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Double inertial extragradient algorithms for solving variational
inequality problems with convergence analysis

Nuttapol Pakkaranang

First published: 30 April 2024 https://doi.org/10.1002/mma.10147

Read the full text = PDF  TOOLS SHARE

Abstract

In this paper, we introduce a novel dual inertial Tseng's extragradient method for solving
variational inequality problems in real Hilbert spaces, particularly those involving
pseudomonotone and Lipschitz continuous operators. Our secondary method incorporates
variable step-size, updated at each iteration based on some previous iterates. A notable
advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-
type constants and without the need for any line-search procedure. We establish the
convergence theorem of the proposed algorithms under mild assumptions. To illustrate the
numerical behavior of the algorithms and to make comparisons with other methods, we
conduct several numerical experiments. The results of these evaluations are showcased and
thoroughly examined to exemplify the practical significance and effectiveness of the proposed
methods.
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1 | INTRODUCTION

In this paper, we introduce a novel dual inertial Tseng's extragradient method
for solving variational inequality problems in real Hilbert spaces, particularly
those involving pseudomonotone and Lipschitz continuous operators. Our sec-
ondary method incorporates variable step-size, updated at each iteration based
on some previous iterates. A notable advantage of these algorithms is their abil-
ity to operate without prior knowledge of Lipschitz-type constants and without
the need for any line-search procedure. We establish the convergence theorem
of the proposed algorithms under mild assumptions. To illustrate the numeri-
cal behavior of the algorithms and to make comparisons with other methods,
we conduct several numerical experiments. The results of these evaluations are
showcased and thoroughly examined to exemplify the practical significance and

effectiveness of the proposed methods.

KEYWORDS

Lipschitz continuity, Pseudomonotone mapping, Tseng's extragradient method, Variational inequal-

ities, Weak convergence theorem

MSC CLASSIFICATION
47325, 47H09, 47H06, 47J05

Consider a real Hilbert space £, equipped with an inner product (-, -), and the associated norm || - ||. In this context, D is
defined as a nonempty, closed, and convex subset of £.

This study introduces novel iterative methods designed to address approximate solutions to the variational inequality
problem, abbreviated as VIP, within the framework of a real Hilbert space. Let P : £ — £ represent an operator, and we
define the VIP for P on the set D as follows, with reference to earlier studies [1, 2]:

Find u* € D such that (P(u*),v—u*) > 0 forall ve D. (VIP)

To initiate the convergence study of the proposed methods, we assume the following conditions:

+ (c1): The solution set for a VIP is nonempty, represented as Q.
+ (c2): An operator P : £ — & is pseudomonotone if it satisfies the pseudomonotonicity condition defined as follows:

(P(u1),uz —uy) > 0 = (P(uz), uy — u) < 0 forall uy,u, € D. (PM)

+ (c3): Furthermore, an operator P : £ — & is Lipschitz continuous if it has a positive constant L > 0 that satisfies the
Lipschitz continuity requirement stated as follows:

Math. Meth. Appl. Sci. 2024;1-28.
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1P(u1) — P(u)l|l < Llluy — uz|| forall uy,u, € D. (LC)

« (c4): Subsequently, a mapping P : £ — & is considered sequentially weakly continuous if, for any sequence {uy} that
weakly converges to u, the sequence {P(uy)} also weakly converges to P(u).

The mathematical model of the VIP encompasses a wide range of mathematical problems, such as optimization, opti-
mal control, partial differential equations, mechanics, finance, and mathematical programming. For a comprehensive
overview, please refer to previous research [3-6]. The VIP holds a lot of importance in the field of applied sciences. Numer-
ous researchers have dedicated their efforts not only to exploring theoretical aspects related to the existence and stability
of solutions but also to devising iterative methods for solving VIPs. Additionally, projection methods have emerged as cru-
cial tools for approximating numerical solutions to these inequalities, with researchers introducing various variations of
such approaches to efficiently address these challenging problems (further details are available in earlier studies [7-16])
and others in prior research [17-27].

Almost all solutions methods developed to address the challenge posed by Equation (VIP) revolve around the core
concept of projecting onto the feasible set D. Pioneers in this field, such as Korpelevich [9] and Antipin [28], devised the
extragradient methods. Let us consider the following mathematical formulation represented as Equation (1.1):

uy € D,
vk = Pplug — yP(up)l, (1.1
Ugs1 = Pplug — yPwp)].

It is critical to underline that the parameter y must satisfy the condition 0 < y < % for this approach to be effective.
During each iteration, this method employs a dual projection procedure onto the set D. It is crucial to understand that the
computational efficiency of this technique may be impacted, especially when dealing with a complex structure within the
feasible set D. In response to this constraint, we provide here multiple developed approaches for solution methods. First,
we provide the subgradient extragradient approach as described by Censor et al. [7]. This approach is expressed through
the following equations:

uy € D,
vk = Ppluy — yP(up)l, (1.2)
U1 = Pr [ug — yPp)].

It is important to note here that 0 < y < % and the set T}, is defined as follows:
Ty ={z€ & (ux—yPup) — vk, 2— ) < 0}.

The primary objective of this study to provide the improvement of Tseng's extragradient method [11], which employs only
one projection in each iteration. This approach is represented by the following formulation:

uy € D,
vk = Pplug — yP(up)l, 1.3)
Ugs1 = Vi — Y [P(v) — P(up)l,

It is crucial to emphasize that 0 < y < % However, it is important to note that these approaches have some key
drawbacks. Firstly, they rely on a fixed constant step-size rule, dependent on the mapping's Lipschitz constant, producing
an iteratively weakly convergent sequence. Determining the Lipschitz constant is often challenging or computationally
expensive. Secondly, from a computational standpoint, adhering to a set step-size limitation can impact the method's
efficiency and convergence rate.

The following natural question has been raised:

“Is it feasible to develop new double inertial Tseng's extragradient-type methods, incorporating a combination of monotonic
and non-monotonic variable step-size rules, to effectively address variational inequalities while ensuring weak convergence?”
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We provide a positive answer to the prior question: Tseng's extragradient method generates a weakly convergent iter-
ative sequence while a fixed, monotone, and nonmonotone step-size rule is used. The primary objective of this study
is to provide an improved version of Tseng's extragradient method, strengthened with double inertial extrapolation
steps. The approach we propose has been developed for addressing variational inequalities in Hilbert spaces, particularly
when the operator exhibits pseudomonotonic characteristics and conforms to the Lipschitz condition. We provide three
distinct variants of Tseng's extragradient-type methods, each featuring corresponding theorems guaranteeing weak con-
vergence. Our approach is inspired by both the projection method [11] and the inertial method [29]. Notably, our method
only requires a single projection onto the feasible set D per iteration. We conduct an extensive investigation to conclu-
sively demonstrate that, with specifically defined control parameters, the iterative sequences generated by our proposed
approaches exhibit apparent weak convergence towards a solution. Additionally, we bolster our findings with practical
examples that showcase the computational performance of our new methods compared with established ones. In recent
years, algorithms incorporating inertial extrapolation steps have garnered attention for their ability to significantly accel-
erate convergence. When these procedures are integrated into algorithms, they consistently demonstrate their potential
to reduce the number of iterations and, consequently, CPU time when solving various problem sets.

