using Bayesian methods for chart construction, as proposed by Menzefricke [11]. Saghir [12,13] investigated the X-bar chart for normality and the S2-chart for variance, using a Bayesian framework for the characterization of uncertainty, and compared it with the frequentist design structure. The proposed Bayesian design structure demonstrated superior performance in detecting shifts in the process parameters. Consequently, the Bayesian method was applied to construct control charts using a normal prior [14], exponential prior [15], and uniform prior [16]. An exponentially weighted moving average (EWMA) control chart was utilized for the monitoring of the variance of a distribution-free process [17], as well as to implement a ranked set sampling procedure with measurement errors in industrial engineering [18,19]. Recently, Alshahrani et al. [20] used the Bayesian framework to identify posterior and predictive densities for the construction of control limits for the monitoring of the Maxwell scale parameter. Their proposed method was compared with existing control charts and performed well in monitoring the Maxwell scale parameter.

As demonstrated by the aforementioned studies, there is growing interest in enhancing the efficiency of the c-chart for the monitoring of nonconformities using Bayesian approaches. Of particular interest is the development of Bayesian methods based on informative gamma priors, which are well suited for the modeling of the Poisson distribution [21,22]. These methods leverage predictive distribution techniques to achieve superior performance. This study's findings will be compared with those obtained using frequentist approaches and the methods proposed by Raubenheimer and Merwe. Specifically, variations in the parameters of the gamma prior will be explored in terms of their impact on the average run lengths (ARLs) and false alarm rates (FARs).

2. Predictive Density of C-Chart

If individual inspection units are randomly chosen at evenly spaced intervals of time, the number of nonconformities in the i^{th} inspection will adhere to a Poisson distribution with parameter and is given by

$$f(x_i|\lambda) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}, \quad x_i = 0, 1, 2, \dots, i = 1, \dots, n; \lambda > 0. \quad (2)$$

In this study, the utilization of an informative conjugate prior is deemed suitable for the Bayesian approach. Let us assume that a random variable, denoted as X , follows a gamma distribution with parameters a and b , noted as $X \sim \text{Gamma}(a, b)$. Supharakonsakun [23] and Song and Kim [24] propose the following informative prior for the Poisson distribution:

$$g(\lambda|a, b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}; \quad a, b > 0. \quad (3)$$

The posterior distribution can be derived as follows:

$$h(\lambda|\underline{X}) = \frac{L(\lambda)g(\lambda|a, b)}{\int L(\lambda)g(\lambda|a, b)d\lambda}, \quad (4)$$

where $L(\lambda)$ represents the likelihood function of the Poisson mass probability function.

Therefore, the posterior distribution can be presented as follows:

$$h(\lambda|\underline{X}) = \frac{(n+b)^{\sum_{i=1}^n x_i+a}}{\Gamma\left(\sum_{i=1}^n x_i+a\right)} \lambda^{\sum_{i=1}^n x_i+a-1} e^{-(n+b)\lambda}. \quad (5)$$

The posterior distribution of the parameter λ is a gamma distribution, denoted as $\text{Gamma}(\sum_{i=1}^n X_i + a, n + b)$. It can be expressed in the following form:

$$\pi_j(\lambda | data) = \frac{(n+b)^{\sum_{i=1}^n x_i + a}}{\Gamma\left(\sum_{i=1}^n x_i + a\right)} e^{-(n+b)\lambda} \lambda^{\sum_{i=1}^n x_i + a - 1}. \quad (6)$$

The unconditional predictive density can be obtained as follows [25]:

$$f(x_f | data) = \int_0^\infty f(x_f | \lambda) \pi_j(\lambda | data) d\lambda, \quad (7)$$

where X_f is the number of nonconformities in a future inspection unit.

Here,

$$\begin{aligned} f(x_f | data) &= \int_0^\infty \frac{e^{-\lambda} \lambda^{X_f}}{X_f!} \frac{(n+\beta)^{\sum_{i=1}^n X_i + \alpha}}{\Gamma\left(\sum_{i=1}^n X_i + \alpha\right)} e^{-(n+\beta)\lambda} \lambda^{\sum_{i=1}^n X_i + \alpha - 1} d\lambda \\ &= \frac{(n+b)^{\sum_{i=1}^n X_i + a}}{X_f! \Gamma\left(\sum_{i=1}^n X_i + a\right)} \int_0^\infty e^{-(n+b+1)\lambda} \lambda^{\sum_{i=1}^n X_i + X_f + a - 1} d\lambda \\ &= \frac{(n+b)^{\sum_{i=1}^n X_i + a} \Gamma\left(\sum_{i=1}^n X_i + X_f + a\right)}{X_f! \Gamma\left(\sum_{i=1}^n X_i + a\right) (n+b+1)^{\sum_{i=1}^n X_i + X_f + a}} \int_0^\infty \frac{(n+b+1)^{\sum_{i=1}^n X_i + X_f + a} e^{-(n+b+1)\lambda} \lambda^{\sum_{i=1}^n X_i + X_f + a - 1}}{\Gamma\left(\sum_{i=1}^n X_i + X_f + a\right)} d\lambda. \end{aligned}$$

