

Source details

Mathematical Methods in the Applied Sciences

Scopus coverage years: from 1979 to Present

Publisher: Wiley-Blackwell

ISSN: 0170-4214 E-ISSN: 1099-1476

Subject area: [Mathematics: General Mathematics](#) [Engineering: General Engineering](#)

Source type: Journal

CiteScore 2022

4.5

SJR 2022

0.628

SNIP 2022

1.084

[View all documents >](#)

[Set document alert](#)

[Save to source list](#)

[CiteScore](#) [CiteScore rank & trend](#) [Scopus content coverage](#)

Improved CiteScore methodology

CiteScore 2022 counts the citations received in 2019-2022 to articles, reviews, conference papers, book chapters and data papers published in 2019-2022, and divides this by the number of publications published in 2019-2022. [Learn more >](#)

CiteScore 2022

4.5 = $\frac{12,138 \text{ Citations 2019 - 2022}}{2,713 \text{ Documents 2019 - 2022}}$

Calculated on 05 May, 2023

CiteScoreTracker 2023

4.9 = $\frac{15,470 \text{ Citations to date}}{3,182 \text{ Documents to date}}$

Last updated on 05 April, 2024 • Updated monthly

CiteScore rank 2022

Category	Rank	Percentile
Mathematics	#33/387	91st
General Mathematics		
Engineering	#76/302	75th
General Engineering		

[View CiteScore methodology >](#) [CiteScore FAQ >](#) [Add CiteScore to your site >](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗

All content on this site: Copyright © 2024 Elsevier B.V. ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies ↗.

Mathematical Methods in the Applied Sciences

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom	Engineering Engineering (miscellaneous)	John Wiley and Sons Ltd	82
Universities and research institutions in United Kingdom	Mathematics Mathematics (miscellaneous)		
Media Ranking in United Kingdom			
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	01704214, 10991476	1979-2023	Homepage How to publish in this journal sproessig@math.tu-freiberg.de

SCOPE

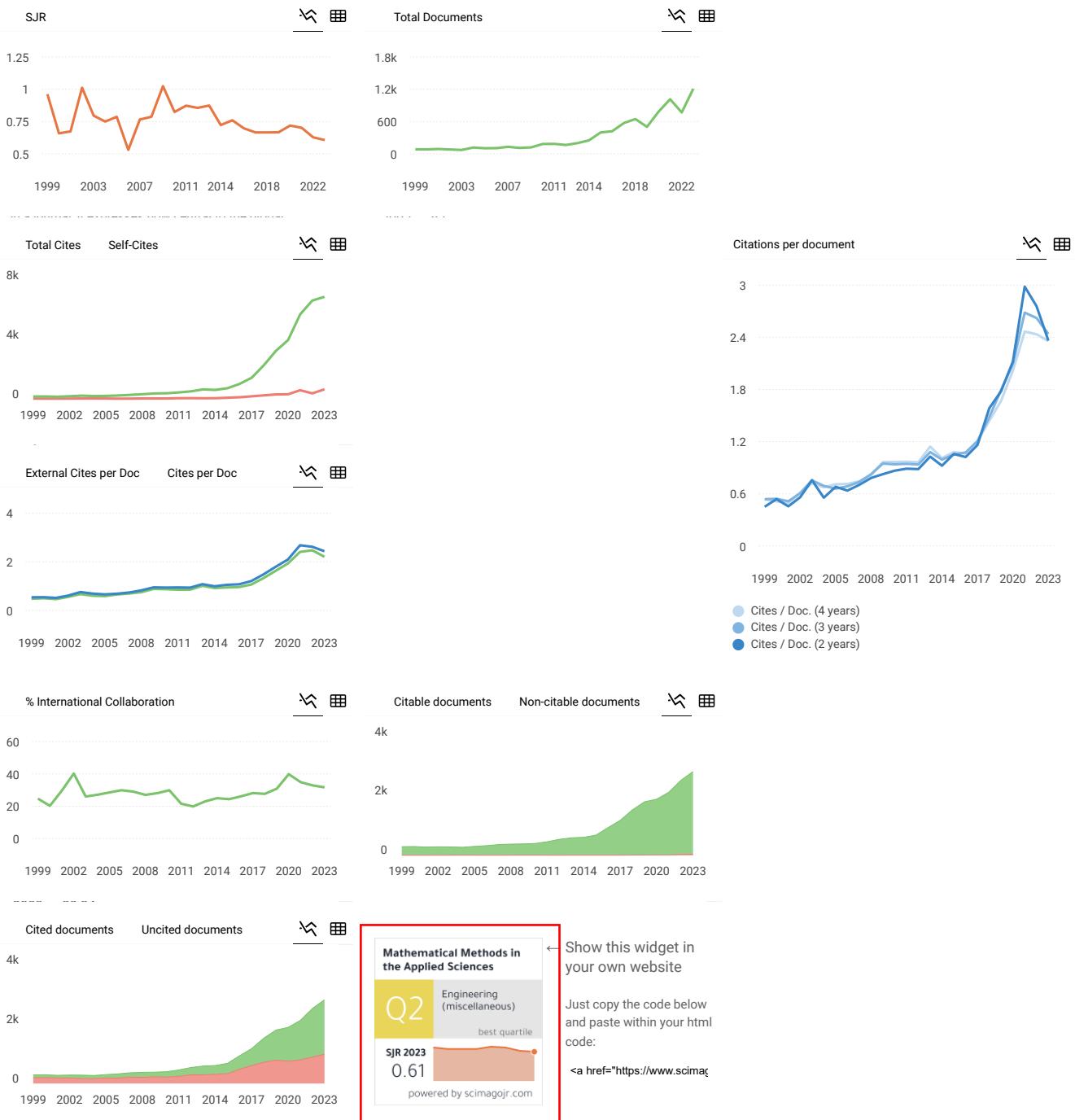
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.

 Join the conversation about this journal

 Quartiles

FIND SIMILAR JOURNALS

1	2	3	4	5
Journal of Applied Analysis and Computation USA	Differential Equations and Dynamical Systems IND	International Journal of Nonlinear Sciences and DEU	AIMS Mathematics USA	Mat Ana LTU
72% similarity	69% similarity	68% similarity	68% similarity	


 ScImago Graphica

Explore, visually communicate and make sense of data with our **new data visualization tool**.

Mathematical Methods in the Applied Sciences - Decision on Manuscript ID MMA-23-30167.R1

1 ข้อความ

Wolfgang Sprößig <onbehalfof@manuscriptcentral.com>

5 เมษายน 2567 เวลา 15:22

ตอบกลับไปยัง: wsproessig@gmail.com

ถึง: nuttapol.pak@pcru.ac.th, nuttapol.pakka@gmail.com

สำเนา: nuttapol.pak@pcru.ac.th, nuttapol.pakka@gmail.com

Dear Dr. Pakkaranang

Thank you for your manuscript entitled

Double Inertial Extragradient Algorithms for Solving Variational Inequality Problems with Convergence Analysis

Your paper is accepted for publication in the MMAS and has been sent to the publisher.

Please note although the manuscript is accepted the files will now be checked to ensure that everything is ready for publication, and you may be contacted if final versions of files for publication are required.

Your paper cannot be published until the publisher has received the appropriate signed license agreement. Within the next few days the corresponding author will receive an email from Wiley's Author Services system which will ask them to log in and will present them with the appropriate license for completion.

This journal offers a number of license options, information about this is available here: <https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/index.html>. All co-authors are required to confirm that they have the necessary rights to grant in the submission, including in light of each co-author's funder policies. For example, if you or one of your co-authors received funding from a member of Coalition S, you may need to check which licenses you are able to sign.

Sincerely yours,

Prof. Wolfgang Sprößig
Mathematical Methods in the Applied Sciences
wsproessig@gmail.com

P.S. We believe your images might be appropriate for use on the cover of the journal. This is an optional, premium service that aims to increase exposure and showcase your research through a different medium. The cost of this service is \$1440 for a front cover, which will be charged to you if your Cover Image is selected to be featured. If you would like to submit images from your paper, or an alternative original image related to the work, please email your suggestions to covers@wiley.com for consideration. Please see our Cover Image FAQ <https://authorservices.wiley.com/author-resources/Journal-Authors/Promotion/journal-cover-image.html> for details on Cover Image preparation and submission. Waivers and discounts are available, following the Wiley Open Access guidelines based on authors' location: <https://authorservices.wiley.com/open-science/open-access/for-authors/waivers-and-discounts.html>.

P.P.S. You can help your research get the attention it deserves! Check out Wiley's Promotion Guide for best-practice recommendations for promoting your work at www.wileyauthors.com/maximize.

Double inertial extragradient algorithms for solving variational inequality problems with convergence analysis

Nuttapol Pakkarang

First published: 30 April 2024 <https://doi.org/10.1002/mma.10147>[Read the full text](#) PDF TOOLS SHARE

Volume 47, Issue 14

30 September 2024

Pages 11642-11669

References Related Information

Recommended

An inertial-like Tseng's extragradient method for solving pseudomonotone variational inequalities in reflexive spaces

Oluwatosin T. Mewomo, Timilehin Amara Eze, Olaniyi S.伊iola

Mathematical Methods in the Appl

Extragradient methods for differentiable variational inequality problems in complementarity systems

S. Z. Fatemi, M. Shamsi, Farid Boz

Mathematical Methods in the Appl

Strong convergence of new iterative projection methods with regularization for solving monotone variational inequalities in Hilbert spaces

Dang Van Hieu, Le Dung Muu, Hoang Ngoc Duong, Bui Huu Tha

Mathematical Methods in the Appl

A new class of inertial algorithms with monotonic step sizes for solving monotone variational inequalities

Habib ur Rehman, Poom Kumam, Wiyada Kumam, Kamonrat Sombu

Mathematical Methods in the Appl

Modified proximal gradient method involving double inertial extrapolation for monotone inclusion

Papatsara Inkrong, Prasit Cholamj

Mathematical Methods in the Appl

[Download PDF](#)

CONFLICTS OF INTEREST STATEMENT

This work does not have any conflicts of interest.

REFERENCES

Editor-in-Chief: Wolfgang Sprößig

[JOURNAL METRICS >](#)

Online ISSN: 1099-1476

Print ISSN: 0170-4214

© John Wiley & Sons Ltd

Mathematical Methods in the Applied Sciences is an interdisciplinary applied mathematics journal addressing linear and non-linear, direct and inverse problems underlying physical processes. We help mathematicians and scientists to communicate and collaborate effectively by publishing clear, accessible papers that are mathematically advanced yet relevant across disciplines.

Our authors benefit from a simple online submission process, fast and thorough peer review provided by our internationally diverse editorial board, and quick publication times. Authors can showcase papers under consideration to the global research community as preprints with the 'Under Review' service.

Special Issues: Open for Submissions

Special Issue: "Recent Advancements in Computational Fluid Mechanics Methods"

Submission Deadline: 31 December 2024

Click [here](#) for more information.

Special Issue: "Issue on Current Trends in Applied Mathematics"

Submission Deadline: 31 May 2024

Click [here](#) for more information.

Special Issue: "International Conference of Numerical Analysis and Applied Mathematics" (ICNAAM 2021)

Submission Deadline: 25 December 2023

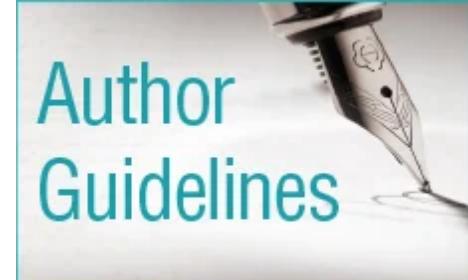
Click [here](#) for more information.

To find out more about special issues, click [here](#).

Please read our [Special Issue Proposal - short guide](#) before submitting a special issue proposal.

New Letters article type

Letters is a new section dedicated to publishing short papers addressing new ideas and opinions in *Mathematical Methods in the Applied Sciences* to facilitate the rapid dissemination of novel research ideas. Further information can be found in the [Author Guidelines](#).