In this context, the primary goal is to develop an inertial-type technique based on the framework outlined in Tseng [11].
This method has been carefully designed to improve the convergence rate of iterative sequences. Notably, this method
draws inspiration from second-order dynamical systems known as “heavy friction balls”, as first presented by Polyak in
[29]. The utilization of knowledge gathered from two previous iterations to inform the construction of the current one
characterizes this method. Additionally, our proposed method features a notable aspect: the ability to incorporate an
inertial factor in the range [0, 1]. This distinctive characteristic sets our research apart from previous studies that did not
delve into such details. In short, our research advances our understanding of inertial approaches to solving VIPs.

The overall format of the paper is as follows: In Section 2, we delve into fundamental concepts and lay the groundwork
for our subsequent main results. Section 3 introduces our proposed methods, supported by well-established convergence
theorems that validate their effectiveness. Finally, Section 4 provides numerical data demonstrating the convergence and
overall efficacy of the proposed methods.

2 | PRELIMINARIES

This section will explore fundamental concepts, important lemmas, and key definitions. To begin, we define the metric
projection Pp(v;) for v; € € as follows:

Pp(v1) = argmin|v; — vy||.
v,ED

Lemma 2.1 ([30]). Let Pp : £ — D be a metric projection. Then, the following conditions are satisfied.
(i) v3 = Pp(v) if and only if
(1 = V3,0 —13) <0, Vv, € D.
(i)
Ivi = Po@)II” + IPp(v2) — v2|I* < [lvi —wall%, Vv € D,v € €.
(iii)
[lvi = Pp(w)| < [[vi = w2l Vv, € D,y € €.

Lemma 2.2 ([30]). Consider any vy and v, in € and ¢ € R. The following conditions are stated:

1. The square of the norm of a linear combination is expressed as follows:

£V + @ = Emall? = 1> + A = Dlwall> = £ = £)lvr = v2|.
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2. For the sum of two vectors, the following inequality holds:

V1 + va1? < [vill? + 2(v2, 01 4+ v3).

Lemma 2.3 ([31]). Assume three sequences denoted as by, c, and dy, all of which correspond to the interval [0, +o0).
For any k > 1, these sequences satisfy the following inequality:

br1 < by + di(bx — br—1) + k.

+00 +oo
Additionally, we are given that the series Y, ¢, converges, denoted as Y, cx < +oo. Under these conditions, there exists a
k=1 k=1

real number d such that 0 < di < d < 1 for every k in the set of natural numbers. Consequently,

(i) The sum of all positive parts of the differences between successive terms in the sequence by converges, denoted as
+o0

Y [bk — bk-11+ < +oo. Here, [t]; := max{t,0}.
k=1

(ii) Additionally, there exists a real number b* within the range [0, +o0) such that the limit of the sequence {by} as k
approaches infinity is equal to b*.

Lemma 2.4 ([32]). Take a nonempty subset D of a Hilbert space £ and a sequence denoted by {uy} in E. This sequence
must satisfy the following two requirements:

(i) Foreveryu € D, limy_ o |lux — u| exists.
(ii) Every sequentially weak cluster point of {uy} isin D.

Then, {uy} converges weakly to a point in D.

3 | MAIN RESULTS

In this section, introducing improved versions of Tseng's extragradient method for addressing VIPs, we employ a numer-
ical iterative method aimed at enhancing the convergence rate of the iterative sequence. This involves incorporating two
convex minimization problems with a two-step inertial scheme. The process commences from two given starting points
and systematically updates the outcome at each step using predefined formulas. Termination occurs when a specified con-
dition is met, specifically when vy = wy. Subsequent sections will delve into a comprehensive discussion of the algorithmic
procedures and conduct a thorough examination of its convergence characteristics.

Algorithm 1 Double Inertial Tseng’s Extragradient Method With Fixed Step-size Rule

1: Input: Starting iterates u_;,up € €, 0 <y < % a €[0,1), pe[0,1], ¢ € (0,1), and convex set D.
2: Output: Solution uyq

3: fork=1,2,...do

4: Calculate inertial iterations:

5: Sk = uy + a(ug — ug-1),

6: Wi = Uk + Uk — Ug—1)-

7 Solve the subproblem for v as follows:
8: Vk = Pp(Wk — i P(Wi)).

9: Determine the value of g as follows:
10: Qk = Vi + 7k [P(wk) — P(vi)].

11: Update the iteration uy; as follows:
12: Ur1 = (1 = sk + Eqk.

13: if v, = wy then

14: break > Convergence has been attained.
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Algorithm 2 Double Inertial Tseng’s Extragradient Method With Monotone Step-size Rule
1: Input: Initial iterations u_q,up € €, o > 0, a € [0,1), p € [0,1], u € (0,1), ¢ € (0,1), and convex set D.
2: Output: Solution uy;
3: fork=1,2,...do
4 Iteratively compute inertial iterations:

5: Sk = ug + a(ug — Ug-1),

6: Wi = Uy + f(Ur — Ug_1).

7: Solve the subproblem for v as follows:

8: Vk = Pp(Wk — 7k P(Wi)).

9: Determine the value of gy:
10: Qi = Vi + 7k [Pwr) — P(vp)]
11: Update the iteration uyq:
12: U1 = (1 = O)sk + Eqx.
13: The formula for yy4; is as follows:

: Hllwy—v |l : _
oy min {1 il A it Pawg) - P £0, G
yrotherwise.

14: if v = wy then
15: break > Convergence has been attained.

Lemma 3.1. A sequence of step-sizes {y,} generated by (3.1) converges to a fixed positive value y > 0.

Proof. The sequence {yx} is clearly monotone and non-increasing. Considering the Lipschitz continuity of the
mapping P, we can demonstrate the existence of a positive constant L > 0 such that:

pllwe —viell o plIwi — vl
=z
IPwi) = Pl = Lllwi — vkl| (3.2)
s H
z L

This inequality implies that the sequence {y,} has a lower bound, namely, min { % Y0 } Additionally, there exists a
positive number y > 0 such that limy_, .y, = 7. O

It is crucial to emphasize that the chosen step-size rule should align with the nature of the problem and the algorithm's
parameters. This consideration is especially significant as non-monotone rules may introduce additional computational
challenges. It is noteworthy that the selection of a step-size rule relies on the features of the VIP and the characteristics
of the optimization algorithm. Nonmonotone step-size rules may entail substantial trade-offs, such as increased memory
requirements and computational complexities, necessitating careful consideration. Consequently, determining the appro-
priate step-size rule should be based on a comprehensive evaluation of both the inherent characteristics of the problem
and the specific requirements of the algorithm.