Hence,

$$f(x_f | data) = \frac{(n+b)^{\sum_{i=1}^n X_i + a} \Gamma\left(\sum_{i=1}^n X_i + X_f + a\right)}{X_f! \Gamma\left(\sum_{i=1}^n X_i + a\right) (n+b+1)^{\sum_{i=1}^n X_i + X_f + a}}. \quad (8)$$

The aforementioned expression can be reformulated in the form of a predictive density, as shown below:

$$f(x_f | data) = \frac{\left(\sum_{i=1}^n X_i + X_f + a - 1\right)!}{\left(\sum_{i=1}^n X_i + a - 1\right)! (X_f)!} \left(\frac{n+b}{n+b+1}\right)^{\sum_{i=1}^n X_i + a} \left(\frac{1}{n+b+1}\right)^{X_f}. \quad (9)$$

Specifically,

$$f(x_f | data) = \binom{\sum_{i=1}^n X_i + X_f + a - 1}{X_f} \left(\frac{n+b}{n+b+1}\right)^{\sum_{i=1}^n X_i + a} \left(\frac{1}{n+b+1}\right)^{X_f}. \quad (10)$$

Therefore, the predictive density follows a negative binomial distribution with parameters $\sum_{i=1}^n X_i + a$ and $\frac{n+b}{n+b+1}$. It can be denoted as

$$X_f \sim NB\left(\sum_{i=1}^n X_i + a, \frac{n+b}{n+b+1}\right) \quad (11)$$

To establish the c-chart, the predictive density is utilized to determine the upper and lower control limits through simulation studies. The parameters of λ and inspection unit n will be varied in this process.

3. Results

This study aims to compare the unconditional average run lengths (ARLs) and unconditional false alarm rates (FARs) using the classical method, the Bayesian approach with the Jeffreys prior, and the proposed method. The variations in inspection unit n and parameter λ when calculating the lower and upper control limits follow the methodology outlined by Raubenheimer and Merwe (Bj). The control limits are derived from the predictive density provided by the Jeffreys and proposed Bayesian approaches. Meanwhile, the frequentist method, as described by Chakraborti and Human (F), is employed to obtain the control limits.

The numerical simulation study considers parameter values of $n = 5, 10, 15, 20, 25, 30, 50, 100, 200$ and $\lambda = 1, 2, 3, 4, 5, 8, 10, 15, 20, 50$. The hyperparameters of the gamma prior for the proposed Bayesian method are set to $(a, b) = (5, 0.25)$ and $(5, 0.5)$. These parameter values are applied in the proposed Bayesian method to determine the unconditional average run lengths (ARLs) and false alarm rates (FARs). The simulations are repeated 20,000 times for robustness.

The results of all three methods are presented in Tables 1–4. The average run length (ARL) is a well-known measure used to evaluate the performance of control charts. It represents the expected number of inspection units sampled before the initial signal appears on the chart and is preferred to be as large as possible. The hyperparameters of the gamma prior are varied within $(a, b) = (5, 0.25)$ for Tables 1 and 2 and $(a, b) = (5, 0.5)$ for Tables 3 and 4 to assess their impacts on the unconditional ARL and FAR values.

Table 1. Unconditional ARLs given $(a, b) = (5, 0.25)$.

Table 1. Cont.

λ	F	B_J	B_G	F	B_J	B_G	F	B_J	B_G
1	2.6393	2.6329	2.6572	2.6398	2.6401	2.6527	2.6390	2.6394	2.6485
2	6.9886	6.9554	7.0286	7.0307	6.9939	7.0339	7.0820	7.0363	7.0558
3	17.8675	17.7380	18.0204	17.9925	17.8715	18.0304	18.1618	17.9982	18.0830
4	42.4864	42.1223	43.1579	42.6179	42.5305	43.1355	42.5747	42.5554	42.9669
5	88.7302	88.7932	91.9146	88.1357	88.1357	90.4300	86.1348	88.0959	89.0128
8	277.0461	306.9855	324.1538	261.3801	277.1624	284.7046	252.8359	263.1057	266.9809
10	322.4659	344.2188	356.2091	307.6547	322.7460	331.3688	294.3781	308.2915	310.5624
15	332.9095	340.9520	342.4873	324.5143	331.8624	334.5469	314.0639	314.0639	325.2001
20	334.6021	337.9960	336.2559	335.1888	335.9407	336.0102	333.4542	333.2912	332.8310
50	338.8756	327.2756	345.4461	317.3416	338.7309	334.0351	348.5869	344.8088	341.6380

Note: Bold values indicate the maximal ARL for the method.