On the Cover

Play Pause

[more >](#)

Articles

[Most Recent](#) [Most Cited](#)

RESEARCH ARTICLE

Block-iterative schemes for the split common fixed point problem and applications

Nguyen Buong, Nguyen Duong Nguyen, Nguyen Thi Quynh Anh

First Published: 30 April 2024

[Abstract](#) | [Full text](#) | [PDF](#) | [References](#) | [Request permissions](#)

RESEARCH ARTICLE

Modeling and analysis of visceral leishmaniasis dynamics using fractional-order operators: A comparative study

Sana Abdulkream Alharbi, Mohamed A. Abdoon, Rania Saadeh, Reima Daher Alsemiry, Reem Allogmany, Mohammed Berir, Fathelrhman EL Guma

First Published: 30 April 2024

[Abstract](#) | [Full text](#) | [PDF](#) | [References](#) | [Request permissions](#)

RESEARCH ARTICLE

Double inertial extragradient algorithms for solving variational inequality problems with convergence analysis

Nuttapol Pakkaranang

First Published: 30 April 2024

[Abstract](#) | [Full text](#) | [PDF](#) | [References](#) | [Request permissions](#)

RESEARCH ARTICLE

Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion

Papatsara Inkrong, Prasit Cholamjiak

First Published: 30 April 2024

[Abstract](#) | [Full text](#) | [PDF](#) | [References](#) | [Request permissions](#)

RESEARCH ARTICLE

Stability analysis of stochastic differential systems with state-dependent delay subject to average-delay impulses

Tian Xu, Jin-E Zhang, Ailong Wu

First Published: 30 April 2024

[Abstract](#) | [Full text](#) | [PDF](#) | [References](#) | [Request permissions](#)

[More articles](#)

Recent issues

Volume 47, Issue 7

Pages: 5349-6737

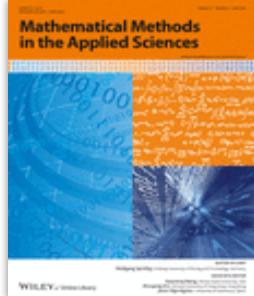
15 May 2024



Volume 47, Issue 6

Pages: 3841-5347

April 2024



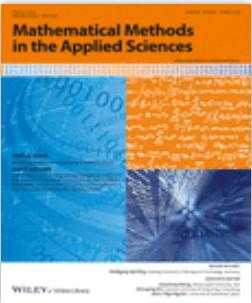
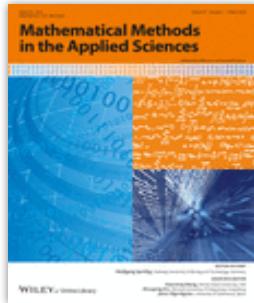
Volume 47, Issue 5

Modelling, Analysis and Applications (ICMA2SC2020)

Pages: 3041-3840

30 March 2024

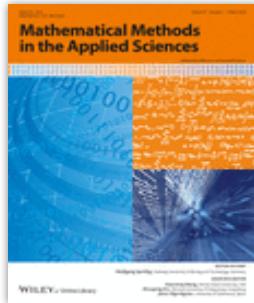
Issue Edited by:
Carla Pinto, Dia Zeidan



Volume 47, Issue 4

Pages: 1729-3040

15 March 2024



 [Sign up for email alerts](#)

 [Submit an article](#)

 [Journal Metrics](#)

 [Subscribe to this journal](#)

More from this journal

[Special Issues](#)

[Editor's Top Picks](#)

[To Our Authors: Newsletter](#)

[Video Gallery](#)

Software Architect

Reading, England

Recruiter: Atomic Weapons

Research Software Engineer

Hertfordshire or Devon

Recruiter: Rothamsted

Tableau & Dataiku Developer

Tadworth

Recruiter: CK Group

Project Manager - IT

Walton

Recruiter: CK Group

Lecturer in AI for Earth

Whiteknights Reading UK

Recruiter: University of Reading

[More jobs ▶](#)

ABOUT WILEY ONLINE LIBRARY

[Privacy Policy](#)
[Terms of Use](#)
[About Cookies](#)
[Manage Cookies](#)
[Accessibility](#)
[Wiley Research DE&I Statement and Publishing Policies](#)
[Developing World Access](#)

HELP & SUPPORT

[Contact Us](#)
[Training and Support](#)
[DMCA & Reporting Piracy](#)

OPPORTUNITIES

[Subscription Agents](#)
[Advertisers & Corporate Partners](#)

CONNECT WITH WILEY

[The Wiley Network](#)
[Wiley Press Room](#)

EDITOR-IN-CHIEF

Wolfgang Sprößig
Freiberg University of Mining and Technology
Department of Mathematics and Computer Sciences
Agricola-Strasse 1
D-09596 Freiberg
Germany
Email: sproessig@math.tu-freiberg.de

ASSOCIATE EDITORS

Xiaoming Wang, Florida State University, USA
Zhouping Xin, Chinese University of Hong Kong, Hong Kong
Jesus Vigo-Aguiar, University of Salamanca, Spain

FOUNDING EDITORS

Bruno Brosowski, Frankfurt, Germany
Gary F. Roach, Glasgow, UK

ADVISORY EDITORS

Praveen Agarwal, Anand International College of Engineering, India
Ravi P. Agarwal, Texas A&M University Kingsville, USA
Bashir Ahmad, King Abdulaziz University, Saudi Arabia
Dumitru Baleanu, Institute of Space-Sciences, Magurele-Bucharest, Romania
Jacek Banasiak, University of KwaZulu-Natal, South Africa
Rafael Bravo, Universidad de Alcalá, Spain
Martin Brokate, Technische Universität München, Germany
Krzysztof Chelminski, Warsaw University of Technology, Poland
Qiuhui Chen, Guangdong University of Foreign Studies, China

Pierluigi Colli, Università di Pavia, Italy

Fabrizio Colombo, Politecnico di Milano, Italy

Claudio Cuevas, Universidade Federal de Pernambuco, Brazil

Amar Debbouche, Guelma University, Algeria

Victor Didenko, Southern University of Science and Technology, Shenzhen, China

Guanghong Ding, Fudan University of Shanghai, China

Messoud Efendiev, Helmholtz-Center Munich, Germany

Veronica Felli, Università degli Studi di Milano-Bicocca, Italy

Arran Fernandez, Eastern Mediterranean University, Turkey

Ghislain Franssens, Belgian Institute for Space Aeronomy, Belgium

Svetlin Georgiev, University of Sofia, Bulgaria

Mark D. Groves, Universität des Saarlandes, Germany

Klaus Gürlebeck, Bauhaus Universität Weimar, Germany

Bastian Harrach, Goethe University Frankfurt, Germany

Toshiaki Hishida, Nagoya University, Japan

George C. Hsiao, University of Delaware, USA

Nuutti Hyvonen, Aalto University, Finland

Chao Ji, East China University of Science and Technology, China

Song Jiang, Institute of Applied Physics and Computational Mathematics (IAPCM), China

Alexey Karapetyants, Southern Federal University, Russia

Mokhtar Kirane, Khalifa University, United Arab Emirates

Vladislav Kravchenko, Center for Research and Advanced Studies, National Polytechnic Institute, Campus Queretaro, Mexico

Miroslaw Lachowicz, University of Warsaw, Poland

Changpin Li, Shanghai University, China

Hai-Liang Li, Capital Normal University, Beijing, China

Ta-tsien Li, Fudan University, China

Zhong-Kai Li, Nanjing University, China

Paolo Maria Mariano, University of Florence, Italy

Jochen Merker, Leipzig University of Applied Sciences (HTWK Leipzig), Germany

Salim A. Messaoudi, University of Sharjah, United Arab Emirates

Changxing Miao, Institute of Applied Physics and Computational Mathematics (IAPCM), China

Sergey Mikhailov, Brunel University, UK

Alain Miranville, University of Poitiers, France

Theodoros Monovasilis, Technological Educational Institute of Western Macedonia, Greece

Jaime E. Munoz Rivera, National Laboratory for Scientific Computation, Brazil

Serge Nicaise, Université de Valenciennes, France

Irina Nizovtseva, University Jena, Germany

Rainer Picard, Technische Universität Dresden, Germany

Carla Pinto, University of Porto, Portugal

Tao Qian, University of Macau, Macau

Yuming Qin, Donghua University Shanghai, China

Changzheng Qu, Ningbo University, China

Vicentiu Radulescu, AGH University of Science and Technology, Krakow, Poland

Maria Alessandra Ragusa, University of Catania, Italy

Martin Rasmussen, Imperial College London, UK

Reinaldo Rodriguez Ramos, University of Havana, Cuba

Alessandra De Rossi, University of Turin, Italy

Riccarda Rossi, Universita' di Brescia, Italy

Pradip Roul, Visvesvaraya National Institute of Technology, India

Micheal Reissig, Technical University Freiberg, Germany

Michael Renardy, Virginia Polytechnic and State University, USA

Tomas Roubicek, Charles University, Prague, Czech Republic

Paul Sacks, Iowa State University, USA

Igor Sevostianov, New Mexico State University, USA †

Taylan Sengul, Marmara University, Turkey

Mohsen Sheikholeslami, Babol Noshirvani University, Iran

Theodoros Simos, King Saud University, Ural Federal University, TEI of Sterea Hellas, Democratic University of Thrace, Greece

Yilmaz Simsek, Akdemiz University, Antalya, Turkey

Mourad Sini, Radon Institute for Computational and Applied Mathematics, Austria

Hari M. Srivastava, University of Victoria, Canada

Stevo Stevic, Mathematical Institute of the Serbian Academy of Sciences, Beograd, Serbia

Chunyou Sun, Lanzhou University, China

Roger Temam, Institute for Scientific Computing and Applied Mathematics, Bloomington, USA

Sascha Trostorff, Christian-Albrechts-Universität zu Kiel, Germany

Ezio Venturino, Torino University, Italy

Ya-Guang Wang, Shanghai Jiao Tong University, China

Thomas Wanner, George Mason University, USA

Marcus Waurick, University of Strathclyde, UK

Wolfgang Wendland, Universität Stuttgart, Germany

Y. Steve Xu, University of Louisville, USA

Xiao-Jun Yang, China University of Mining and Technology, China

Huicheng Yin, Nanjing University, China

Dia Zeidan, German Jordanian University, Jordan

Hai Zhang, Hong Kong University of Science and Technology, China

Jian Zhang, Hunan University of Technology and Business, China

Jian Zhang, University of Electronic Science and Technology of China, China

 [Sign up for email alerts](#)

 [Submit an article](#)

 [Journal Metrics](#)

 [Subscribe to this journal](#)

More from this journal

[Special Issues](#)

[Editor's Top Picks](#)

[To Our Authors: Newsletter](#)

[Video Gallery](#)

Software Architect

Reading, England

Recruiter: Atomic Weapons

Research Software Engineer

Hertfordshire or Devon

Recruiter: Rothamsted

Tableau & Dataiku Developer

Tadworth

Recruiter: CK Group

Project Manager - IT

Walton

Recruiter: CK Group

Lecturer in AI for Earth

Whiteknights Reading UK

Recruiter: University of Reading

[More jobs ▶](#)

ABOUT WILEY ONLINE LIBRARY

[Privacy Policy](#)

[Terms of Use](#)

[About Cookies](#)

[Manage Cookies](#)

[Accessibility](#)

[Wiley Research DE&I Statement and Publishing Policies](#)

[Developing World Access](#)

HELP & SUPPORT

[Contact Us](#)

[Training and Support](#)

[DMCA & Reporting Piracy](#)

OPPORTUNITIES

[Subscription Agents](#)

[Advertisers & Corporate Partners](#)

CONNECT WITH WILEY

[The Wiley Network](#)

[Wiley Press Room](#)

Double inertial extragradient algorithms for solving variational inequality problems with convergence analysis

Nuttapol Pakkaranang^{id}

Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand

Correspondence

Nuttapol Pakkaranang, Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, 67000, Thailand.
Email: nuttapol.pak@pcru.ac.th

Communicated by: J. Vigo-Aguiar

Funding information

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and Phetchabun Rajabhat University, Grant/Award Number: RGNS65-168

In this paper, we introduce a novel dual inertial Tseng's extragradient method for solving variational inequality problems in real Hilbert spaces, particularly those involving pseudomonotone and Lipschitz continuous operators. Our secondary method incorporates variable step-size, updated at each iteration based on some previous iterates. A notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without the need for any line-search procedure. We establish the convergence theorem of the proposed algorithms under mild assumptions. To illustrate the numerical behavior of the algorithms and to make comparisons with other methods, we conduct several numerical experiments. The results of these evaluations are showcased and thoroughly examined to exemplify the practical significance and effectiveness of the proposed methods.

KEY WORDS

Lipschitz continuity, Pseudomonotone mapping, Tseng's extragradient method, Variational inequalities, Weak convergence theorem

MSC CLASSIFICATION

47J25, 47H09, 47H06, 47J05

1 | INTRODUCTION

Consider a real Hilbert space \mathcal{E} , equipped with an inner product $\langle \cdot, \cdot \rangle$, and the associated norm $\|\cdot\|$. In this context, \mathcal{D} is defined as a nonempty, closed, and convex subset of \mathcal{E} .