Note 1: Algorithm 1 employs a monotone step-size rule, but it can be adapted to use a non-monotone step-size rule.
Nonmonotone step-size rules adjust the step-size based on prior iteration information, providing more adaptability and
exploration during optimization, to incorporate a nonmonotone step-size rule into the algorithm.

Choose a nonnegative real sequence denoted as {px} with the requirement that Z;:; Dk < +o0. The formula for yy, is
as follows:

[[Pw)—-PEll
Yk + Dk otherwise.

. ﬂllwk_vkll f 7) _ 7) 0
Ve = { min {Yk + Dk, —} it P(wy) (k) #0, (3.3)

Also, choose another nonnegative real sequence {py} defined as p; = 1 + d, where Z;:i dr < +00. The formula for
Yk+1 is as follows:
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N S IR _
Yirs = { i {y" P s pwp } i Pwe) = Pvi) # 0, (3.4)

Yk * Pk otherwise.
Lemma 3.2. Thesequence {yy} resulting from (3.3) converges to a fixed value y > 0 and satisfies the following inequality:
u +oo
min{z,yo} <7k < yo+ P, where P = Zpk.

k=1

Proof. The Lipschitz continuity of the mapping P yields a fixed constant L > 0. Consider the formula P(wy) —P(vy) #
0, which allows us to write the following:

Hllwic = vl pllwi — vil|
z
IP(wi) — Pl /];”Wk = Vill (3.5)
?Z-

Applying an inductive method based on 1, we prove the following:
. (H
mln{z,yo} Sr<yr+P

Now, set up the notations [yi41 — 7]t = max {0, k41 — 7i} and [yk41 — yk]™ = max {0, —(yk+1 — 71)}. Using {yi}, we
can write the following:

+oo +oo
D (et =y = Y, max {0,y — 7k} S P < 400, (3.6)
k=1 k=1
+o0 +0o0
This indicates that the series Y, (yk+1 — 7&)T is convergent. Now, examine the convergence of Y (k41 — 7)™ Let
k=1 k=1

+oo
Z (Fkt1 = 7)™ = +00.
k=1

Take advantage of the fact that:
Vvt = ¥k = et = 70" = (Pherr — 7)™

This enables us to write the following:

k k k
Ykl — Yo = Z(7k+1 =) = Z (Ve = 70" = 2 (Fk+1 = 7)™ (3.7)
k=0 k=0 k=0
Considering the limit as k — +o0 in (3.7), we obtain yy — —oco as k — oo. This contradicts our previous findings. As
k k
a result of the convergence of the series Y (yk+1 — %)t and Y, (yk+1 — vx)~, we may deduce that limy_ . yx = y. This
k=0 k=0
completes the proof. O

Lemma 3.3. Consider the mapping P : £ — &, which satisfies criteria (c1)-(c4) and a sequence {uy} generated by
Algorithm 1. Then, for any u* € Q, the inequality holds:

2 2 272 2
llge — u*lI? < llwe = w*[1? = (1= y°L?) [[wi — vl



PAKKARANANG W ILEY 7

Proof. Taking u* € Q and the definition of gx, we have the following:

g — u*|?
= [l + 7[Pwi) — Po)] — u*||?
= |lvk — u* > + 2 IPwi) — POOII® + 2y (v — u*, P(wi) — P(vi))
= [Ivk + wi — wi — u|1* + P2 Pwi) — Pl
+ 2y (v — u*, P(wg) — P(vy)) (3.8)
= [lve = wiel I + llwie = w*||? + 2(ve — wie, wye — u*)
+ 72 Pwi) = PO + 2y (v — u*, P(wi) — P(i))
= [lwie = u|I” + [[vie — wiel|? + 27 (P W), u* — vie) — 2(wyc — Ve, we — Vi)

+ 72 IPwi) — P> = 2y (Pwi) — P(v), u* — vc).

Given that

Vi = Pplwi —yP(wy)],

and it further implies that
(Wi —yPwy) = v, v =) <0, Yv € D. (3.9)

As a result, we can conclude the following:
(Wi — Vi, u* — vy < y{(Pwp), u™ — vie). (3.10)
Combining (3.8) with (3.10) gives the following result:

g — w1 < llwie — w*]1? + [[vie = wiell® + 2y (PWi), u* = vi) — 2(Wg — Vi, Wi — Vi)
+ 72 IPwi) — POoII* = 27 (P(wi) — Pwi), u* — v (3.11)
= |lwg — u*[|* = [[wk = vil|? + 72 |P(wi) — Pil|? = 27 (P (vi), v — u*).

As u* is the solution to the problem (VIP), it follows that
(Pw*),v—u*)>0,VveD.
In addition, due to the pseudomonotone property of the mapping 7 on D, we can conclude the following:
(P),v—u*) >0, Vv e D.
By inserting v = vy € D, we obtain the following:
(P(vp), v —u*) 2 0. (3.12)
Combining expressions (3.11) and (3.12), we conclude the following:

llgie — uII” < llwe = u* |1 = [lwie = viell® + 72L? lwie — il |2

(3.13)
= [lwi — u*|]> = (1 = y2L?) [lwe = wiell>.

This completes the proof of lemma. O
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Lemma 3.4. Let P : £ — & be a mapping that satisfies the conditions (c1)—(c4). Moreover, let {uy} be a sequence

generated by Algorithm 2. For any u* € Q, the following inequality holds:

2
13
e — uII* < llwie — u*||* - (1 - M22—> llwk — vell*.

k+1

Proof. Since u* € Q and using the definition of g, we obtain

llge — u** = [lvk + 7k [P(wi) = Pl — u*||?

= |lve — u*[I” + y2IIPWe) — PO + 2y — u*, P(wi) — P(vi))

= [|vk + wie — wi — u*|1* + 7 Pwi) — Pl
+ 2y (v — u*, P(wg) — P(vg))
= |lvie = wiell® + llwie = u*|I* + 2w — wi, wi — u*)
+ 7 IPwi) — Pooll?
+ 2y (v — u*, P(wg) — P(vg))
= [lwi — w* 1> + [lve — wie||?
+ 2(Vg — Wi, Vg — U*) + 2(V — Wi, Wi — V)
+ 72 IPwi) = P)I?
+ 2y (v — u*, P(wg) — P(vi)).