Table 2. Unconditional FARs given $(a, b) = (5, 0.25)$.

λ	F	B_J	B_G	F	B_J	B_G	F	B_J	B_G
$n = 5$									
1	0.39662270	0.40708550	0.40708550	0.38569400	0.39232380	0.37421000	0.38212840	0.38618380	0.37482830
2	0.15124300	0.15663420	0.14129660	0.14626240	0.14951160	0.14160280	0.14532670	0.14747760	0.14208050
3	0.06004426	0.06281317	0.05492979	0.05771337	0.05934518	0.05524374	0.05724033	0.05846155	0.05549938
4	0.02544645	0.02627064	0.02228677	0.02448115	0.02514650	0.02266568	0.02410337	0.02468512	0.02289396
5	0.01139585	0.01158035	0.00951657	0.01140187	0.01145698	0.01005290	0.01136951	0.01136951	0.01035606
8	0.00219804	0.00202170	0.00166765	0.00260696	0.00208094	0.00179732	0.00302516	0.00240444	0.00210291
10	0.00250658	0.00261121	0.00231329	0.00261356	0.00244237	0.00222960	0.00282478	0.00251673	0.00232378
15	0.00308707	0.00351652	0.00339510	0.00291048	0.00302467	0.00294798	0.00293610	0.00293443	0.00287098
20	0.00329994	0.00387043	0.00388933	0.00302872	0.00327538	0.00328098	0.00300033	0.00312435	0.00316671
50	0.00388600	0.00478100	0.00526484	0.00339269	0.00388812	0.00420314	0.00320420	0.00355890	0.00378008
$n = 10$									
1	0.38070290	0.38371150	0.37527970	0.37953070	0.38184120	0.37540080	0.37926550	0.38109870	0.37569620
2	0.14414100	0.14585320	0.14190820	0.14417550	0.14546450	0.14222320	0.14365370	0.14464900	0.14213290
3	0.05660097	0.05753329	0.05540701	0.05663632	0.05743179	0.05550451	0.05622827	0.05543484	0.05543484
4	0.02386803	0.02428183	0.02292132	0.02367660	0.02410020	0.02302176	0.02371426	0.02409589	0.02312288
5	0.01142446	0.01143640	0.01056803	0.01142258	0.01143625	0.01075891	0.01135580	0.01135989	0.01075718
8	0.00312429	0.00255214	0.00228929	0.00330298	0.00274445	0.00248533	0.00341258	0.00290598	0.00267368
10	0.00282947	0.00257165	0.00239868	0.00290260	0.00263664	0.00248217	0.00296855	0.00271749	0.00258781
15	0.00294997	0.00291523	0.00284406	0.00295416	0.00290540	0.00285246	0.00298657	0.00290241	0.00258781
20	0.00293920	0.00302062	0.00300482	0.00296424	0.00299974	0.00301523	0.00298430	0.00299297	0.00300699
50	0.00311326	0.00338217	0.00356911	0.00305849	0.00328135	0.00342360	0.00301428	0.00320905	0.00334788
$n = 20$									
1	0.38070290	0.38371150	0.37527970	0.37953070	0.38184120	0.37540080	0.37926550	0.38109870	0.37569620
2	0.14414100	0.14585320	0.14190820	0.14417550	0.14546450	0.14222320	0.14365370	0.14464900	0.14213290
3	0.05660097	0.05753329	0.05540701	0.05663632	0.05743179	0.05550451	0.05622827	0.05543484	0.05543484
4	0.02386803	0.02428183	0.02292132	0.02367660	0.02410020	0.02302176	0.02371426	0.02409589	0.02312288
5	0.01142446	0.01143640	0.01056803	0.01142258	0.01143625	0.01075891	0.01135580	0.01135989	0.01075718
8	0.00312429	0.00255214	0.00228929	0.00330298	0.00274445	0.00248533	0.00341258	0.00290598	0.00267368
10	0.00282947	0.00257165	0.00239868	0.00290260	0.00263664	0.00248217	0.00296855	0.00271749	0.00258781
15	0.00294997	0.00291523	0.00284406	0.00295416	0.00290540	0.00285246	0.00298657	0.00290241	0.00258781
20	0.00293920	0.00302062	0.00300482	0.00296424	0.00299974	0.00301523	0.00298430	0.00299297	0.00300699
50	0.00311326	0.00338217	0.00356911	0.00305849	0.00328135	0.00342360	0.00301428	0.00320905	0.00334788
$n = 50$									
1	0.37889310	0.37980500	0.37633970	0.37882120	0.37877600	0.37698020	0.37892750	0.37886810	0.37757490
2	0.14309070	0.14377280	0.14227490	0.14223350	0.14298200	0.14216920	0.14120300	0.14212070	0.14172810
3	0.05596745	0.05637619	0.05549266	0.05557858	0.05595490	0.05546201	0.05506071	0.05556127	0.05530066
4	0.02353694	0.02374041	0.02317074	0.02346430	0.02351255	0.02318279	0.02348811	0.02349877	0.02327374
5	0.01127012	0.01126212	0.01087967	0.01134614	0.01127120	0.01105828	0.01160971	0.01135127	0.01123434
8	0.00360951	0.00325748	0.00308496	0.00382585	0.00360799	0.00351241	0.00395513	0.00380075	0.00374559
10	0.00310110	0.00290513	0.00280734	0.00325040	0.00309841	0.00301779	0.00339699	0.00324368	0.00321997
15	0.00300382	0.00293296	0.00291982	0.00308153	0.00301330	0.00298912	0.00318407	0.00307384	0.00307503
20	0.00298863	0.00295861	0.00297393	0.00298339	0.00297672	0.00297610	0.00299891	0.00300038	0.00300453
50	0.00295094	0.00305553	0.00315118	0.00289481	0.00295220	0.00299370	0.00286873	0.00290016	0.00292708
$n = 100$									
1	0.37889310	0.37980500	0.37633970	0.37882120	0.37877600	0.37698020	0.37892750	0.37886810	0.37757490
2	0.14309070	0.14377280	0.14227490	0.14223350	0.14298200	0.14216920	0.14120300	0.14212070	0.14172810
3	0.05596745	0.05637619	0.05549266	0.05557858	0.05595490	0.05546201	0.05506071	0.05556127	0.05530066
4	0.02353694	0.02374041	0.02317074	0.02346430	0.02351255	0.02318279	0.02348811	0.02349877	0.02327374
5	0.01127012	0.01126212	0.01087967	0.01134614	0.01127120	0.01105828	0.01160971	0.01135127	0.01123434
8	0.00360951	0.00325748	0.00308496	0.00382585	0.00360799	0.00351241	0.00395513	0.00380075	0.00374559
10	0.00310110	0.00290513	0.00280734	0.00325040	0.00309841	0.00301779	0.00339699	0.00324368	0.00321997
15	0.00300382	0.00293296	0.00291982	0.00308153	0.00301330	0.00298912	0.00318407	0.00307384	0.00307503
20	0.00298863	0.00295861	0.00297393	0.00298339	0.00297672	0.00297610	0.00299891	0.00300038	0.00300453
50	0.00295094	0.00305553	0.00315118	0.00289481	0.00295220	0.00299370	0.00286873	0.00290016	0.00292708
$n = 200$									
1	0.37889310	0.37980500	0.37633970	0.37882120	0.37877600	0.37698020	0.37892750	0.37886810	0.37757490
2	0.14309070	0.14377280	0.14227490	0.14223350	0.14298200	0.14216920	0.14120300	0.14212070</	