This study introduces novel iterative methods designed to address approximate solutions to the variational inequality problem, abbreviated as VIP, within the framework of a real Hilbert space. Let $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$ represent an operator, and we define the VIP for \mathcal{P} on the set \mathcal{D} as follows, with reference to earlier studies [1, 2]:

$$\text{Find } u^* \in \mathcal{D} \text{ such that } \langle \mathcal{P}(u^*), v - u^* \rangle \geq 0 \text{ for all } v \in \mathcal{D}. \quad (\text{VIP})$$

To initiate the convergence study of the proposed methods, we assume the following conditions:

- **(c1):** The solution set for a VIP is nonempty, represented as Ω .
- **(c2):** An operator $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$ is pseudomonotone if it satisfies the pseudomonotonicity condition defined as follows:

$$\langle \mathcal{P}(u_1), u_2 - u_1 \rangle \geq 0 \Rightarrow \langle \mathcal{P}(u_2), u_1 - u_2 \rangle \leq 0 \text{ for all } u_1, u_2 \in \mathcal{D}. \quad (\text{PM})$$

- **(c3):** Furthermore, an operator $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$ is Lipschitz continuous if it has a positive constant $L > 0$ that satisfies the Lipschitz continuity requirement stated as follows:

$$\|\mathcal{P}(u_1) - \mathcal{P}(u_2)\| \leq L\|u_1 - u_2\| \text{ for all } u_1, u_2 \in \mathcal{D}. \quad (\text{LC})$$

- **(c4):** Subsequently, a mapping $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$ is considered sequentially weakly continuous if, for any sequence $\{u_k\}$ that weakly converges to u , the sequence $\{\mathcal{P}(u_k)\}$ also weakly converges to $\mathcal{P}(u)$.

The mathematical model of the VIP encompasses a wide range of mathematical problems, such as optimization, optimal control, partial differential equations, mechanics, finance, and mathematical programming. For a comprehensive overview, please refer to previous research [3–6]. The VIP holds a lot of importance in the field of applied sciences. Numerous researchers have dedicated their efforts not only to exploring theoretical aspects related to the existence and stability of solutions but also to devising iterative methods for solving VIPs. Additionally, projection methods have emerged as crucial tools for approximating numerical solutions to these inequalities, with researchers introducing various variations of such approaches to efficiently address these challenging problems (further details are available in earlier studies [7–16]) and others in prior research [17–27].

Almost all solutions methods developed to address the challenge posed by Equation (VIP) revolve around the core concept of projecting onto the feasible set \mathcal{D} . Pioneers in this field, such as Korpelevich [9] and Antipin [28], devised the extragradient methods. Let us consider the following mathematical formulation represented as Equation (1.1):

$$\begin{cases} u_0 \in \mathcal{D}, \\ v_k = P_{\mathcal{D}}[u_k - \gamma \mathcal{P}(u_k)], \\ u_{k+1} = P_{\mathcal{D}}[u_k - \gamma \mathcal{P}(v_k)]. \end{cases} \quad (1.1)$$

It is critical to underline that the parameter γ must satisfy the condition $0 < \gamma < \frac{1}{L}$ for this approach to be effective. During each iteration, this method employs a dual projection procedure onto the set \mathcal{D} . It is crucial to understand that the computational efficiency of this technique may be impacted, especially when dealing with a complex structure within the feasible set \mathcal{D} . In response to this constraint, we provide here multiple developed approaches for solution methods. First, we provide the subgradient extragradient approach as described by Censor et al. [7]. This approach is expressed through the following equations:

$$\begin{cases} u_0 \in \mathcal{D}, \\ v_k = P_{\mathcal{D}}[u_k - \gamma \mathcal{P}(u_k)], \\ u_{k+1} = P_{T_k}[u_k - \gamma \mathcal{P}(v_k)]. \end{cases} \quad (1.2)$$

It is important to note here that $0 < \gamma < \frac{1}{L}$, and the set T_k is defined as follows:

$$T_k = \{z \in \mathcal{E} : \langle u_k - \gamma \mathcal{P}(u_k) - v_k, z - v_k \rangle \leq 0\}.$$

The primary objective of this study to provide the improvement of Tseng's extragradient method [11], which employs only one projection in each iteration. This approach is represented by the following formulation:

$$\begin{cases} u_0 \in \mathcal{D}, \\ v_k = P_{\mathcal{D}}[u_k - \gamma \mathcal{P}(u_k)], \\ u_{k+1} = v_k - \gamma [\mathcal{P}(v_k) - \mathcal{P}(u_k)], \end{cases} \quad (1.3)$$

It is crucial to emphasize that $0 < \gamma < \frac{1}{L}$. However, it is important to note that these approaches have some key drawbacks. Firstly, they rely on a fixed constant step-size rule, dependent on the mapping's Lipschitz constant, producing an iteratively weakly convergent sequence. Determining the Lipschitz constant is often challenging or computationally expensive. Secondly, from a computational standpoint, adhering to a set step-size limitation can impact the method's efficiency and convergence rate.

The following natural question has been raised:

“Is it feasible to develop new double inertial Tseng's extragradient-type methods, incorporating a combination of monotonic and non-monotonic variable step-size rules, to effectively address variational inequalities while ensuring weak convergence?”

We provide a positive answer to the prior question: Tseng's extragradient method generates a weakly convergent iterative sequence while a fixed, monotone, and nonmonotone step-size rule is used. The primary objective of this study is to provide an improved version of Tseng's extragradient method, strengthened with double inertial extrapolation steps. The approach we propose has been developed for addressing variational inequalities in Hilbert spaces, particularly when the operator exhibits pseudomonotonic characteristics and conforms to the Lipschitz condition. We provide three distinct variants of Tseng's extragradient-type methods, each featuring corresponding theorems guaranteeing weak convergence. Our approach is inspired by both the projection method [11] and the inertial method [29]. Notably, our method only requires a single projection onto the feasible set \mathcal{D} per iteration. We conduct an extensive investigation to conclusively demonstrate that, with specifically defined control parameters, the iterative sequences generated by our proposed approaches exhibit apparent weak convergence towards a solution. Additionally, we bolster our findings with practical examples that showcase the computational performance of our new methods compared with established ones. In recent years, algorithms incorporating inertial extrapolation steps have garnered attention for their ability to significantly accelerate convergence. When these procedures are integrated into algorithms, they consistently demonstrate their potential to reduce the number of iterations and, consequently, CPU time when solving various problem sets.

In this context, the primary goal is to develop an inertial-type technique based on the framework outlined in Tseng [11]. This method has been carefully designed to improve the convergence rate of iterative sequences. Notably, this method draws inspiration from second-order dynamical systems known as “heavy friction balls”, as first presented by Polyak in [29]. The utilization of knowledge gathered from two previous iterations to inform the construction of the current one characterizes this method. Additionally, our proposed method features a notable aspect: the ability to incorporate an inertial factor in the range $[0, 1]$. This distinctive characteristic sets our research apart from previous studies that did not delve into such details. In short, our research advances our understanding of inertial approaches to solving VIPs.

The overall format of the paper is as follows: In Section 2, we delve into fundamental concepts and lay the groundwork for our subsequent main results. Section 3 introduces our proposed methods, supported by well-established convergence theorems that validate their effectiveness. Finally, Section 4 provides numerical data demonstrating the convergence and overall efficacy of the proposed methods.

2 | PRELIMINARIES

This section will explore fundamental concepts, important lemmas, and key definitions. To begin, we define the *metric projection* $P_{\mathcal{D}}(v_1)$ for $v_1 \in \mathcal{E}$ as follows:

$$P_{\mathcal{D}}(v_1) = \arg \min_{v_2 \in \mathcal{D}} \|v_1 - v_2\|.$$

Lemma 2.1 ([30]). *Let $P_{\mathcal{D}} : \mathcal{E} \rightarrow \mathcal{D}$ be a metric projection. Then, the following conditions are satisfied.*

(i) $v_3 = P_{\mathcal{D}}(v_1)$ if and only if

$$\langle v_1 - v_3, v_2 - v_3 \rangle \leq 0, \quad \forall v_2 \in \mathcal{D}.$$

(ii)

$$\|v_1 - P_{\mathcal{D}}(v_2)\|^2 + \|P_{\mathcal{D}}(v_2) - v_2\|^2 \leq \|v_1 - v_2\|^2, \quad \forall v_1 \in \mathcal{D}, v_2 \in \mathcal{E}.$$

(iii)

$$\|v_1 - P_{\mathcal{D}}(v_1)\| \leq \|v_1 - v_2\| \quad \forall v_2 \in \mathcal{D}, v_1 \in \mathcal{E}.$$

Lemma 2.2 ([30]). *Consider any v_1 and v_2 in \mathcal{E} and $\ell \in \mathbb{R}$. The following conditions are stated:*

1. *The square of the norm of a linear combination is expressed as follows:*

$$\|\ell v_1 + (1 - \ell)v_2\|^2 = \ell\|v_1\|^2 + (1 - \ell)\|v_2\|^2 - \ell(1 - \ell)\|v_1 - v_2\|^2.$$

2. For the sum of two vectors, the following inequality holds:

$$\|v_1 + v_2\|^2 \leq \|v_1\|^2 + 2\langle v_2, v_1 + v_2 \rangle.$$

Lemma 2.3 ([31]). Assume three sequences denoted as b_k , c_k , and d_k , all of which correspond to the interval $[0, +\infty)$. For any $k \geq 1$, these sequences satisfy the following inequality:

$$b_{k+1} \leq b_k + d_k(b_k - b_{k-1}) + c_k.$$

Additionally, we are given that the series $\sum_{k=1}^{+\infty} c_k$ converges, denoted as $\sum_{k=1}^{+\infty} c_k < +\infty$. Under these conditions, there exists a real number d such that $0 \leq d_k \leq d < 1$ for every k in the set of natural numbers. Consequently,

- (i) The sum of all positive parts of the differences between successive terms in the sequence b_k converges, denoted as $\sum_{k=1}^{+\infty} [b_k - b_{k-1}]_+ < +\infty$. Here, $[t]_+ := \max\{t, 0\}$.
- (ii) Additionally, there exists a real number b^* within the range $[0, +\infty)$ such that the limit of the sequence $\{b_k\}$ as k approaches infinity is equal to b^* .

Lemma 2.4 ([32]). Take a nonempty subset D of a Hilbert space \mathcal{E} and a sequence denoted by $\{u_k\}$ in \mathcal{E} . This sequence must satisfy the following two requirements:

- (i) For every $u \in D$, $\lim_{k \rightarrow +\infty} \|u_k - u\|$ exists.
- (ii) Every sequentially weak cluster point of $\{u_k\}$ is in D .

Then, $\{u_k\}$ converges weakly to a point in D .

3 | MAIN RESULTS

In this section, introducing improved versions of Tseng's extragradient method for addressing VIPs, we employ a numerical iterative method aimed at enhancing the convergence rate of the iterative sequence. This involves incorporating two convex minimization problems with a two-step inertial scheme. The process commences from two given starting points and systematically updates the outcome at each step using predefined formulas. Termination occurs when a specified condition is met, specifically when $v_k = w_k$. Subsequent sections will delve into a comprehensive discussion of the algorithmic procedures and conduct a thorough examination of its convergence characteristics.

Algorithm 1 Double Inertial Tseng's Extragradient Method With Fixed Step-size Rule

- 1: **Input:** Starting iterates $u_{-1}, u_0 \in \mathcal{E}$, $0 < \gamma_k < \frac{1}{L}$, $\alpha \in [0, 1]$, $\beta \in [0, 1]$, $\zeta \in (0, 1)$, and convex set D .
- 2: **Output:** Solution u_{k+1}
- 3: **for** $k = 1, 2, \dots$ **do**
- 4: Calculate inertial iterations:
- 5: $s_k = u_k + \alpha(u_k - u_{k-1})$,
- 6: $w_k = u_k + \beta(u_k - u_{k-1})$.
- 7: Solve the subproblem for v_k as follows:
- 8: $v_k = P_D(w_k - \gamma_k \mathcal{P}(w_k))$.
- 9: Determine the value of q_k as follows:
- 10: $q_k = v_k + \gamma_k [\mathcal{P}(w_k) - \mathcal{P}(v_k)]$.
- 11: Update the iteration u_{k+1} as follows:
- 12: $u_{k+1} = (1 - \zeta)s_k + \zeta q_k$.
- 13: **if** $v_k = w_k$ **then**
- 14: **break** ▷ Convergence has been attained.