By using vx = Pp[wy — yxP(wy)], we have the following:
(W — 7kP(Wg) — v, v — ) < 0, Vv € D.

This implies that
(Wi = Vi, u* = Vi) < 7ie{PWie), ™ = i)

Combining Equations (3.14) and (3.16), we obtain the following:

g — w* 1> < llwe — w*|1? + [[vie = wiel)?
+ 27 (P(Wio), U — i) — 2(Wk — Ve, W — Vi)
+ 7 IIPwi) = Pl
= 2y P(wi) — P(v), u* — vg)
= [lwe — 1> = llwe — ve)?
+ 7 IIPwi) = Pl
= 27(P(i), v — u*).

It is given that u* is the solution to the problem (VIP), we have the following:

(P*),v—u*)y >0, Vve D.

Using the pseudomonotonicity feature of the mapping P on D, we may deduce the following:

(P(v),v—u*) 20, VveD.
By inserting v = v, € D, we obtain the following:

(P(i), v — u*) = 0.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Considering Equations (3.17) and (3.18), we derive the following:

2
. Yk

g = wl1? < llwie = wlI? = llwe = viell® + == llwie = iell?
k+1

) (3.19)
. I3
= [|wi — u*||® - <1 - /422—> llwi — viell>.
k+1
O
Theorem 3.5. Assume {uy} represents a sequence created by Algorithm 1 under conditions (c1)-(c4) and with
2 _
¢ < 1 and ¢ < 1+ a°—2a ‘
2 A+2e2—a)+pA+p)
Consequently, it can be inferred that the sequence {uy} weakly converges to the limit u* € Q.
Proof. By the use of Lemma 3.4, we have
)/2
* * k
g — w*|I? < [lwie — u*|]> - (1 - /422—> llwe — vell?. (3.20)
k+1
Since the step-size sequence y, — y and there exists a constant number € € (0,1 — y?) such that
},2
lim(1-p* = J|=1-2>e>0.
k—o0 J/Z
k+1
From the above explanation, there exists a fixed number K| € N such that
2
2 }/k *
1—/42— >e >0, Vk?Kl (321)
J/k+1
Furthermore, we have
g — w*lI? < llwe — u*|I?, Yk > K} (3.22)

On the other hand, we have

s —u*l| = 1(X = &)s + Eqie — u™||
= [I(1 = (s — u*) + £(gi — u)l (3.23)
=1 = Ollsc = u*I> + ¢llge — u*lI> = ¢ = Ollqic — sell*.

Substituting (3.22) into (3.23), we obtain
lluierr =l < A = Ollsic = Wl + Sllwie — wl1* = £A = Ollgie — siell®. Vk > K7 (3:24)
We observe that the update rule for the sequence is given by the following:

U1 = (1 = s + gy (3.25)
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Moreover, we can deduce from (3.25) that the difference between consecutive iterates g, and s, can be expressed
as follows:

Qr — Sk = %(ukﬂ = ). (3.26)

Substituting (3.26) into (3.24), we obtain

a-9

z k1 — sl (3.27)

2 2
e = u'll < @ = Ollse — ulI° + Sllwie — u*lI” -

By substituting the value of wy from Algorithm 1 and utilizing Lemma 2.2 (i), we can derive the following
expressions. First, we find the value of ||wy — u*||? as follows:

lwe — u*||* = lluk + Pluk — u—1) — u*||?
=1+ B)(uk — u*) — B(u—1 — u")||? (3.28)
=1+ P)llux — u*l]* = Bllug—1 — u*|I> + AQ + B)llux — wea ||

Next, we determine the value of ||s; — u*||? as follows:

lIsi — u*[1* = lluk + a(ug — ue—1) — u*||?
=1 + a)(ux — u*) — a(ue—r — u®)||? (3.29)

=1+ a)lug — w|? = allug-r — wl* + @l + @)l — w1

These formulations offer valuable insights into the connection between ||wx — u*|| and ||sx — u*|| and how they
are influenced by the parameters @ and f, along with the variances between consecutive iterates uy and uy_;. These
insights will play a crucial role in our subsequent analysis. By substituting (3.28) and (3.29) into (3.27), we obtain the
following inequality:

ltsr = w Il <A =) [(1+ )llue = uI* = allue-r = w*II? + a1 + a)llux — w111

1-9

+C [+ Pllug — u|1* = Pllug—r — u*l1> + BA + Allu — w1 |I*] — 7 lluks1 — sell®
(3.30)
<[A-OA+a)+¢A+ A lwe — w|1* = [A = O + &Y Jug—y — u*||?
1-9
#1001 = 0l +0)+ L0+ ) e = e = ) g — sell®
By replacing the value of sx and employing the Cauchy inequality, we obtain the following:
k1 — sell® = e — uk — auie — w1 (3.31)
= |1 — ukll® + @ [lug — upr |I* = 20{Uicer — Ug, Uk — Uge—1)

2lupr — ugell® + o [lug — w1 11> = 2el|tgr — vpell g — ur— |l

>luisr — el + o {Juge — e 1> — ol — uill® — allue — wea || (3.32)

=1 — @)t — uell® + (@ = &) [luk — w1 1>

These findings offer a detailed comprehension of the iterative process and the connections among the iterates
Uk, Ur+1, and the desired solution u*. These inequalities will play a pivotal role in our subsequent analysis and proofs
of convergence. By incorporating (3.32) into (3.30), we infer
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s — ]| < [A = A+ @) + A+ A lwe — u|1* = [(A = O + EB] | uge—y — u*||?
+[(1 = O+ a) + (AU + B)] llue — ur—1 1l
-9
¢
=[1 -0 +a) + A+ M e — u*l]> = [ = Oa + ¢ lugr — u*|I?
ﬂ]
¢

[(1 = @)llursr — wiell® + (@ = )|y — wia |1]

Il — wer|I?

+ A= 0a+0) + LA+ ) — (o~ a)
1=
3

(1 — @)l — ucll? (3.33)

= lluk — w1 + [(1 = Oa + EB lue — w*||> = [(A = O + £ |Juge—1 — u*||?

“g@hw—wmﬁ

+ [(1 —Oa(l+a)+ ¢+ p) — (@ —a)
_a-9
¢

(1 — @)t — ull?

= [lue = u* 11> + [(1 = Oa + EA] lue — u* 1> = [(1 = O + EB] e — ™|

+ plluk — w112 = pllugrn — el

where

C)(l_ )

and

-0

= A= Oa(l + @)+ A+ ) = (¢* - a) 7

Subsequently, we substitute
Wi = llug = ulI? = [ = Oa + EP lwemr — w1 + pllue — w12,
Following that, it is necessary to calculate

Wi — Wi = lluer — u¥)1? = [A = O + CB] e — w*I1* + plluess — uell?
=l = u* 1> + (A = O + EB 1 — u*II* — pllue — ug—1 |I? (3.34)

= (p = Wlluesr — ukll.