Table 3. Cont.

λ	F	B_J	B_G	F	B_J	B_G	F	B_J	B_G
15	326.0085	284.4770	258.4064	340.9400	329.3362	298.6948	338.5840	338.4772	315.4739
20	303.9213	259.1802	221.6345	329.7544	303.4682	269.3523	332.0111	318.7007	282.2210
50	256.3661	210.5426	140.2344	296.0692	258.2642	200.4727	313.9835	283.3336	233.0509
		<i>n</i> = 20			<i>n</i> = 25			<i>n</i> = 30	
1	2.6288	2.6068	2.6631	2.6336	2.6167	2.6599	2.6366	2.6248	2.6601
2	6.9355	6.8503	7.0232	6.9377	6.8787	7.0113	6.9631	6.9119	7.0211
3	17.6310	17.3377	17.9002	17.6617	17.3994	17.8630	17.7455	17.5314	17.9095
4	41.8540	41.0597	42.8223	42.1195	41.4906	42.8501	42.1345	41.5007	42.7617
5	87.8871	87.7707	92.3624	87.7346	87.7406	91.1625	87.6568	88.0440	90.7840
8	393.3209	393.3209	397.9287	302.4668	361.1734	367.9019	290.8101	342.4454	344.9910
10	356.7776	394.4178	384.6940	344.6354	380.6124	373.1827	332.6781	360.8223	359.1106
15	338.4139	343.7880	320.2326	339.4823	345.9631	327.5580	333.3335	340.9038	324.1026
20	337.3600	331.5635	301.3750	336.1248	332.8756	305.8301	334.6695	333.6483	310.6800
50	320.6388	294.8311	252.0554	326.8175	305.9600	267.2054	331.6683	312.3347	278.4506
		<i>n</i> = 50			<i>n</i> = 100			<i>n</i> = 200	
1	2.6381	2.6318	2.6549	2.6398	2.6397	2.6512	2.6390	2.6393	2.6482
2	6.9853	6.9522	7.0217	7.0317	6.9953	7.0317	7.0826	7.0395	7.0572
3	17.8699	17.7442	17.9680	17.9892	17.8775	17.9930	18.1734	18.0104	18.0739
4	42.5169	42.1612	42.8746	42.6079	42.4718	42.8995	42.6216	42.6172	42.8391
5	88.8421	88.5996	90.6512	88.1742	88.8398	89.8989	86.1159	87.9510	88.4350
8	276.7123	307.2505	311.8946	262.5758	278.5654	279.9313	251.6594	262.0512	263.2078
10	323.3059	345.7096	342.3620	309.8530	325.9426	323.4057	294.9882	308.7353	307.5628
15	333.8996	340.5693	329.5273	324.8547	332.6512	325.3336	314.2074	324.1764	321.4006
20	336.0491	337.7370	321.4377	334.4073	333.7946	326.4139	333.9665	334.1646	328.1677
50	338.8835	326.4732	302.0031	345.7355	339.9024	323.9124	349.7454	346.0734	337.4349