Algorithm 2 Double Inertial Tseng's Extragradient Method With Monotone Step-size Rule

1: **Input:** Initial iterations $u_{-1}, u_0 \in \mathcal{E}$, $\gamma_0 > 0$, $\alpha \in [0, 1)$, $\beta \in [0, 1]$, $\mu \in (0, 1)$, $\zeta \in (0, 1)$, and convex set \mathcal{D} .
 2: **Output:** Solution u_{k+1}
 3: **for** $k = 1, 2, \dots$ **do**
 4: Iteratively compute inertial iterations:
 5: $s_k = u_k + \alpha(u_k - u_{k-1})$,
 6: $w_k = u_k + \beta(u_k - u_{k-1})$.
 7: Solve the subproblem for v_k as follows:
 8: $v_k = P_{\mathcal{D}}(w_k - \gamma_k \mathcal{P}(w_k))$.
 9: Determine the value of q_k :
 10: $q_k = v_k + \gamma_k [\mathcal{P}(w_k) - \mathcal{P}(v_k)]$
 11: Update the iteration u_{k+1} :
 12: $u_{k+1} = (1 - \zeta)s_k + \zeta q_k$.
 13: The formula for γ_{k+1} is as follows:

$$\gamma_{k+1} = \begin{cases} \min \left\{ \gamma_k, \frac{\mu \|w_k - v_k\|}{\|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|} \right\} & \text{if } \mathcal{P}(w_k) - \mathcal{P}(v_k) \neq 0, \\ \gamma_k & \text{otherwise.} \end{cases} \quad (3.1)$$

 14: **if** $v_k = w_k$ **then**
 15: **break** ▷ Convergence has been attained.

Lemma 3.1. *A sequence of step-sizes $\{\gamma_k\}$ generated by (3.1) converges to a fixed positive value $\gamma > 0$.*

Proof. The sequence $\{\gamma_k\}$ is clearly monotone and non-increasing. Considering the Lipschitz continuity of the mapping \mathcal{P} , we can demonstrate the existence of a positive constant $L > 0$ such that:

$$\begin{aligned} \frac{\mu \|w_k - v_k\|}{\|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|} &\geq \frac{\mu \|w_k - v_k\|}{L \|w_k - v_k\|} \\ &\geq \frac{\mu}{L}. \end{aligned} \quad (3.2)$$

This inequality implies that the sequence $\{\gamma_k\}$ has a lower bound, namely, $\min \left\{ \frac{\mu}{L}, \gamma_0 \right\}$. Additionally, there exists a positive number $\gamma > 0$ such that $\lim_{k \rightarrow \infty} \gamma_k = \gamma$. \square

It is crucial to emphasize that the chosen step-size rule should align with the nature of the problem and the algorithm's parameters. This consideration is especially significant as non-monotone rules may introduce additional computational challenges. It is noteworthy that the selection of a step-size rule relies on the features of the VIP and the characteristics of the optimization algorithm. Nonmonotone step-size rules may entail substantial trade-offs, such as increased memory requirements and computational complexities, necessitating careful consideration. Consequently, determining the appropriate step-size rule should be based on a comprehensive evaluation of both the inherent characteristics of the problem and the specific requirements of the algorithm.

Note 1: Algorithm 1 employs a monotone step-size rule, but it can be adapted to use a non-monotone step-size rule. Nonmonotone step-size rules adjust the step-size based on prior iteration information, providing more adaptability and exploration during optimization, to incorporate a nonmonotone step-size rule into the algorithm.

Choose a nonnegative real sequence denoted as $\{p_k\}$ with the requirement that $\sum_{k=1}^{+\infty} p_k < +\infty$. The formula for γ_{k+1} is as follows:

$$\gamma_{k+1} = \begin{cases} \min \left\{ \gamma_k + p_k, \frac{\mu \|w_k - v_k\|}{\|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|} \right\} & \text{if } \mathcal{P}(w_k) - \mathcal{P}(v_k) \neq 0, \\ \gamma_k + p_k & \text{otherwise.} \end{cases} \quad (3.3)$$

Also, choose another nonnegative real sequence $\{p_k\}$ defined as $p_k = 1 + d_k$, where $\sum_{k=1}^{+\infty} d_k < +\infty$. The formula for γ_{k+1} is as follows:

$$\gamma_{k+1} = \begin{cases} \min \left\{ \gamma_k \cdot p_k, \frac{\mu \|w_k - v_k\|}{\|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|} \right\} & \text{if } \mathcal{P}(w_k) - \mathcal{P}(v_k) \neq 0, \\ \gamma_k \cdot p_k & \text{otherwise.} \end{cases} \quad (3.4)$$

Lemma 3.2. *The sequence $\{\gamma_k\}$ resulting from (3.3) converges to a fixed value $\gamma > 0$ and satisfies the following inequality:*

$$\min \left\{ \frac{\mu}{L}, \gamma_0 \right\} \leq \gamma_k \leq \gamma_0 + P, \text{ where } P = \sum_{k=1}^{+\infty} p_k.$$

Proof. The Lipschitz continuity of the mapping \mathcal{P} yields a fixed constant $L > 0$. Consider the formula $\mathcal{P}(w_k) - \mathcal{P}(v_k) \neq 0$, which allows us to write the following:

$$\begin{aligned} \frac{\mu \|w_k - v_k\|}{\|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|} &\geq \frac{\mu \|w_k - v_k\|}{L \|w_k - v_k\|} \\ &\geq \frac{\mu}{L}. \end{aligned} \quad (3.5)$$

Applying an inductive method based on γ_{k+1} , we prove the following:

$$\min \left\{ \frac{\mu}{L}, \gamma_0 \right\} \leq \gamma_k \leq \gamma_0 + P.$$

Now, set up the notations $[\gamma_{k+1} - \gamma_k]^+ = \max \{0, \gamma_{k+1} - \gamma_k\}$ and $[\gamma_{k+1} - \gamma_k]^- = \max \{0, -(\gamma_{k+1} - \gamma_k)\}$. Using $\{\gamma_k\}$, we can write the following:

$$\sum_{k=1}^{+\infty} (\gamma_{k+1} - \gamma_k)^+ = \sum_{k=1}^{+\infty} \max \{0, \gamma_{k+1} - \gamma_k\} \leq P < +\infty. \quad (3.6)$$

This indicates that the series $\sum_{k=1}^{+\infty} (\gamma_{k+1} - \gamma_k)^+$ is convergent. Now, examine the convergence of $\sum_{k=1}^{+\infty} (\gamma_{k+1} - \gamma_k)^-$. Let

$$\sum_{k=1}^{+\infty} (\gamma_{k+1} - \gamma_k)^- = +\infty.$$

Take advantage of the fact that:

$$\gamma_{k+1} - \gamma_k = (\gamma_{k+1} - \gamma_k)^+ - (\gamma_{k+1} - \gamma_k)^-.$$

This enables us to write the following:

$$\gamma_{k+1} - \gamma_0 = \sum_{k=0}^k (\gamma_{k+1} - \gamma_k) = \sum_{k=0}^k (\gamma_{k+1} - \gamma_k)^+ - \sum_{k=0}^k (\gamma_{k+1} - \gamma_k)^-. \quad (3.7)$$

Considering the limit as $k \rightarrow +\infty$ in (3.7), we obtain $\gamma_k \rightarrow -\infty$ as $k \rightarrow \infty$. This contradicts our previous findings. As a result of the convergence of the series $\sum_{k=0}^k (\gamma_{k+1} - \gamma_k)^+$ and $\sum_{k=0}^k (\gamma_{k+1} - \gamma_k)^-$, we may deduce that $\lim_{k \rightarrow \infty} \gamma_k = \gamma$. This completes the proof. \square

Lemma 3.3. *Consider the mapping $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$, which satisfies criteria **(c1)–(c4)** and a sequence $\{u_k\}$ generated by Algorithm 1. Then, for any $u^* \in \Omega$, the inequality holds:*

$$\|q_k - u^*\|^2 \leq \|w_k - u^*\|^2 - (1 - \gamma^2 L^2) \|w_k - v_k\|^2.$$

Proof. Taking $u^* \in \Omega$ and the definition of q_k , we have the following:

$$\begin{aligned}
& \|q_k - u^*\|^2 \\
&= \|v_k + \gamma[\mathcal{P}(w_k) - \mathcal{P}(v_k)] - u^*\|^2 \\
&= \|v_k - u^*\|^2 + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 + 2\gamma \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\
&= \|v_k + w_k - w_k - u^*\|^2 + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\
&\quad + 2\gamma \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\
&= \|v_k - w_k\|^2 + \|w_k - u^*\|^2 + 2\langle v_k - w_k, w_k - u^* \rangle \\
&\quad + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 + 2\gamma \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\
&= \|w_k - u^*\|^2 + \|v_k - w_k\|^2 + 2\gamma \langle \mathcal{P}(w_k), u^* - v_k \rangle - 2\langle w_k - v_k, w_k - v_k \rangle \\
&\quad + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 - 2\gamma \langle \mathcal{P}(w_k) - \mathcal{P}(v_k), u^* - v_k \rangle.
\end{aligned} \tag{3.8}$$

Given that

$$v_k = P_D[w_k - \gamma \mathcal{P}(w_k)],$$

and it further implies that

$$\langle w_k - \gamma \mathcal{P}(w_k) - v_k, v - v_k \rangle \leq 0, \forall v \in \mathcal{D}. \tag{3.9}$$

As a result, we can conclude the following:

$$\langle w_k - v_k, u^* - v_k \rangle \leq \gamma \langle \mathcal{P}(w_k), u^* - v_k \rangle. \tag{3.10}$$

Combining (3.8) with (3.10) gives the following result:

$$\begin{aligned}
\|q_k - u^*\|^2 &\leq \|w_k - u^*\|^2 + \|v_k - w_k\|^2 + 2\gamma \langle \mathcal{P}(w_k), u^* - v_k \rangle - 2\langle w_k - v_k, w_k - v_k \rangle \\
&\quad + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 - 2\gamma \langle \mathcal{P}(w_k) - \mathcal{P}(v_k), u^* - v_k \rangle \\
&= \|w_k - u^*\|^2 - \|w_k - v_k\|^2 + \gamma^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 - 2\gamma \langle \mathcal{P}(v_k), v_k - u^* \rangle.
\end{aligned} \tag{3.11}$$

As u^* is the solution to the problem (VIP), it follows that

$$\langle \mathcal{P}(u^*), v - u^* \rangle \geq 0, \forall v \in \mathcal{D}.$$

In addition, due to the pseudomonotone property of the mapping \mathcal{P} on \mathcal{D} , we can conclude the following:

$$\langle \mathcal{P}(v), v - u^* \rangle \geq 0, \forall v \in \mathcal{D}.$$

By inserting $v = v_k \in \mathcal{D}$, we obtain the following:

$$\langle \mathcal{P}(v_k), v_k - u^* \rangle \geq 0. \tag{3.12}$$

Combining expressions (3.11) and (3.12), we conclude the following:

$$\begin{aligned}
\|q_k - u^*\|^2 &\leq \|w_k - u^*\|^2 - \|w_k - v_k\|^2 + \gamma^2 L^2 \|w_k - v_k\|^2 \\
&= \|w_k - u^*\|^2 - (1 - \gamma^2 L^2) \|w_k - v_k\|^2.
\end{aligned} \tag{3.13}$$

This completes the proof of lemma. \square

Lemma 3.4. Let $\mathcal{P} : \mathcal{E} \rightarrow \mathcal{E}$ be a mapping that satisfies the conditions **(c1)**–**(c4)**. Moreover, let $\{u_k\}$ be a sequence generated by Algorithm 2. For any $u^* \in \Omega$, the following inequality holds:

$$\|q_k - u^*\|^2 \leq \|w_k - u^*\|^2 - \left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) \|w_k - v_k\|^2.$$

Proof. Since $u^* \in \Omega$ and using the definition of q_k , we obtain

$$\begin{aligned} \|q_k - u^*\|^2 &= \|v_k + \gamma_k[\mathcal{P}(w_k) - \mathcal{P}(v_k)] - u^*\|^2 \\ &= \|v_k - u^*\|^2 + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 + 2\gamma_k \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\ &= \|v_k + w_k - w_k - u^*\|^2 + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\ &\quad + 2\gamma_k \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\ &= \|v_k - w_k\|^2 + \|w_k - u^*\|^2 + 2\langle v_k - w_k, w_k - u^* \rangle \\ &\quad + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\ &\quad + 2\gamma_k \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle \\ &= \|w_k - u^*\|^2 + \|v_k - w_k\|^2 \\ &\quad + 2\langle v_k - w_k, v_k - u^* \rangle + 2\langle v_k - w_k, w_k - v_k \rangle \\ &\quad + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\ &\quad + 2\gamma_k \langle v_k - u^*, \mathcal{P}(w_k) - \mathcal{P}(v_k) \rangle. \end{aligned} \tag{3.14}$$