Let us calculate

1 1-
p-u=|SFHa- a)] - [(1 — Ol + @)+ P+ ) — (@ a>(€—g)]
_ 1—
= |¢ - - a)] ~ (1= Oa(l +a) + A+ A1 + (@ - )%] (3.39)
_ 1—
_ [ - 91— ap —(1—C)a(1+a)—Cﬁ(1+ﬁ)] .
Starting with the constraints ¢ < % and ¢ < M;_":%, let us consider the equation:
‘< 1+a” - 2a _ (3.36)

Q+2a2—a)+ pA+p)
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Considering that « € [0,1) and # € [0, 1], we can assert that (1 +2a% — «) + (1 + ) > 0. Simplifying the right-hand
side, we derive the following:

C[a+20 —a)+pA+p)] <A -) (3.37)

Moreover, we have the following:
[(1+26% = )+ B1 + B)] < %(1 — a2 (3.38)
Moreover, we can infer the following:
%(1 P —(1+20% —a)— p(L+ ) > 0. (3.39)

It is evident that (1 + 2a? — &) > a(1 + a) for a € [0, 1), leading to the following:

1-—
Tg(l - =1 -9al+a)— (1= +p) > 0. (3.40)
Furthermore, we obtain the following:
1
<=
©<3 (3.41)
=>{+¢<1
Moreover, the inequality:
{<1-¢. (3.42)

When combining (3.41) with (3.42), it implies the following:

%(1 —a)?—-A-Oa(l+a)— A+ P) = 0. (3.43)

This leads to the conclusion that

p—uz @(1—a)2—a(1+a)+Ca(1+a)—Cﬂ(1+ﬁ) > 0. (3.44)

¢

By expressing (3.34), we can rewrite it as follows:
Wis1 — i < =(p — wllugsr — ug||* < 0. (3.45)
The above analysis indicates that the sequence {¥;} is nonincreasing. Let us consider that
€=[1-0a+{p] < max{a,f} <1
This expression transforms into
Wi = llu — w1 = ellueoy — w17 + pellue — w12

From ¥, , we have

Wi = lwern — wl1? = ellue — uw*I1> + pellugers — well? (3.46)
> — el — u*|%.
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Similarly by definition of ¥y, we obtain

Wi = llue = wlI? = ellue-r — wl1? + pllug — wea|I?

>llue = u|1? = elluer — u*1>.
Inequality (3.47) suggests that

llue — w|I? < W + ellue — u'||?
<Y+ elluer — ut|l?
SEREEN STCE SRR VR [

¥,
1-¢

< + ey — u*||?.

Combining (3.46) and (3.48), we obtain

2
—Wir <ellug —u’||

y .
<e— + M lug — u*||%.
1—-¢

It follows from expressions (3.34) and (3.49) such that

n
(0= 1) X Ntk — el ¥y = ¥
k=1

+ €n+1”u0 _ u*”2

<T1+€1T1

¥,
< —— + |lug — u*||
1-—¢

By letting (n — +o0) in the above expression implies that

+00

2 Muien = uel? < +oo.
k=1

This follows that

lim |lugr — ukll = 0.
k—+o0
From expressions (3.31), we have
ltthey1 — Sk||2 = ||tk — uk||2 + az||uk - uk—1||2 — 20(Uky1 — Uk, U — Ug—1)
From expressions (3.52) and (3.53), we obtain
[lug+1 — skl| = 0 as k - +o0.
Inequality (3.33) with Lemma 2.3 and Y-, [luxs1 — ukll < +oco imply that

lim |lux — u*||> =1, for some finite [ > 0.
k—+o0

From expressions (3.28), (3.52), and (3.55), we obtain

lim |[we —u*||®> =L
k—+o0

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)



“ | WILEY

It follows that

The above expression implies that

PAKKARANANG
Combining expression (3.26) and (3.54), we have
. 1 ..
lim (qx —sK) = — lim (U1 — s) = 0. (3.57)
k—+00 é’ k—+o00
lim (S — ux) = a lim (ug — ug_1) = 0. (3.58)
k—+o0 k—+o0
lim (wg —ux) = pf lim (ug — ug_1) = 0. (3.59)
k—+oo k—+o0
Combining expressions (3.58) and (3.59), we have
lim (s —wg) = 0. (3.60)
k—+00
It follows from (3.57) and (3.60) that
lim (gx — we) = 0. (3.61)
k—+00
As a result of expressions (3.20) and (3.28), we have
y2
<1 - u22—k> Iwe = vell® < llwie — w*(1> = llge — u*|1. (3.62)
k+1
<A+ fllur — w1 = Bellug—y — w|I* + 2fllur — w11 — llge — w1 (3.63)
Sl = w*IP = Nl = w*I1I* + B (Il — w 11> = Ny — w*11?) + 2Bl — wea |1
Taking the limit as k - +oo in the expression (3.63), we obtain
lim ||wg —vi|| = 0. (3.64)
k—+00
llgk = vill = llve + ve[P(wi) = PWi)] — viell < veLllwie — vl
lim [l — vl = 0. (3.65)
Thus, the expressions (3.58), (3.59), and (3.64) give that
lim ||gx —u*|| = lim ||sg —u®|| = lim ||jvy —u*|| =1L (3.66)
k—+co k—+c0 k—+co

According to the above discussion, the sequences {u}, {vi}, {wk}, {sx}, and {qx } are bounded, and for each u* € Q,
exists the limy_ oo [[ux — u*[1%, limgo oo Uk — w*(1%, limgo oo (Wi — w|I%, limy yoo ISk — w1, limyopoo [1qi — u*]|?.
Following that, we will show that the sequence {u;} weakly converges to u*. As a result, all sequences {uy}, {wi} and
{vr} are bounded. We now demonstrate that each sequential weak cluster point in the sequence {u} is in the solution
set Q. Consider that & is a weak cluster point of {u; }, which means that there is a subsequence {uy,} of {u;} thatis
weakly convergent to &t € D. Also, subsequence {vy,} is weakly convergent to &t. Now let us prove that i € Q. It is
proven before that the sequences {wy}, {sx} and {vi} are also bounded sequences. Due to reflexivity of a Hilbert space
£ and the boundedness of a sequence {uy } guarantees that there exists a subsequence {uy, } such that {uy} =~ € £

as | - +o0. Next, we need to show that &1 € Q. By value of v, we have

i, = Pp [wi, — 7, P(wy,)]
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that is equivalent can be written as follows:
(Wi, = 71, PW,) =V, v = vg,) <0, Vv € D. (3.67)
The above inequality further implies that
(Wi, = Vi, V = Vg,) < 7, (P (Wi, v = Vg, ), YV € D. (3.68)
Thus, we obtain