Note: Bold values indicate the maximal ARL for the method.

Table 4. Unconditional FARs given $(a, b) = (5, 0.5)$.

λ	F	B_J	B_G	F	B_J	B_G	F	B_J	B_G
		<i>n</i> = 5			<i>n</i> = 10			<i>n</i> = 15	
1	0.39630460	0.40697220	0.37386390	0.38606500	0.39303320	0.37487780	0.38205250	0.38615420	0.37532930
2	0.15099010	0.15619350	0.14242240	0.14649910	0.14962180	0.14244380	0.14547910	0.14734040	0.14273460
3	0.06007845	0.06274271	0.05609142	0.05766229	0.05941489	0.05586000	0.05724533	0.05724533	0.05594302
4	0.02540255	0.02639445	0.02317604	0.02453494	0.02510619	0.02331767	0.02402952	0.02446612	0.02324695
5	0.01142442	0.01155856	0.01019923	0.01142074	0.01148678	0.01055079	0.01140576	0.01140244	0.01074515
8	0.00218856	0.00202783	0.00192830	0.00266035	0.00213393	0.00208100	0.00300461	0.00238505	0.00234303
10	0.00248484	0.00257812	0.00262167	0.00264045	0.00244449	0.00252482	0.00278955	0.00251095	0.00257093
15	0.00306741	0.00351522	0.00386987	0.00293307	0.00303641	0.00334790	0.00295348	0.00295441	0.00316983
20	0.00329033	0.00385832	0.00451193	0.00303256	0.00329524	0.00371261	0.00301195	0.00313774	0.00354332
50	0.00390067	0.00474963	0.00713092	0.00337759	0.00387201	0.00498821	0.00318488	0.00352941	0.00429091
		<i>n</i> = 20			<i>n</i> = 25			<i>n</i> = 30	
1	0.38039740	0.38361130	0.37550780	0.37970210	0.38215570	0.37596040	0.37928360	0.38097830	0.37592760
2	0.14418640	0.14597810	0.14238510	0.14413970	0.14537660	0.14262610	0.14361330	0.14467830	0.14242800
3	0.05671837	0.05767788	0.05586524	0.05661960	0.05747328	0.05598164	0.05635218	0.05704039	0.05583628
4	0.02389257	0.02435477	0.02335234	0.02374195	0.02410183	0.02333716	0.02373350	0.02409597	0.02409597
5	0.01137823	0.01139332	0.01082692	0.01139802	0.01139723	0.01096943	0.01140813	0.01135796	0.01101516
8	0.00313724	0.00254245	0.00251301	0.00330615	0.00276875	0.00271812	0.00343867	0.00292017	0.00289863
10	0.00280287	0.00253538	0.00259947	0.00290162	0.00262735	0.00267965	0.00300591	0.00277145	0.00278466
15	0.00295496	0.00290877	0.00312273	0.00294566	0.00289048	0.00305289	0.00300000	0.00293338	0.00308544
20	0.00296419	0.00301601	0.00331813	0.00297509	0.00300413	0.00326979	0.00298802	0.00299717	0.00321869
50	0.00311877	0.00339177	0.00396738	0.00305981	0.00326840	0.00374244	0.00301506	0.00320169	0.00359130
		<i>n</i> = 50			<i>n</i> = 100			<i>n</i> = 200	
1	0.37906670	0.37996640	0.37666900	0.37881600	0.37883430	0.37718550	0.37893600	0.37889080	0.37760990
2	0.14315800	0.14384040	0.14241610	0.14221330	0.14295410	0.14221220	0.14119100	0.14205480	0.14170010
3	0.05595995	0.05635656	0.05565437	0.05558894	0.05593614	0.05557725	0.05502545	0.05552335	0.05552335
4	0.02352006	0.02352006	0.02332383	0.02346981	0.02354502	0.02331030	0.02346227	0.02346469	0.02334315
5	0.01125592	0.01128673	0.01103129	0.01134119	0.01125622	0.01112361	0.01161226	0.01136997	0.01130774
8	0.00361386	0.00325467	0.00320621	0.00380842	0.00358982	0.00357231	0.00397363	0.00381605	0.00379928
10	0.00309305	0.00289260	0.00292089	0.00322734	0.00306803	0.00309209	0.00338997	0.00323902	0.00325137
15	0.00299491	0.00293626	0.00303465	0.00307830	0.00300615	0.00307377	0.00318261	0.00308474	0.00311138
20	0.00297576	0.00296088	0.00311102	0.00299037	0.00299585	0.00306360	0.00299431	0.00299254	0.00304722
50	0.00295087	0.00306304	0.00331122	0.00289239	0.00294202	0.00308726	0.00285922	0.00288956	0.00296354