By using $v_k = P_{\mathcal{D}}[w_k - \gamma_k \mathcal{P}(w_k)]$, we have the following:

$$\langle w_k - \gamma_k \mathcal{P}(w_k) - v_k, v - v_k \rangle \leq 0, \quad \forall v \in \mathcal{D}. \tag{3.15}$$

This implies that

$$\langle w_k - v_k, u^* - v_k \rangle \leq \gamma_k \langle \mathcal{P}(w_k), u^* - v_k \rangle. \tag{3.16}$$

Combining Equations (3.14) and (3.16), we obtain the following:

$$\begin{aligned} \|q_k - u^*\|^2 &\leq \|w_k - u^*\|^2 + \|v_k - w_k\|^2 \\ &\quad + 2\gamma_k \langle \mathcal{P}(w_k), u^* - v_k \rangle - 2\langle w_k - v_k, w_k - v_k \rangle \\ &\quad + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\ &\quad - 2\gamma_k \langle \mathcal{P}(w_k) - \mathcal{P}(v_k), u^* - v_k \rangle \\ &= \|w_k - u^*\|^2 - \|w_k - v_k\|^2 \\ &\quad + \gamma_k^2 \|\mathcal{P}(w_k) - \mathcal{P}(v_k)\|^2 \\ &\quad - 2\gamma_k \langle \mathcal{P}(v_k), v_k - u^* \rangle. \end{aligned} \tag{3.17}$$

It is given that u^* is the solution to the problem (VIP), we have the following:

$$\langle \mathcal{P}(u^*), v - u^* \rangle \geq 0, \quad \forall v \in \mathcal{D}.$$

Using the pseudomonotonicity feature of the mapping \mathcal{P} on \mathcal{D} , we may deduce the following:

$$\langle \mathcal{P}(v), v - u^* \rangle \geq 0, \quad \forall v \in \mathcal{D}.$$

By inserting $v = v_k \in \mathcal{D}$, we obtain the following:

$$\langle \mathcal{P}(v_k), v_k - u^* \rangle \geq 0. \tag{3.18}$$

Considering Equations (3.17) and (3.18), we derive the following:

$$\begin{aligned}\|q_k - u^*\|^2 &\leq \|w_k - u^*\|^2 - \|w_k - v_k\|^2 + \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2} \|w_k - v_k\|^2 \\ &= \|w_k - u^*\|^2 - \left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) \|w_k - v_k\|^2.\end{aligned}\tag{3.19}$$

□

Theorem 3.5. Assume $\{u_k\}$ represents a sequence created by Algorithm 1 under conditions **(c1)–(c4)** and with

$$\zeta \leq \frac{1}{2} \text{ and } \zeta \leq \frac{1 + \alpha^2 - 2\alpha}{(1 + 2\alpha^2 - \alpha) + \beta(1 + \beta)}.$$

Consequently, it can be inferred that the sequence $\{u_k\}$ weakly converges to the limit $u^* \in \Omega$.

Proof. By the use of Lemma 3.4, we have

$$\|q_k - u^*\|^2 \leq \|w_k - u^*\|^2 - \left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) \|w_k - v_k\|^2.\tag{3.20}$$

Since the step-size sequence $\gamma_k \rightarrow \gamma$ and there exists a constant number $\epsilon \in (0, 1 - \mu^2)$ such that

$$\lim_{k \rightarrow \infty} \left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) = 1 - \mu^2 > \epsilon > 0.$$

From the above explanation, there exists a fixed number $K_1^* \in \mathbb{N}$ such that

$$\left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) > \epsilon > 0, \quad \forall k \geq K_1^*.\tag{3.21}$$

Furthermore, we have

$$\|q_k - u^*\|^2 \leq \|w_k - u^*\|^2, \quad \forall k \geq K_1^*.\tag{3.22}$$

On the other hand, we have

$$\begin{aligned}\|u_{k+1} - u^*\| &= \|(1 - \zeta)s_k + \zeta q_k - u^*\| \\ &= \|(1 - \zeta)(s_k - u^*) + \zeta(q_k - u^*)\| \\ &= (1 - \zeta)\|s_k - u^*\|^2 + \zeta\|q_k - u^*\|^2 - \zeta(1 - \zeta)\|q_k - s_k\|^2.\end{aligned}\tag{3.23}$$

Substituting (3.22) into (3.23), we obtain

$$\|u_{k+1} - u^*\| \leq (1 - \zeta)\|s_k - u^*\|^2 + \zeta\|w_k - u^*\|^2 - \zeta(1 - \zeta)\|q_k - s_k\|^2, \quad \forall k \geq K_1^*.\tag{3.24}$$

We observe that the update rule for the sequence is given by the following:

$$u_{k+1} = (1 - \zeta)s_k + \zeta q_k.\tag{3.25}$$

Moreover, we can deduce from (3.25) that the difference between consecutive iterates q_k and s_k can be expressed as follows:

$$q_k - s_k = \frac{1}{\zeta}(u_{k+1} - s_k). \quad (3.26)$$

Substituting (3.26) into (3.24), we obtain

$$\|u_{k+1} - u^*\| \leq (1 - \zeta)\|s_k - u^*\|^2 + \zeta\|w_k - u^*\|^2 - \frac{(1 - \zeta)}{\zeta}\|u_{k+1} - s_k\|^2. \quad (3.27)$$

By substituting the value of w_k from Algorithm 1 and utilizing Lemma 2.2 (i), we can derive the following expressions. First, we find the value of $\|w_k - u^*\|^2$ as follows:

$$\begin{aligned} \|w_k - u^*\|^2 &= \|u_k + \beta(u_k - u_{k-1}) - u^*\|^2 \\ &= \|(1 + \beta)(u_k - u^*) - \beta(u_{k-1} - u^*)\|^2 \\ &= (1 + \beta)\|u_k - u^*\|^2 - \beta\|u_{k-1} - u^*\|^2 + \beta(1 + \beta)\|u_k - u_{k-1}\|^2. \end{aligned} \quad (3.28)$$

Next, we determine the value of $\|s_k - u^*\|^2$ as follows:

$$\begin{aligned} \|s_k - u^*\|^2 &= \|u_k + \alpha(u_k - u_{k-1}) - u^*\|^2 \\ &= \|(1 + \alpha)(u_k - u^*) - \alpha(u_{k-1} - u^*)\|^2 \\ &= (1 + \alpha)\|u_k - u^*\|^2 - \alpha\|u_{k-1} - u^*\|^2 + \alpha(1 + \alpha)\|u_k - u_{k-1}\|^2. \end{aligned} \quad (3.29)$$

These formulations offer valuable insights into the connection between $\|w_k - u^*\|$ and $\|s_k - u^*\|$ and how they are influenced by the parameters α and β , along with the variances between consecutive iterates u_k and u_{k-1} . These insights will play a crucial role in our subsequent analysis. By substituting (3.28) and (3.29) into (3.27), we obtain the following inequality:

$$\begin{aligned} \|u_{k+1} - u^*\| &\leq (1 - \zeta) \left[(1 + \alpha)\|u_k - u^*\|^2 - \alpha\|u_{k-1} - u^*\|^2 + \alpha(1 + \alpha)\|u_k - u_{k-1}\|^2 \right] \\ &\quad + \zeta \left[(1 + \beta)\|u_k - u^*\|^2 - \beta\|u_{k-1} - u^*\|^2 + \beta(1 + \beta)\|u_k - u_{k-1}\|^2 \right] - \frac{(1 - \zeta)}{\zeta}\|u_{k+1} - s_k\|^2 \\ &\leq [(1 - \zeta)(1 + \alpha) + \zeta(1 + \beta)]\|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta]\|u_{k-1} - u^*\|^2 \\ &\quad + [(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta)]\|u_k - u_{k-1}\|^2 - \frac{(1 - \zeta)}{\zeta}\|u_{k+1} - s_k\|^2. \end{aligned} \quad (3.30)$$

By replacing the value of s_k and employing the Cauchy inequality, we obtain the following:

$$\begin{aligned} \|u_{k+1} - s_k\|^2 &= \|u_{k+1} - u_k - \alpha(u_k - u_{k-1})\|^2 \\ &= \|u_{k+1} - u_k\|^2 + \alpha^2\|u_k - u_{k-1}\|^2 - 2\alpha\langle u_{k+1} - u_k, u_k - u_{k-1} \rangle \end{aligned} \quad (3.31)$$

$$\begin{aligned} &\geq \|u_{k+1} - u_k\|^2 + \alpha^2\|u_k - u_{k-1}\|^2 - 2\alpha\|u_{k+1} - u_k\|\|u_k - u_{k-1}\| \\ &\geq \|u_{k+1} - u_k\|^2 + \alpha^2\|u_k - u_{k-1}\|^2 - \alpha\|u_{k+1} - u_k\|^2 - \alpha\|u_k - u_{k-1}\|^2 \\ &= (1 - \alpha)\|u_{k+1} - u_k\|^2 + (\alpha^2 - \alpha)\|u_k - u_{k-1}\|^2. \end{aligned} \quad (3.32)$$

These findings offer a detailed comprehension of the iterative process and the connections among the iterates u_k , u_{k+1} , and the desired solution u^* . These inequalities will play a pivotal role in our subsequent analysis and proofs of convergence. By incorporating (3.32) into (3.30), we infer

$$\begin{aligned}
\|u_{k+1} - u^*\| &\leq [(1 - \zeta)(1 + \alpha) + \zeta(1 + \beta)] \|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 \\
&\quad + [(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta)] \|u_k - u_{k-1}\|^2 \\
&\quad - \frac{(1 - \zeta)}{\zeta} [(1 - \alpha)\|u_{k+1} - u_k\|^2 + (\alpha^2 - \alpha)\|u_k - u_{k-1}\|^2] \\
&= [(1 - \zeta)(1 + \alpha) + \zeta(1 + \beta)] \|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 \\
&\quad + \left[(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta) - (\alpha^2 - \alpha) \frac{(1 - \zeta)}{\zeta} \right] \|u_k - u_{k-1}\|^2 \\
&\quad - \frac{(1 - \zeta)}{\zeta} (1 - \alpha)\|u_{k+1} - u_k\|^2 \\
&= \|u_k - u^*\|^2 + [(1 - \zeta)\alpha + \zeta\beta] \|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 \\
&\quad + \left[(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta) - (\alpha^2 - \alpha) \frac{(1 - \zeta)}{\zeta} \right] \|u_k - u_{k-1}\|^2 \\
&\quad - \frac{(1 - \zeta)}{\zeta} (1 - \alpha)\|u_{k+1} - u_k\|^2 \\
&= \|u_k - u^*\|^2 + [(1 - \zeta)\alpha + \zeta\beta] \|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 \\
&\quad + \mu \|u_k - u_{k-1}\|^2 - \rho \|u_{k+1} - u_k\|^2
\end{aligned} \tag{3.33}$$

where

$$\rho = \frac{(1 - \zeta)}{\zeta} (1 - \alpha)$$

and

$$\mu = \left[(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta) - (\alpha^2 - \alpha) \frac{(1 - \zeta)}{\zeta} \right].$$

Subsequently, we substitute

$$\Psi_k = \|u_k - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 + \mu \|u_k - u_{k-1}\|^2.$$

Following that, it is necessary to calculate

$$\begin{aligned}
\Psi_{k+1} - \Psi_k &= \|u_{k+1} - u^*\|^2 - [(1 - \zeta)\alpha + \zeta\beta] \|u_k - u^*\|^2 + \mu \|u_{k+1} - u_k\|^2 \\
&\quad - \|u_k - u^*\|^2 + [(1 - \zeta)\alpha + \zeta\beta] \|u_{k-1} - u^*\|^2 - \mu \|u_k - u_{k-1}\|^2 \\
&\leq -(\rho - \mu) \|u_{k+1} - u_k\|^2.
\end{aligned} \tag{3.34}$$

Let us calculate

$$\begin{aligned}
\rho - \mu &= \left[\frac{(1 - \zeta)}{\zeta} (1 - \alpha) \right] - \left[(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta) - (\alpha^2 - \alpha) \frac{(1 - \zeta)}{\zeta} \right] \\
&= \left[\frac{(1 - \zeta)}{\zeta} (1 - \alpha) \right] - [(1 - \zeta)\alpha(1 + \alpha) + \zeta\beta(1 + \beta)] + \left[(\alpha^2 - \alpha) \frac{(1 - \zeta)}{\zeta} \right] \\
&= \left[\frac{(1 - \zeta)}{\zeta} (1 - \alpha)^2 - (1 - \zeta)\alpha(1 + \alpha) - \zeta\beta(1 + \beta) \right].
\end{aligned} \tag{3.35}$$