1
y—(wk, = Vo V= Vi,) + (P W), i, = wy,) < (P(wg),v—wy,), Vv € D. (3.69)

ky

Due to the boundedness of the sequence {wy, }, it implies that {7(wy,)} is also a bounded sequence. By the use of
lim_ 4 [lwk, — Vi ll = 0and [ - +oo in expression (3.69), we obtain

1ilri1+££1f(P(wkl),v —wy) 20, VveD. (3.70)
Moreover, we obtain
(Pi,),v = vi,) = (PWk,) = P(Wy,), v — W, ) + (PWy,), v — wy,) + (P(V,), Wi, — Vi, )- (3.71)
Since limy_ 1 |[wg, — v, |l = 0 and P is L-Lipschitz continuous on € such that
zkﬂo 1P(wy,) — P(vi)ll = 0, (3.72)
which together with expressions (3.71) and (3.72), we obtain
lill_l}Jri;lf(P(Vk,),V - V) =0, VveD. (3.73)

Next, let us take a positive sequence {¢;} that is decreasing and converges to zero. We represent m; by the smallest
positive integer for each ¢; such that

(P(wki),v - qu-) +¢20,Vizm. (3.74)
As {€} is decreasing, it is easy to see that the sequence {my;} is increasing.

CaseI: Let {ka,, } be a subsequence of a sequence {kaz} such that P(wkm[ )=0(Vj).Letj - oo, we get

(P@).v =) = lim (P (w, ).v—2) =0. (375)

As it € D, we have it € Q.
Case II: If there exists Ny € N such that for all k,, > No, P(ka,) # 0. Consider that

P(w,, )

Yy, =—, Vk;, = Ny. 3.76
T PG 2T T (370

Due to the above definition, we have

(Pwg, ). Y, ) =1, Vkp, 2 No. (3.77)
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Moreover, from expressions (3.74) and (3.77) for all k,,,, > No, we have
(P(wg, ), v+ e Y, —wg, ) > 0. (3.78)
By the definition of pseudomonotone mapping P for k;,;, > Ny, we have
(P(v+ elYkm,)’ v+ elYka — ka) > 0. (3.79)
That is, for all k,,;, > Ny, we obtain
(P),v— ka,> > (Pv)—PW+ elYkm,)’ v+ elYkm, - ka,> —e(P©), Ykm, ). (3.80)

Due to {wy, } weakly converges to &t € D through P is sequentially weakly continuous on the set D, we get
{P(wy,)} weakly converges to P(&1). Consider that P(@1) # 0, we have

IP@I| < lim infl| PGw,)| (3.81)

Since {kal} C {wy,} and lim;_,, ¢ = 0, we have

. . € 0
0 < lim || Yk || = lim < — =0 (3.82)
Tl e [Py, ) IP@)I
For letting [ - +oo in the expression (3.80), we obtain
(P(v),v—1) 20, Vv e D. (3.83)

This demonstrates that &t € Q. Thus, Lemma 2.4 assures that {wy}, {ux} and {vx} converge weakly toj u*
as k — +oco.

O

T

alg3.2
alg3.4
- - -alg3.1| ]

0 20 40 60 80 100 120
Number of iterations

FIGURE1 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
number of iterations. These comparisons were conducted under the consideration of a spatial dimension of m = 10 and utilizing
Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | NUMERICAL ILLUSTRATIONS

In this section, we conducted a series of numerical experiments to showcase the efficacy of the proposed methodologies.
These experiments serve dual purposes: Firstly, they offer valuable insights into the process of choosing optimal control
parameters, and secondly, they illustrate the superior performance of our methods when compared to those previously
documented in the literature. It is crucial to emphasize that, throughout this section, the error term is consistently denoted
as Dy in all methods and computations under consideration. All MATLAB codes were run on a machine with the following
specifications: Intel(R) Core(TM) i5-6200 Processor CPU @ 2.30GHz 2.40GHz, and 8.00 GB RAM.

Example 4.1. The first problem is HP hard problem, originally introduced in Harker and Pang [33]. The problem
involves a mapping P that operates from R™ to R™. This mapping is defined as follows:

Pu) =Mu+q.
10" T T T \
1\ alg3.2
. Y alg3.4
100 F :_:\‘ - - -alg3.1|]
101\ E
S 102 il
10-3 E 4
10 F E
10.5 L | L | L |
0 0.1 0.2 03 0.4 0.5 06 0.7

Elapsed time [sec]

FIGURE 2 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
execution time. These comparisons were conducted under the consideration of a spatial dimension of m = 10 and utilizing Example 4.1.
[Colour figure can be viewed at wileyonlinelibrary.com]

10! T T T T T T T T
alg3.2
0 | alg3.4
107 - - -alg3.1|1
1

0 20 40 60 80 100 120 140 160 180 200
Number of iterations

FIGURE 3 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
number of iterations. These comparisons were conducted under the consideration of a spatial dimension of m = 20 and utilizing
Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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Here, the matrix M is defined as follows:

M =NNT +B+D.

In the above expressions, g is an element of R™. To clarify the components involved: N is a random matrix, where
N = rand(m). B is a skew-symmetric matrix, given by B = 0.5K — 0.5K”, where K = rand(m). D is a diagonal matrix
represented as D = diag(rand(m, 1)). Now, let us define the feasible set D as follows:

D={ueR"™: Qu<b}.

In this definition: Q is a random matrix with dimensions 100 x m, that is, Q = rand(100, m). Moreover, b is a ran-
dom vector with dimensions 100 X 1, that is, b = rand(100, 1). It is worth noting that the mapping P is both Lipschitz
continuous and monotone. The primary aim of the initial experiment is to assess the suggested algorithm under the
assumption of knowing the Lipschitz constants. It is important to highlight that, although we have access to all the

10" ¢
alg3.2
o alg3.4
10 - - —alg3.1|]
.......... algl
10-1 4
Qﬁ 102 4
108 1
1074 E
10.5 I L L L
0 0.5 1 15 2 2.5

Elapsed time [sec]

FIGURE 4 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
execution time. These comparisons were conducted under the consideration of a spatial dimension of m = 20 and utilizing Example 4.1.
[Colour figure can be viewed at wileyonlinelibrary.com]

102 v v v v v :

alg3.2
alg3.4| |
- - -alg3.1

101 fA}

10°

107"
)

10

1078

104

10°®
0 50 100 150 200 250 300 350

Number of iterations

FIGURE 5 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
number of iterations. These comparisons were conducted under the consideration of a spatial dimension of m = 30 and utilizing
Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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proposed algorithms, we specifically employed Algorithm 2 for comparative purposes in this specific scenario. This
choice was made due to the variable step-size rule in Algorithm 2, which changes with each iteration, facilitating to fin
an optimal parameter. The numerical results are presented in Figures 1 to 8 and Tables 1 and 2. A consistent pattern is
evident across all these cases: Our proposed algorithms consistently surpass the performance of pre-existing ones. It
is crucial to underscore that the chosen spatial dimension significantly influences computational performance. How-
ever, it is essential to acknowledge that algorithm performance is affected by various factors. As the spatial dimension
expands, both the number of iterations and the execution time needed to attain a solution also increase. Aside from
the spatial dimension, additional criteria come into consideration and can significantly impact the efficacy of all
corresponding algorithms.