Note: Bold values indicate the minimal ARL for the method.

Table 1 displays the unconditional average run lengths (ARLs) for various sample sizes ($n = 5, 10, 15, 20, 25, 30, 50, 100$ and 200). For $n = 5$ and 10 , the Bayesian method with the gamma prior achieves larger ARLs compared to other methods across parameter values $\lambda = 1$ to 10 . In contrast, the frequentist method exhibits the maximum ARLs when parameter λ ranges from 15 to 50 . For $n = 15$, the Bayesian method with the gamma prior outperforms the others for $\lambda = 1$ to 15 , while the classical approach excels for $\lambda = 20$ to 50 . For $n = 20, 25$, and 30 , the results indicate the excellent performance of the Bayesian method with the gamma prior for $\lambda = 1$ to 15 , while the frequentist method demonstrates efficiency for $\lambda = 20$ to 50 across all sample sizes.

As the sample sizes increase to $n = 50, 100$, and 200 , the Bayesian method with the gamma prior maintains strong performance for $\lambda = 1$ to 15 at $n = 50$, with the Bayesian method using Jeffreys' prior providing the largest ARLs for $\lambda = 20$. Conversely, the frequentist method performs well for $\lambda = 50$. For $n = 100$, the proposed method yields the largest ARLs for $\lambda = 1$ to 20 , while the frequentist method shows effectiveness for $\lambda = 50$. Finally, at $n = 200$, the proposed Bayesian method achieves the maximum ARLs for $\lambda = 1, 4, 5, 8, 10$, and 15 , while the frequentist method yields the largest ARLs for $\lambda = 2, 3, 20$, and 50 .

Table 2 presents the unconditional false alarm rates (FARs) for the proposed method with hyperparameters $(a, b) = (5, 0.25)$. The simulation results demonstrate that the proposed method offers smaller FARs compared to the existing methods for various combinations of inspection unit (n) and parameter λ . Specifically, for $\lambda = 8, 10$, the proposed Bayesian method exhibits significantly smaller FARs, approaching the nominal value of $\text{FAR} = 0.0027$. However, for $\lambda = 1$ to 5 , the three methods yield slightly different FAR values.

Additionally, as the inspection unit decreases, the proposed method demonstrates resilience to increasing λ values.

Table 3 presents the unconditional average run lengths (ARLs) for varying sample sizes ($n = 5, 10, 15, 20, 25, 30, 50, 100$, and 200) and parameter values λ . For $n = 5$ and 10 , the proposed Bayesian method achieves larger ARLs across parameter values $\lambda = 1$ to 8 , while the frequentist method performs best for λ ranging from 10 to 50 . Similarly, for $n = 15$, the proposed method excels for λ between 1 and 8 , with the Raubenheimer and Der Merwe method outperforming the others for $\lambda = 10$, and the classical approach is superior for $\lambda = 15$ to 50 .

For sample sizes $n = 20, 25$, and 30 , the proposed Bayesian method performs consistently well for $\lambda = 1$ to 8 , with the Bayesian method using the Jeffreys prior showing superior ARLs for $\lambda = 10$ and 15 and the frequentist method for $\lambda = 20$ to 50 .

As the sample sizes increase to $n = 50, 100$, and 200 , the proposed Bayesian method maintains strong performance for $\lambda = 1$ to 8 . For higher λ values (10 to 20 and $\lambda = 50$), the Bayesian method with the Jeffreys prior and the classical method achieve the largest ARLs, respectively. At $n = 100$, the proposed method dominates for $\lambda = 1$ to 8 , while the frequentist method and the Bayesian method with the Jeffreys prior perform best for $\lambda = 10$ to 15 and $\lambda = 20$ to 50 , respectively. Finally, at $n = 200$, the proposed Bayesian method demonstrates the maximum ARLs for $\lambda = 1, 4, 5$, and 8 , while the Bayesian method with the Jeffreys prior and the classical method excel for $\lambda = 10$ to 20 and $\lambda = 2, 3, 50$.