Starting with the constraints $\zeta \leq \frac{1}{2}$ and $\zeta \leq \frac{1+\alpha^2-2\alpha}{(1+2\alpha^2-\alpha)+\beta(1+\beta)}$, let us consider the equation:

$$\zeta \leq \frac{1 + \alpha^2 - 2\alpha}{(1 + 2\alpha^2 - \alpha) + \beta(1 + \beta)}. \tag{3.36}$$

Considering that $\alpha \in [0, 1]$ and $\beta \in [0, 1]$, we can assert that $(1 + 2\alpha^2 - \alpha) + \beta(1 + \beta) > 0$. Simplifying the right-hand side, we derive the following:

$$\zeta [(1 + 2\alpha^2 - \alpha) + \beta(1 + \beta)] \leq (1 - \alpha)^2. \quad (3.37)$$

Moreover, we have the following:

$$[(1 + 2\alpha^2 - \alpha) + \beta(1 + \beta)] \leq \frac{1}{\zeta}(1 - \alpha)^2. \quad (3.38)$$

Moreover, we can infer the following:

$$\frac{1}{\zeta}(1 - \alpha)^2 - (1 + 2\alpha^2 - \alpha) - \beta(1 + \beta) \geq 0. \quad (3.39)$$

It is evident that $(1 + 2\alpha^2 - \alpha) \geq \alpha(1 + \alpha)$ for $\alpha \in [0, 1]$, leading to the following:

$$\frac{1 - \zeta}{\zeta}(1 - \alpha)^2 - (1 - \zeta)\alpha(1 + \alpha) - (1 - \zeta)\beta(1 + \beta) \geq 0. \quad (3.40)$$

Furthermore, we obtain the following:

$$\begin{aligned} \zeta &\leq \frac{1}{2} \\ \Rightarrow \zeta + \zeta &\leq 1. \end{aligned} \quad (3.41)$$

Moreover, the inequality:

$$\zeta \leq 1 - \zeta. \quad (3.42)$$

When combining (3.41) with (3.42), it implies the following:

$$\frac{1 - \zeta}{\zeta}(1 - \alpha)^2 - (1 - \zeta)\alpha(1 + \alpha) - \zeta\beta(1 + \beta) \geq 0. \quad (3.43)$$

This leads to the conclusion that

$$\rho - \mu \geq \left[\frac{(1 - \zeta)}{\zeta}(1 - \alpha)^2 - \alpha(1 + \alpha) + \zeta\alpha(1 + \alpha) - \zeta\beta(1 + \beta) \right] \geq 0. \quad (3.44)$$

By expressing (3.34), we can rewrite it as follows:

$$\Psi_{k+1} - \Psi_k \leq -(\rho - \mu)\|u_{k+1} - u_k\|^2 \leq 0. \quad (3.45)$$

The above analysis indicates that the sequence $\{\Psi_k\}$ is nonincreasing. Let us consider that

$$\epsilon = [(1 - \zeta)\alpha + \zeta\beta] \leq \max\{\alpha, \beta\} < 1.$$

This expression transforms into

$$\Psi_k = \|u_k - u^*\|^2 - \epsilon\|u_{k-1} - u^*\|^2 + \mu\|u_k - u_{k-1}\|^2.$$

From Ψ_{k+1} , we have

$$\begin{aligned} \Psi_{k+1} &= \|u_{k+1} - u^*\|^2 - \epsilon\|u_k - u^*\|^2 + \mu\|u_{k+1} - u_k\|^2 \\ &\geq -\epsilon\|u_k - u^*\|^2. \end{aligned} \quad (3.46)$$

Similarly by definition of Ψ_k , we obtain

$$\begin{aligned}\Psi_k &= \|u_k - u^*\|^2 - \epsilon\|u_{k-1} - u^*\|^2 + \mu\|u_k - u_{k-1}\|^2 \\ &\geq \|u_k - u^*\|^2 - \epsilon\|u_{k-1} - u^*\|^2.\end{aligned}\quad (3.47)$$

Inequality (3.47) suggests that

$$\begin{aligned}\|u_k - u^*\|^2 &\leq \Psi_k + \epsilon\|u_{k-1} - u^*\|^2 \\ &\leq \Psi_1 + \epsilon\|u_{k-1} - u^*\|^2 \\ &\leq \dots \leq \Psi_1(\epsilon^{k-1} + \dots + 1) + \epsilon^k\|u_0 - u^*\|^2 \\ &\leq \frac{\Psi_1}{1 - \epsilon} + \epsilon^k\|u_0 - u^*\|^2.\end{aligned}\quad (3.48)$$

Combining (3.46) and (3.48), we obtain

$$\begin{aligned}-\Psi_{k+1} &\leq \epsilon\|u_k - u^*\|^2 \\ &\leq \epsilon \frac{\Psi_1}{1 - \epsilon} + \epsilon^{k+1}\|u_0 - u^*\|^2.\end{aligned}\quad (3.49)$$

It follows from expressions (3.34) and (3.49) such that

$$\begin{aligned}(\rho - \mu) \sum_{k=1}^n \|u_{k+1} - u_k\|^2 &\leq \Psi_1 - \Psi_{n+1} \\ &\leq \Psi_1 + \epsilon \frac{\Psi_1}{1 - \epsilon} + \epsilon^{n+1}\|u_0 - u^*\|^2 \\ &\leq \frac{\Psi_1}{1 - \epsilon} + \|u_0 - u^*\|^2.\end{aligned}\quad (3.50)$$

By letting $(n \rightarrow +\infty)$ in the above expression implies that

$$\sum_{k=1}^{+\infty} \|u_{k+1} - u_k\|^2 < +\infty. \quad (3.51)$$

This follows that

$$\lim_{k \rightarrow +\infty} \|u_{k+1} - u_k\| = 0. \quad (3.52)$$

From expressions (3.31), we have

$$\|u_{k+1} - s_k\|^2 = \|u_{k+1} - u_k\|^2 + \alpha^2\|u_k - u_{k-1}\|^2 - 2\alpha\langle u_{k+1} - u_k, u_k - u_{k-1} \rangle \quad (3.53)$$

From expressions (3.52) and (3.53), we obtain

$$\|u_{k+1} - s_k\| \rightarrow 0 \text{ as } k \rightarrow +\infty. \quad (3.54)$$

Inequality (3.33) with Lemma 2.3 and $\sum_{k=1}^{\infty} \|u_{k+1} - u_k\| < +\infty$ imply that

$$\lim_{k \rightarrow +\infty} \|u_k - u^*\|^2 = l, \text{ for some finite } l > 0. \quad (3.55)$$

From expressions (3.28), (3.52), and (3.55), we obtain

$$\lim_{k \rightarrow +\infty} \|w_k - u^*\|^2 = l. \quad (3.56)$$

Combining expression (3.26) and (3.54), we have

$$\lim_{k \rightarrow +\infty} (q_k - s_k) = \frac{1}{\zeta} \lim_{k \rightarrow +\infty} (u_{k+1} - s_k) = 0. \quad (3.57)$$

$$\lim_{k \rightarrow +\infty} (s_k - u_k) = \alpha \lim_{k \rightarrow +\infty} (u_k - u_{k-1}) = 0. \quad (3.58)$$

$$\lim_{k \rightarrow +\infty} (w_k - u_k) = \beta \lim_{k \rightarrow +\infty} (u_k - u_{k-1}) = 0. \quad (3.59)$$

Combining expressions (3.58) and (3.59), we have

$$\lim_{k \rightarrow +\infty} (s_k - w_k) = 0. \quad (3.60)$$

It follows from (3.57) and (3.60) that

$$\lim_{k \rightarrow +\infty} (q_k - w_k) = 0. \quad (3.61)$$

As a result of expressions (3.20) and (3.28), we have

$$\left(1 - \mu^2 \frac{\gamma_k^2}{\gamma_{k+1}^2}\right) \|w_k - v_k\|^2 \leq \|w_k - u^*\|^2 - \|q_k - u^*\|^2. \quad (3.62)$$

$$\begin{aligned} &\leq (1 + \beta_k) \|u_k - u^*\|^2 - \beta_k \|u_{k-1} - u^*\|^2 + 2\beta_k \|u_k - u_{k-1}\|^2 - \|q_k - u^*\|^2 \\ &\leq \|u_k - u^*\|^2 - \|q_k - u^*\|^2 + \beta_k (\|u_k - u^*\|^2 - \|u_{k-1} - u^*\|^2) + 2\beta_k \|u_k - u_{k-1}\|^2. \end{aligned} \quad (3.63)$$

Taking the limit as $k \rightarrow +\infty$ in the expression (3.63), we obtain

$$\lim_{k \rightarrow +\infty} \|w_k - v_k\| = 0. \quad (3.64)$$

It follows that

$$\|q_k - v_k\| = \|v_k + \gamma_k [\mathcal{P}(w_k) - \mathcal{P}(v_k)] - v_k\| \leq \gamma_k L \|w_k - v_k\|.$$

The above expression implies that

$$\lim_{k \rightarrow \infty} \|q_k - v_k\| = 0. \quad (3.65)$$

Thus, the expressions (3.58), (3.59), and (3.64) give that

$$\lim_{k \rightarrow +\infty} \|q_k - u^*\| = \lim_{k \rightarrow +\infty} \|s_k - u^*\| = \lim_{k \rightarrow +\infty} \|v_k - u^*\| = l. \quad (3.66)$$

According to the above discussion, the sequences $\{u_k\}$, $\{v_k\}$, $\{w_k\}$, $\{s_k\}$, and $\{q_k\}$ are bounded, and for each $u^* \in \Omega$, exists the $\lim_{k \rightarrow +\infty} \|u_k - u^*\|^2$, $\lim_{k \rightarrow +\infty} \|v_k - u^*\|^2$, $\lim_{k \rightarrow +\infty} \|w_k - u^*\|^2$, $\lim_{k \rightarrow +\infty} \|s_k - u^*\|^2$, $\lim_{k \rightarrow +\infty} \|q_k - u^*\|^2$. Following that, we will show that the sequence $\{u_k\}$ weakly converges to u^* . As a result, all sequences $\{u_k\}$, $\{w_k\}$ and $\{v_k\}$ are bounded. We now demonstrate that each sequential weak cluster point in the sequence $\{u_k\}$ is in the solution set Ω . Consider that \hat{u} is a weak cluster point of $\{u_k\}$, which means that there is a subsequence $\{u_{k_l}\}$ of $\{u_k\}$ that is weakly convergent to $\hat{u} \in \mathcal{D}$. Also, subsequence $\{v_{k_l}\}$ is weakly convergent to \hat{u} . Now let us prove that $\hat{u} \in \Omega$. It is proven before that the sequences $\{w_k\}$, $\{s_k\}$ and $\{v_k\}$ are also bounded sequences. Due to reflexivity of a Hilbert space \mathcal{E} and the boundedness of a sequence $\{u_k\}$ guarantees that there exists a subsequence $\{u_{k_l}\}$ such that $\{u_{k_l}\} \rightharpoonup \hat{u} \in \mathcal{E}$ as $l \rightarrow +\infty$. Next, we need to show that $\hat{u} \in \Omega$. By value of v_k , we have

$$v_{k_l} = P_{\mathcal{D}} [w_{k_l} - \gamma_{k_l} \mathcal{P}(w_{k_l})]$$

that is equivalent can be written as follows:

$$\langle w_{k_l} - \gamma_{k_l} \mathcal{P}(w_{k_l}) - v_{k_l}, v - v_{k_l} \rangle \leq 0, \forall v \in \mathcal{D}. \quad (3.67)$$

The above inequality further implies that

$$\langle w_{k_l} - v_{k_l}, v - v_{k_l} \rangle \leq \gamma_{k_l} \langle \mathcal{P}(w_{k_l}), v - v_{k_l} \rangle, \forall v \in \mathcal{D}. \quad (3.68)$$

Thus, we obtain

$$\frac{1}{\gamma_{k_l}} \langle w_{k_l} - v_{k_l}, v - v_{k_l} \rangle + \langle \mathcal{P}(w_{k_l}), v_{k_l} - w_{k_l} \rangle \leq \langle \mathcal{P}(w_{k_l}), v - w_{k_l} \rangle, \forall v \in \mathcal{D}. \quad (3.69)$$

Due to the boundedness of the sequence $\{w_{k_l}\}$, it implies that $\{\mathcal{P}(w_{k_l})\}$ is also a bounded sequence. By the use of $\lim_{l \rightarrow +\infty} \|w_{k_l} - v_{k_l}\| = 0$ and $l \rightarrow +\infty$ in expression (3.69), we obtain

$$\liminf_{l \rightarrow +\infty} \langle \mathcal{P}(w_{k_l}), v - w_{k_l} \rangle \geq 0, \forall v \in \mathcal{D}. \quad (3.70)$$

Moreover, we obtain

$$\langle \mathcal{P}(v_{k_l}), v - v_{k_l} \rangle = \langle \mathcal{P}(v_{k_l}) - \mathcal{P}(w_{k_l}), v - w_{k_l} \rangle + \langle \mathcal{P}(w_{k_l}), v - w_{k_l} \rangle + \langle \mathcal{P}(v_{k_l}), w_{k_l} - v_{k_l} \rangle. \quad (3.71)$$

Since $\lim_{l \rightarrow +\infty} \|w_{k_l} - v_{k_l}\| = 0$ and \mathcal{P} is L -Lipschitz continuous on \mathcal{E} such that

$$\lim_{l \rightarrow +\infty} \|\mathcal{P}(w_{k_l}) - \mathcal{P}(v_{k_l})\| = 0, \quad (3.72)$$

which together with expressions (3.71) and (3.72), we obtain

$$\liminf_{l \rightarrow +\infty} \langle \mathcal{P}(v_{k_l}), v - v_{k_l} \rangle \geq 0, \forall v \in \mathcal{D}. \quad (3.73)$$

Next, let us take a positive sequence $\{\epsilon_l\}$ that is decreasing and converges to zero. We represent m_l by the smallest positive integer for each ϵ_l such that

$$\langle \mathcal{P}(w_{k_l}), v - w_{k_l} \rangle + \epsilon_l \geq 0, \forall i \geq m_l. \quad (3.74)$$

As $\{\epsilon_l\}$ is decreasing, it is easy to see that the sequence $\{m_l\}$ is increasing.