For all algorithms, we initialize the vectors as follows: u_; = (1,1,---,1,1,,)7, up = (1,1, - -, 1,1,,)7. The condition
for termination is defined as follows: Dy = ||wy — vg||. Furthermore, for the purpose of running these algorithms in
the MATLAB environment, we have specified the following parameter conditions:

(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): a = 0.65,7; = 0.22, u = 0.90, f; = @ €x = ﬁ S =3.

10% 5
\ alg3.2
101 \ alg3.4/| |
\‘ - - -alg3.1
SN e algl
0 i.:‘:
10 i
107 ¢ E
<
102 E
103 ¢ E
104 F E
10.5 L L I L
0 0.5 1 15 2 25

Elapsed time [sec]

FIGURE 6 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
execution time. These comparisons were conducted under the consideration of a spatial dimension of m = 30 and utilizing Example 4.1.
[Colour figure can be viewed at wileyonlinelibrary.com]

103 T T T T T T
alg3.2
102 alg3.4| |
- - -alg3.1
.......... algl
10"
100 E
< 1
S i
10T 4
]
i
2 L3 i
10 N
kN N
"'.. S ~
103F S< N ]
10.4 | | RALIT "~ i L L
0 100 200 300 400 500 600 700 800

Number of iterations

FIGURE 7 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
number of iterations. These comparisons were conducted under the consideration of a spatial dimension of m = 50 and utilizing
Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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D,

102

103 F

10™

alg3.2

3

4 5

Elapsed time [sec]

FIGURE 8 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the
execution time. These comparisons were conducted under the consideration of a spatial dimension of m = 50 and utilizing Example 4.1.

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 A detailed numerical results data provided for Figures 1-8.

TABLE 2 A detailed numerical results data provided for

Figures 1-8.

0 100

400

Number of iterations

500 600 700

Number of iterations
m (alg3.2) (alg3.4) (alg3.1l) (algl)
10 114 104 84 56
20 189 146 122 82
30 311 270 217 127
50 772 549 451 354
Execution time in seconds
m (alg3.2) (alg3.4) (alg3.1) (algl)
10 0.6495358000 0.6487179000 0.6158434000 0.3862360000
20 1.7357792000 2.0538113000 1.2634578000 0.8583252000
30 1.8570223000 2.4490376000 1.2166346000 0.7644448000
50 6.9629246000 4.2014935000 5.0742774000 4.1819123000
103 ‘
alg3.2
————— alg3.4
10? - - —-alg3.1
.......... algl
101 4
Y 10°

FIGURE 9 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of
iterations. These comparisons were conducted with the initialization u, = (1,2, 3,4)” using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com]
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(2) Algorithm 3.4 in Anh etal. [35] (alg3.4): @ = 0.65, 40 = 0.22, 4 = 0.90, 7 = = fi = @ O = =(1 - fo).

. . L _ 1 _ 1 _ 1 _x
(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): @ = 0.65, 1 = 7P = 52 % = T feo=3.
(4) Algorithm 2 (algl): yo = 0.25,a = 0.55, f = 0.454, u = 0.90, ¢ = 0.328.

Example 4.2. Let us consider a mapping P : R* - R* is defined as follows:

Uy + Uy + Uz + Uy — 4urUzliy
Uy + Uy + Uz + Uy — 4uUzliy

Pu) =
Uy +uy;+us+ug — 4u1u2u4
Uy + Uy + Uz + Uy — 4uusus
108 |
alg3.2
A alg3.4
10 - - -alg3.1|:
.......... algl
10" 4
S 100 3
1073 e, TSy | n
0 1 2 3 4 5 6 7 8

Elapsed time [sec]

FIGURE 10 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.
These comparisons were conducted with the initialization u, = (1,2, 3,4)" using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com]

102 ‘
alg3.2

700

Number of iterations

FIGURE 11 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of
iterations. These comparisons were conducted with the initialization u, = (1,2, 1, 2)" using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Moreover, we define the feasible set D as follows:

D={ueR*:1<u;<5i=1,2,3,4}.

It is evident that the mapping P does not exhibit monotonic behavior within the set D. It can be proven that P is
pseudomonotone when examined within the bounds of D using a Monte Carlo technique as discussed in Hu and
Wang [37]. Furthermore, it is essential to note that the presented problem has a unique solution u* = (5, 5, 5,5)T and
u_; = (1,1,1,1)T. The termination condition is defined as D, = ||[wx — v||. Numerical results are depicted in
Figures 9-14 and Tables 3 and 4. A consistent pattern emerges across all these cases: our proposed algorithms
consistently surpass their predecessors. It is crucial to highlight that the initial selection of the starting point
does not significantly impact computational performance. However, it is essential to acknowledge that algorithm
performance is influenced by other parameters as well. The selection of initial points does not significantly affect the
number of iterations, although it does lead to variations in the time required to reach a solution. Factors beyond spatial
dimensions also play a role and can significantly impact the efficiency of all associated algorithms. Therefore, it is

102 T T T T w
alg3.2
alg3.4

10! - - -alg3.1]|

- i L L 1

0 1 2 3 4 5 6 7 8 9 10
Elapsed time [sec]

FIGURE 12 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.
These comparisons were conducted with the initialization u, = (1,2, 1,2)T using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com|

102 ‘
alg3.2
alg3.4
10" - - -alg3.1|.
.......... algl
0 J
10 |
s
107" J
107 I T, LT = TEe !
0 100 200 300 400 500 600 700

Number of iterations

FIGURE 13 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of
iterations. These comparisons were conducted with the initialization u, = (3,4, 3, 1)" using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com]
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102 T T i
alg3.2
alg3.4
10 - - -alg3.1|.
.......... algl
100 _
S
5 6

Elapsed time [sec]

FIGURE 14 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.
These comparisons were conducted with the initialization u, = (3,4, 3,1)" using Example 4.2. [Colour figure can be viewed at
wileyonlinelibrary.com]

Nl e @ o TABLE 3 The numerical results data corresponding to Figures 9 through 14
uo (alg3.2) (alg34) (alg3l) (algl) are presented.
1,2,3,H7 667 502 445 301
1,2,1,2)T 665 501 443 300
(3,4,3,DT 663 501 442 300

Tohrert S (e I cemid e TABLE 4 The numerical results
u, (alg3.2) (alg3.4) (alg3.1) (algl) data corresponding to Figures 9

(1,2,3,4)T  7.40983310000000 3.43298360000000 2.78796480000000 1.71841050000000 through 14 are presented.