Table 4 reports the unconditional FARs for the proposed method with hyperparameters $(a, b) = (5, 0.5)$. The simulation results show that the proposed method consistently provides smaller FARs compared to the existing methods for various combinations of n and λ values. Specifically, for $\lambda = 8$ or 10 with $n = 25$ and 30 , the proposed Bayesian method demonstrates significantly smaller FARs, nearing the nominal value of $\text{FAR} = 0.0027$. However, as the sample size increases, the three methods yield slightly different FAR values.

4. Discussion

The extension of the c-chart to the Bayesian methodology, as demonstrated by Raubenheimer and Merwe, offers a novel approach to control limit establishment. By employing the Jeffreys prior, this method presents an alternative to the original frequentist technique introduced by Chakraborti and Human. In this study, we explore the efficacy of an informa-

tive prior for the Bayesian method, particularly utilizing the gamma distribution to derive the predictive density for the calculation of control limits.

Our simulation study evaluates the effectiveness of this proposed Bayesian approach alongside two existing methods, with variations in the parameter λ and inspection unit (n). The results consistently demonstrate the superiority of the Bayesian method, providing larger average run lengths (ARLs) and smaller false alarm rates (FARs) that closely approximate the expected nominal value of 0.0027. This superiority can be attributed to the narrower control limits employed by the Bayesian approach, enhancing its ability to detect shifts in the process.

However, it is important to address the computational aspects of Bayesian methods. Bayesian techniques are known for being computationally intensive, and our approach is no exception. In our study, we observed that the time required for the Bayesian computation increases with larger parameter values of λ (20 and 50), where the method may also not perform optimally. Specifically, the computational time for each iteration of the Bayesian control chart was recorded and compared with that of the frequentist method. The results indicated that while the Bayesian approach provided superior statistical performance, it required significantly more computational resources and time, particularly for large datasets.

In our investigation, we employed hyperparameters for the gamma prior with large shape and rate parameters $(a, b) = (5, 0.25), (5, 0.5)$. The variation in the rate parameter b was explored to assess the impact on the performance of the Bayesian method, revealing that smaller values of b are preferable for optimal implementation. Additionally, we found that optimizing these hyperparameters helped to reduce the computational burden, although it was not completely eliminated.

To summarize, while the Bayesian method offers improved detection capabilities and more accurate control limits, it is more time-consuming compared to traditional frequentist methods. Future research could focus on optimizing the computational efficiency of Bayesian algorithms or exploring approximations that maintain the method's advantages without the extensive computational overhead. Additionally, conducting a sensitivity analysis, if feasible, could provide valuable insights into the robustness of our findings under varying conditions, thus further enhancing the applicability and reliability of Bayesian control charts in practice.

5. Conclusions

Our study investigates the extension of the c-chart control chart to Bayesian methodology, leveraging the gamma distribution to establish control limits. We compare the performance of the Bayesian approach with that of two existing methods: the traditional frequentist approach and the Bayesian method using the Jeffreys prior. Our evaluation, based on metrics such as the average run lengths (ARLs) and false alarm rates (FARs), reveals compelling insights into the efficacy of the Bayesian extension.

Simulation results consistently demonstrate the superiority of the proposed Bayesian method over the existing techniques. We observe that the Bayesian approach achieves larger ARLs and smaller FARs, closely aligning with the expected nominal values. This superiority underscores the effectiveness of Bayesian methodology in enhancing process monitoring and control.

A key aspect of our analysis is the investigation of the impact of parameter values, particularly that of parameter λ values, on the performance of each method. While the Bayesian approach excels in most scenarios, challenges may arise with large values of λ . Through meticulous parameter tuning, we identify strategies to optimize the Bayesian method's performance, such as recommending smaller values of the rate parameter for improved results.

Overall, our findings underscore the promise of the Bayesian extension of the c-chart as a robust and effective tool for process monitoring and control. By elucidating the nuances of parameter selection and computational considerations, our study provides

actionable insights for practitioners seeking to leverage Bayesian methodology in industrial engineering applications.

Funding: This research has benefited from the support of the Research and Development Institute, Phetchabun Rajabhat University, grant number TSRI2567/67.