Case I: Let $\{w_{k_{m_j}}\}$ be a subsequence of a sequence $\{w_{k_{m_l}}\}$ such that $\mathcal{P}(w_{k_{m_j}}) = 0$ ($\forall j$). Let $j \rightarrow \infty$, we get

$$\langle \mathcal{P}(\hat{u}), v - \hat{u} \rangle = \lim_{j \rightarrow \infty} \left\langle \mathcal{P}\left(w_{k_{m_j}}\right), v - \hat{u} \right\rangle = 0. \quad (3.75)$$

As $\hat{u} \in \mathcal{D}$, we have $\hat{u} \in \Omega$.

Case II: If there exists $N_0 \in \mathbb{N}$ such that for all $k_{m_l} \geq N_0$, $\mathcal{P}(w_{k_{m_l}}) \neq 0$. Consider that

$$\Upsilon_{k_{m_l}} = \frac{\mathcal{P}(w_{k_{m_l}})}{\|\mathcal{P}(w_{k_{m_l}})\|^2}, \forall k_{m_l} \geq N_0. \quad (3.76)$$

Due to the above definition, we have

$$\langle \mathcal{P}(w_{k_{m_l}}), \Upsilon_{k_{m_l}} \rangle = 1, \forall k_{m_l} \geq N_0. \quad (3.77)$$

Moreover, from expressions (3.74) and (3.77) for all $k_{m_l} \geq N_0$, we have

$$\langle \mathcal{P}(w_{k_{m_l}}), v + \epsilon_l Y_{k_{m_l}} - w_{k_{m_l}} \rangle \geq 0. \quad (3.78)$$

By the definition of pseudomonotone mapping \mathcal{P} for $k_{m_l} \geq N_0$, we have

$$\langle \mathcal{P}(v + \epsilon_l Y_{k_{m_l}}), v + \epsilon_l Y_{k_{m_l}} - w_{k_{m_l}} \rangle \geq 0. \quad (3.79)$$

That is, for all $k_{m_l} \geq N_0$, we obtain

$$\langle \mathcal{P}(v), v - w_{k_{m_l}} \rangle \geq \langle \mathcal{P}(v) - \mathcal{P}(v + \epsilon_l Y_{k_{m_l}}), v + \epsilon_l Y_{k_{m_l}} - w_{k_{m_l}} \rangle - \epsilon_l \langle \mathcal{P}(v), Y_{k_{m_l}} \rangle. \quad (3.80)$$

Due to $\{w_{k_l}\}$ weakly converges to $\hat{u} \in \mathcal{D}$ through \mathcal{P} is sequentially weakly continuous on the set \mathcal{D} , we get $\{\mathcal{P}(w_{k_l})\}$ weakly converges to $\mathcal{P}(\hat{u})$. Consider that $\mathcal{P}(\hat{u}) \neq 0$, we have

$$\|\mathcal{P}(\hat{u})\| \leq \liminf_{l \rightarrow \infty} \|\mathcal{P}(w_{k_l})\|. \quad (3.81)$$

Since $\{w_{k_{m_l}}\} \subset \{w_{k_l}\}$ and $\lim_{l \rightarrow \infty} \epsilon_l = 0$, we have

$$0 \leq \lim_{l \rightarrow \infty} \|\epsilon_l Y_{k_{m_l}}\| = \lim_{l \rightarrow \infty} \frac{\epsilon_l}{\|\mathcal{P}(w_{k_{m_l}})\|} \leq \frac{0}{\|\mathcal{P}(\hat{u})\|} = 0. \quad (3.82)$$

For letting $l \rightarrow +\infty$ in the expression (3.80), we obtain

$$\langle \mathcal{P}(v), v - \hat{u} \rangle \geq 0, \quad \forall v \in \mathcal{D}. \quad (3.83)$$

This demonstrates that $\hat{u} \in \Omega$. Thus, Lemma 2.4 assures that $\{w_k\}$, $\{u_k\}$ and $\{v_k\}$ converge weakly to u^* as $k \rightarrow +\infty$.

□

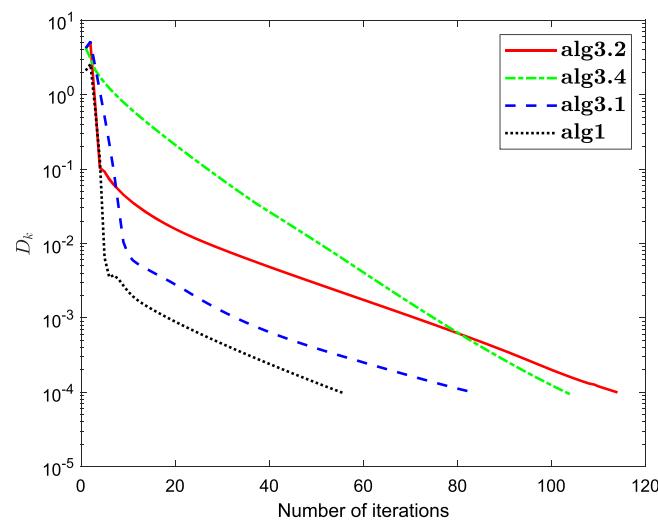


FIGURE 1 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the number of iterations. These comparisons were conducted under the consideration of a spatial dimension of $m = 10$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

4 | NUMERICAL ILLUSTRATIONS

In this section, we conducted a series of numerical experiments to showcase the efficacy of the proposed methodologies. These experiments serve dual purposes: Firstly, they offer valuable insights into the process of choosing optimal control parameters, and secondly, they illustrate the superior performance of our methods when compared to those previously documented in the literature. It is crucial to emphasize that, throughout this section, the error term is consistently denoted as D_k in all methods and computations under consideration. All MATLAB codes were run on a machine with the following specifications: Intel(R) Core(TM) i5-6200 Processor CPU @ 2.30GHz 2.40GHz, and 8.00 GB RAM.

Example 4.1. The first problem is HP hard problem, originally introduced in Harker and Pang [33]. The problem involves a mapping \mathcal{P} that operates from \mathbb{R}^m to \mathbb{R}^m . This mapping is defined as follows:

$$\mathcal{P}(u) = Mu + q.$$

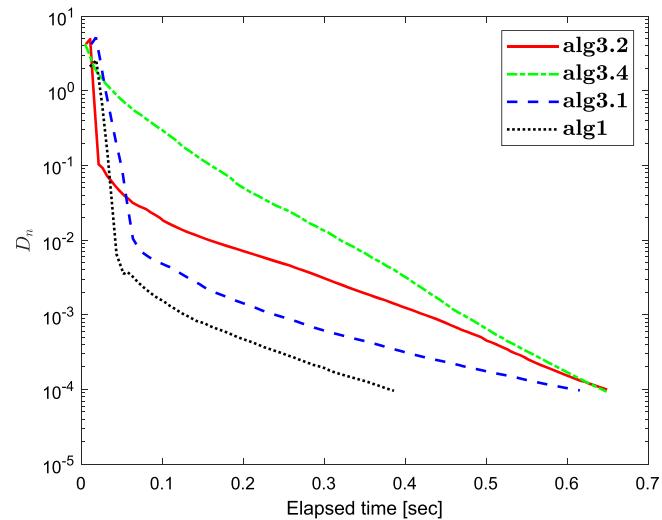


FIGURE 2 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the execution time. These comparisons were conducted under the consideration of a spatial dimension of $m = 10$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

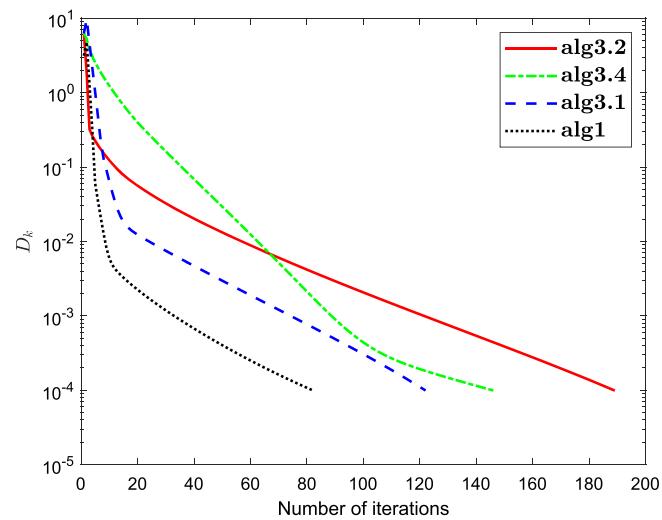


FIGURE 3 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the number of iterations. These comparisons were conducted under the consideration of a spatial dimension of $m = 20$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

Here, the matrix M is defined as follows:

$$M = NN^T + B + D.$$

In the above expressions, q is an element of \mathbb{R}^m . To clarify the components involved: N is a random matrix, where $N = \text{rand}(m)$. B is a skew-symmetric matrix, given by $B = 0.5K - 0.5K^T$, where $K = \text{rand}(m)$. D is a diagonal matrix represented as $D = \text{diag}(\text{rand}(m, 1))$. Now, let us define the feasible set \mathcal{D} as follows:

$$\mathcal{D} = \{u \in \mathbb{R}^m : Qu \leq b\}.$$

In this definition: Q is a random matrix with dimensions $100 \times m$, that is, $Q = \text{rand}(100, m)$. Moreover, b is a random vector with dimensions 100×1 , that is, $b = \text{rand}(100, 1)$. It is worth noting that the mapping \mathcal{P} is both Lipschitz continuous and monotone. The primary aim of the initial experiment is to assess the suggested algorithm under the assumption of knowing the Lipschitz constants. It is important to highlight that, although we have access to all the

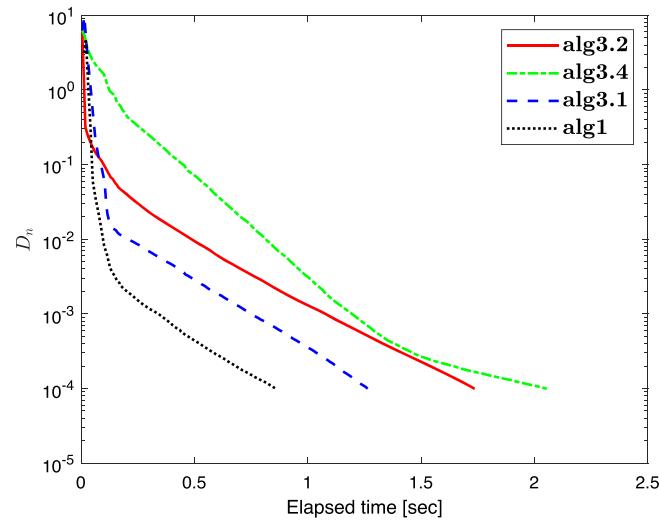


FIGURE 4 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the execution time. These comparisons were conducted under the consideration of a spatial dimension of $m = 20$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

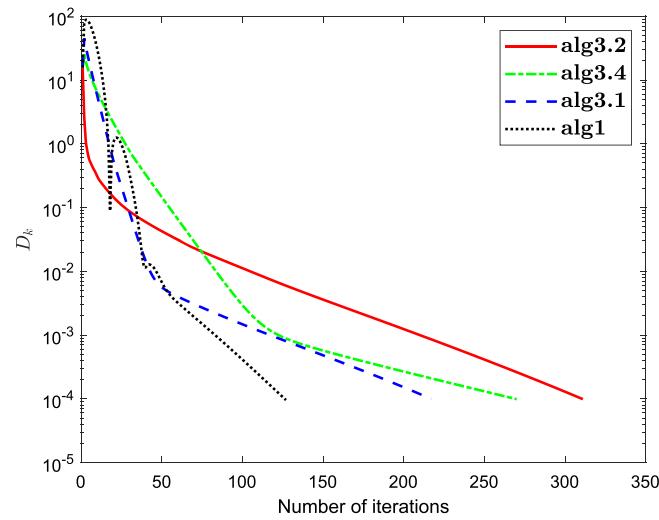


FIGURE 5 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the number of iterations. These comparisons were conducted under the consideration of a spatial dimension of $m = 30$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

proposed algorithms, we specifically employed Algorithm 2 for comparative purposes in this specific scenario. This choice was made due to the variable step-size rule in Algorithm 2, which changes with each iteration, facilitating to find an optimal parameter. The numerical results are presented in Figures 1 to 8 and Tables 1 and 2. A consistent pattern is evident across all these cases: Our proposed algorithms consistently surpass the performance of pre-existing ones. It is crucial to underscore that the chosen spatial dimension significantly influences computational performance. However, it is essential to acknowledge that algorithm performance is affected by various factors. As the spatial dimension expands, both the number of iterations and the execution time needed to attain a solution also increase. Aside from the spatial dimension, additional criteria come into consideration and can significantly impact the efficacy of all corresponding algorithms.