(1,2,1,2)7  9.52541980000000  5.32200410000000 3.26604860000000  2.11793870000000
(3,4,3,DT  5.04958530000000 3.45173320000000 2.77985460000000 1.62941670000000

102 T T T T T

alg3.2
alg3.4
- - —alg3.1

0 20 40 60 80 100 120
Number of iterations
FIGURE 15 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number

of iterations. These comparisons were conducted using the initialization u, = 2(¢ + t*) and referring to Example 4.3. [Colour figure can be
viewed at wileyonlinelibrary.com]

crucial to emphasize that we diligently sought to identify optimal parameters for each method, particularly within the
context of Example 4.2. The objective of the second experiment was to compare the proposed method under different
starting points. For all algorithms, we initialize the parameters as follows:
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(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): & = 0.72,7; = 0.12, 4 = 0.934, fi; = (mz) ﬁ foo=23.
(2) Algorithm 3.4 in Anh et al. [35] (alg3.4): « = 0.72, 4o = 0.12, 4 = 0.934, 7 = (k+1)2 P = (3k1+2) —(1 — Bo).
(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): a = 0.72,A = — ﬂk (3k+2) (k+1)2’ fx)==z

(4) Algorithm 2 (algl): yo = 0.32,a =0.25, =0.85, u = 0.934,C 0.245 Dk = |Jlwg — vl

Example 4.3. Consider the Hilbert space &, denoted as L?([0,1]), along with its inner product defined by the
following:

1
{u,v) = / u(tv(t)dt, Yu,v € €.
0

This inner product induces a norm on &, denoted as ||u||, that is given by the following: |[u|| = 4/ /01 |u(t)|?dt. Now,
take a unit ball D within L?([0, 1]) as follows: D := {u € L2([0,1]) : |lu|| < 1}. Within this framework, we introduce

102 T T
alg3.2
alg3.4
- - —-alg3.1
100+ .......... algl |1
S 102 E
104 ¢ 3
10-6 B 4
0 0.01 0.02 0.03 0.04 0.05 0.06

Elapsed time [sec]

FIGURE 16 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the
execution time. These comparisons were conducted using the initialization uy = 2(¢ + t3) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

102 w
alg3.2
alg3.4
\ - - -alg3.1
LE ]
100 £
£
i.
o,

& 102¢ E
104 F E
100 & : w

0 20 40 60 80 100 120 140

Number of iterations

FIGURE 17 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number
of iterations. These comparisons were conducted using the initialization u, = 5¢3 exp(¢*) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com|
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a mapping P operating from D to &, defined as follows:

1
P)(t) = / (u(t) — H(t, s) f(u(s))) ds + g(0).
0

Here, the functions H(t, s), f (1), and g(t) are expressed as follows:

(t+5) t
H(t,s) = %L, fw) =cosu, gt) = e

ever—1 eve:—1

The termination condition is defined as: Dy = ||wx — V||, and u_; = t. The numerical results are depicted in Figures 15
through 20, as well as Tables 5 and 6. Additionally, specific parameter conditions have been established for the
execution of these algorithms in the MATLAB environment.

102 T T T T T T T T
alg3.2
0 alg3.4
W - - -alg3.1
100+ %
E
‘:\
[
S 102¢
104 F
10 ‘ . . Y . ‘ ‘

0 0.05 0.1 015 02 025 03 035 04 045
Elapsed time [sec]

FIGURE 18 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the
execution time. These comparisons were conducted using the initialization u, = 5¢* exp(*) and referring to Example 4.3. [Colour figure can
be viewed at wileyonlinelibrary.com]

102

alg3.2
g alg3.4
- - —-alg3.1

0 20 40 60 80 100 120
Number of iterations

FIGURE 19 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number
of iterations. These comparisons were conducted using the initialization u, = 3sin®(t) and referring to Example 4.3. [Colour figure can be
viewed at wileyonlinelibrary.com|
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alg3.2
alg3.4
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Elapsed time [sec]
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3 0.35 0.4

FIGURE 20 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the
execution time. These comparisons were conducted using the initialization u, = 3sin®(t) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 5 The numerical data outcomes for Figures 15 through 20.

TABLE 6 The numerical data outcomes for

Figures 15 through 20. u,

20+ £%)
5t3 exp(t3)
3sin?(t)

Number of iterations
U (alg3.2) (alg3.4) (alg3.1) (algl)
2(t+ %) 111 83 65 41
583 exp(t®) 122 92 73 47
3sin®(f) 115 87 68 44
Execution time in seconds
(alg3.2) (alg3.4) (alg3.1) (algl)
0.054863700000 0.04989920000 0.0371664000 0.02528950000
0.447367000000 0.32404780000 0.2584931000 0.16380220000
0.371565000000 0.30556390000 0.2347713000 0.13997550000
L = ;,f(x) =%
(4k+2) (k+1)2 2

(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): « = 0.45,7; = 0.45, u = 0.85, i = !
(2) Algorithm 3.4 in Anh et al. [35] (alg3.4): « = 0.45, Ay = 0.45, i = 0.85, 7, = ﬁ B = @ O = =(1 - fo).

(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): « = 0.45, 4 =
(4) Algorithm 2 (algl): yo = 0.45,a = 0.25, # = 0.95, u = 0.85,¢ = 0.328.

5 | CONCLUSION

1

-1 o -_1 X
o Pe= @iy €k = (k+1)2,f(x) 2

To summarize, our study has introduced a new improvement of Tseng's extragradient method, aiming to improve con-
vergence rates while concurrently reducing computational complexity, with a particular emphasis on cost reduction. The
proposed methods are specifically designed for solving VIPs in real Hilbert spaces. Initially, we achieved weak convergence
results contingent upon the operator satisfying pseudomonotonicity and Lipschitz continuity conditions. It is noteworthy
that the step-size rule we propose does not rely on Lipschitz continuity. To showcase the practical utility and real-world
applicability of our method, we conducted various numerical examples. This study represents a notable advancement in

optimizing methods for solving VIPs.
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