Data Availability Statement: The R codes for the developed algorithm are available on request from the authors.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Montgomery, D.C. *Introduction to Statistical Quality Control*, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009.
2. Koutras, M.V.; Bersimis, S.; Maravelakis, P.E. Statistical Process Control using Shewhart Control Charts with Supplementary Runs Rules. *Methodol. Comput. Appl. Probab.* **2007**, *9*, 207–224. [\[CrossRef\]](#)
3. Chakraborti, S.; Human, S.W. Properties and performance of the c-chart for attributes data. *J. Appl. Stat.* **2008**, *35*, 89–100. [\[CrossRef\]](#)
4. Raubenheimer, L.; Merwe, A.V. Bayesian Control Chart for Nonconformities. *Qual. Reliab. Engng. Int.* **2015**, *31*, 1359–1366. [\[CrossRef\]](#)
5. Bayarri, M.J.; Garcia-Donato, G. A Bayesian sequential look at u-control charts. *Technometrics* **2005**, *47*, 142–151. [\[CrossRef\]](#)
6. Calabrese, J.M. Bayesian process control for attributes. *Manag. Sci.* **1995**, *41*, 637–645. [\[CrossRef\]](#)
7. Taylor, H.M. A Markov quality control process subject to partial observation. *Ann. Math. Stat.* **1965**, *36*, 1677–1694. [\[CrossRef\]](#)
8. Taylor, H.M. Statistical control of a Gaussian process. *Technometrics* **1969**, *9*, 29–41. [\[CrossRef\]](#)
9. Menzefricke, U. Control charts for the variance and coefficient of variation based on their predictive distribution. *Commun. Stat. Theory Methods* **2010**, *39*, 2930–2941. [\[CrossRef\]](#)
10. Menzefricke, U. On the evaluation of control chart limits based on predictive distributions. *Commun. Stat. Theory Methods* **2002**, *31*, 1423–1440. [\[CrossRef\]](#)
11. Menzefricke, U. Combined Exponentially Weighted Moving Average Charts for the Mean and Variance Based on the Predictive Distribution. *Commun. Stat. Theory Methods* **2013**, *42*, 4003–4016. [\[CrossRef\]](#)
12. Saghir, A. Phase-I design scheme for x-chart based on posterior distribution. *Commun. Stat. Theory Methods* **2015**, *44*, 644–655. [\[CrossRef\]](#)
13. Saghir, A. Phase-I design structure of Bayesian variance chart. *Cogent Math.* **2016**, *3*, 1172403. [\[CrossRef\]](#)
14. Abirami, S.; Vijayasankar, N.; Sasikala, S. Bayesian inference in control charts using normal prior. *Int. J. Stat. Appl. Math.* **2023**, *8*, 22–25. [\[CrossRef\]](#)
15. Aunali, A.S.; Venkatesan, D. Bayesian Approach in Control Charts Using Exponential Prior. *Sci. Tech. Dev.* **2019**, *8*, 148–152.
16. Aunali, A.S.; Venkatesan, D. Bayesian Control Charts Using Uniform Prior. *Sci. J. Inform. Comput. Sci.* **2019**, *9*, 295–301.
17. Lin, C.-H.; Lu, M.-C.; Yang, S.-F.; Lee, M.-Y. A Bayesian Control Chart for Monitoring Process Variance. *Appl. Sci.* **2021**, *11*, 2729. [\[CrossRef\]](#)
18. Wang, Y.; Khan, I.; Noor-ul-Amin, M.; Javaid, A.; Khan, D.M.; Alshanbari, H.M. Performance of Bayesian EWMA control chart with measurement error under ranked set sampling schemes with application in industrial engineering. *Sci. Rep.* **2013**, *13*, 14042. [\[CrossRef\]](#)
19. Khan, I.; Noor-ul-Amin, M.; Khalifa, N.T.; Arshad, A. EWMA control chart using Bayesian approach under paired ranked set sampling schemes: An application to reliability engineering. *AIMS Math.* **2023**, *8*, 20324–20350. [\[CrossRef\]](#)
20. Alshahrani, F.; Almanjahie, I.M.; Khan, M.; Anwar, S.M.; Rasheed, Z.; Cheema, A.N. On Designing of Bayesian Shewhart-Type Control Charts for Maxwell Distributed Processes with Application of Boring Machine. *Mathematics* **2023**, *11*, 1126. [\[CrossRef\]](#)
21. Hafeez, W.; Aziz, N.; Zain, Z.; Kamarudin, N.A. Bayesian Group Chain Sampling Plan for Poisson Distribution with Gamma Prior. *Comput. Mater. Contin.* **2022**, *70*, 3891–3902. [\[CrossRef\]](#)
22. Suresh, K.K.; Sangeetha, V. Construction and selection of Bayesian chain sampling plan (BChSP-1) using quality regions. *Mod. Appl. Sci.* **2011**, *5*, 226–234. [\[CrossRef\]](#)
23. Supharakonsakun, Y. Bayesian Approaches for Poisson Distribution Parameter Estimation. *Emerg. Sci. J.* **2021**, *5*, 755–774. [\[CrossRef\]](#)
24. Song, J.J.; Kim, J. Bayesian estimation of rare sensitive attribute. *Commun. Stat. Simul. Comput.* **2017**, *46*, 4154–4160. [\[CrossRef\]](#)
25. Geisser, S. *Predictive Inference: An Introduction*; Chapman & Hall: London, UK, 1993.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.