For all algorithms, we initialize the vectors as follows: $u_{-1} = (1, 1, \dots, 1, 1_m)^T$, $u_0 = (1, 1, \dots, 1, 1_m)^T$. The condition for termination is defined as follows: $D_k = \|w_k - v_k\|$. Furthermore, for the purpose of running these algorithms in the MATLAB environment, we have specified the following parameter conditions:

(1) Algorithm 3.2 in Thong et al. [34] (**alg3.2**): $\alpha = 0.65$, $\tau_1 = 0.22$, $\mu = 0.90$, $\beta_k = \frac{1}{(5k+2)}$, $\epsilon_k = \frac{1}{(k+1)^2}$, $f(x) = \frac{x}{2}$.

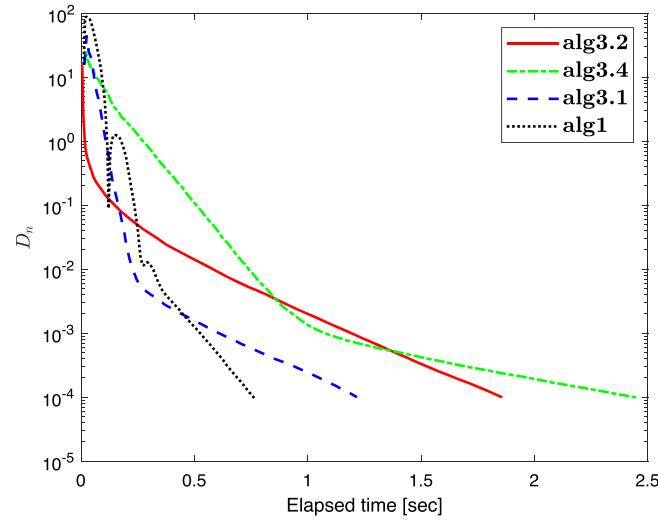


FIGURE 6 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the execution time. These comparisons were conducted under the consideration of a spatial dimension of $m = 30$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

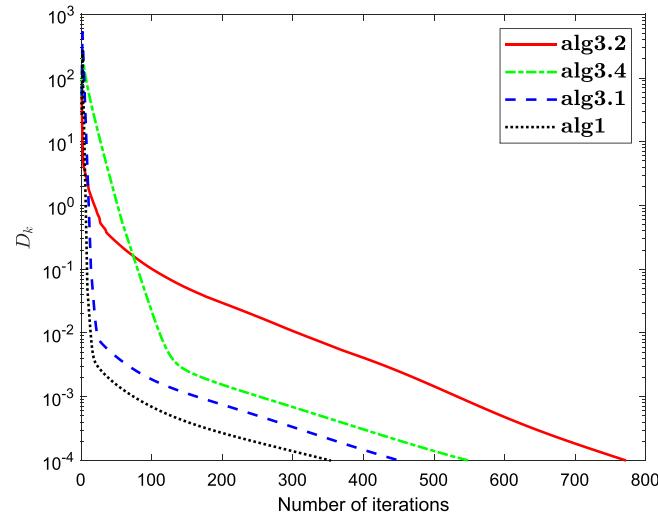


FIGURE 7 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the number of iterations. These comparisons were conducted under the consideration of a spatial dimension of $m = 50$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

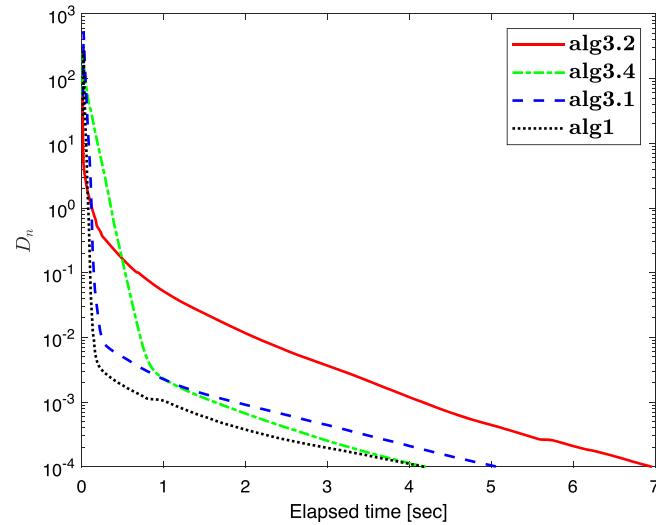


FIGURE 8 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the execution time. These comparisons were conducted under the consideration of a spatial dimension of $m = 50$ and utilizing Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 A detailed numerical results data provided for Figures 1–8.

m	Number of iterations			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
10	114	104	84	56
20	189	146	122	82
30	311	270	217	127
50	772	549	451	354

TABLE 2 A detailed numerical results data provided for Figures 1–8.

m	Execution time in seconds			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
10	0.6495358000	0.6487179000	0.6158434000	0.3862360000
20	1.7357792000	2.0538113000	1.2634578000	0.8583252000
30	1.8570223000	2.4490376000	1.2166346000	0.7644448000
50	6.9629246000	4.2014935000	5.0742774000	4.1819123000

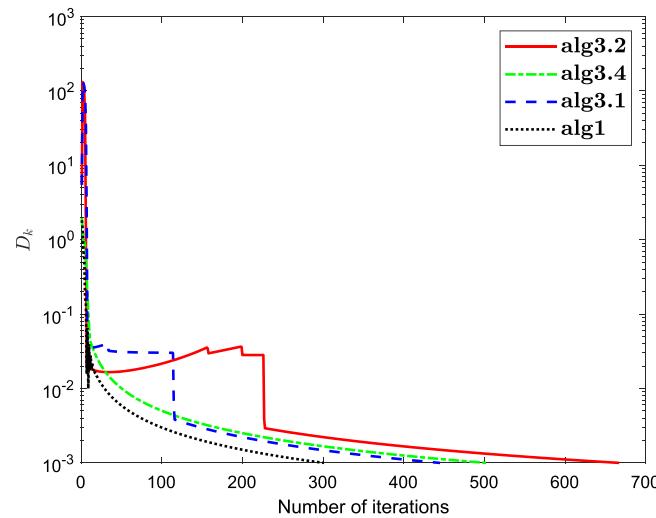


FIGURE 9 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of iterations. These comparisons were conducted with the initialization $u_0 = (1, 2, 3, 4)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

- (2) Algorithm 3.4 in Anh et al. [35] (**alg3.4**): $\alpha = 0.65, \lambda_0 = 0.22, \mu = 0.90, \tau_k = \frac{1}{(k+1)^2}, \beta_k = \frac{1}{(5k+2)}, \theta_k = \frac{4}{10}(1 - \beta_k)$.
- (3) Algorithm 3.1 in Thong et al. [36] (**alg3.1**): $\alpha = 0.65, \lambda = \frac{1}{2L}, \beta_k = \frac{1}{(5k+2)}, \epsilon_k = \frac{1}{(k+1)^2}, f(x) = \frac{x}{2}$.
- (4) Algorithm 2 (**alg1**): $\gamma_0 = 0.25, \alpha = 0.55, \beta = 0.454, \mu = 0.90, \zeta = 0.328$.

Example 4.2. Let us consider a mapping $\mathcal{P} : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ is defined as follows:

$$\mathcal{P}(u) = \begin{pmatrix} u_1 + u_2 + u_3 + u_4 - 4u_2u_3u_4 \\ u_1 + u_2 + u_3 + u_4 - 4u_1u_3u_4 \\ u_1 + u_2 + u_3 + u_4 - 4u_1u_2u_4 \\ u_1 + u_2 + u_3 + u_4 - 4u_1u_2u_3 \end{pmatrix}.$$

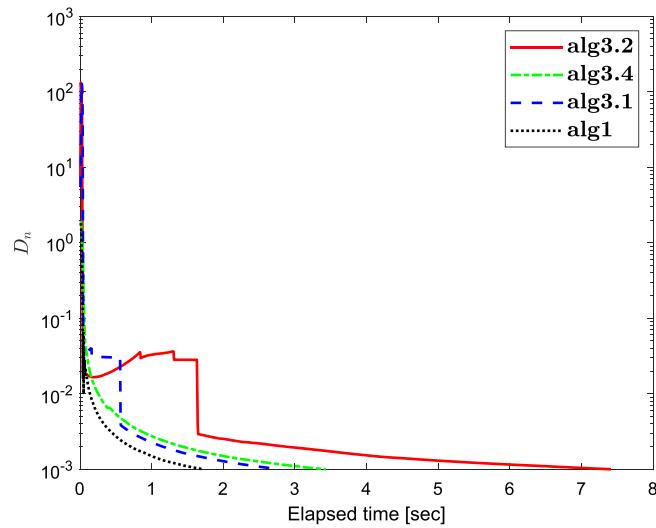


FIGURE 10 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time. These comparisons were conducted with the initialization $u_0 = (1, 2, 3, 4)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

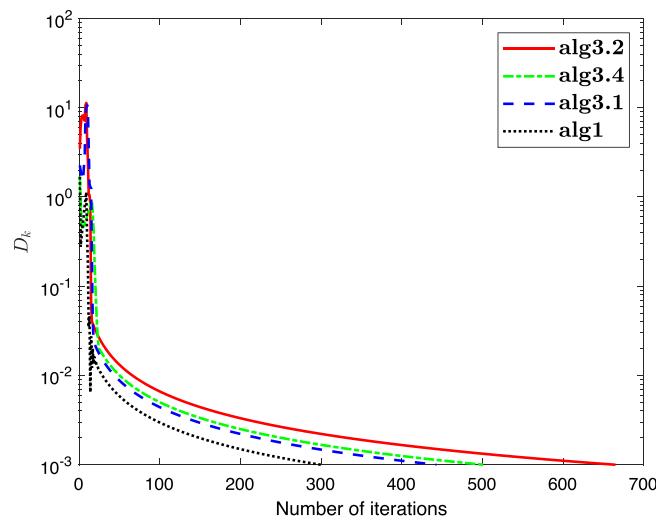


FIGURE 11 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of iterations. These comparisons were conducted with the initialization $u_0 = (1, 2, 1, 2)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

Moreover, we define the feasible set \mathcal{D} as follows:

$$\mathcal{D} = \{u \in \mathbb{R}^4 : 1 \leq u_i \leq 5, i = 1, 2, 3, 4\}.$$

It is evident that the mapping \mathcal{P} does not exhibit monotonic behavior within the set \mathcal{D} . It can be proven that \mathcal{P} is pseudomonotone when examined within the bounds of \mathcal{D} using a Monte Carlo technique as discussed in Hu and Wang [37]. Furthermore, it is essential to note that the presented problem has a unique solution $u^* = (5, 5, 5, 5)^T$ and $u_{-1} = (1, 1, 1, 1)^T$. The termination condition is defined as $D_k = \|w_k - v_k\|$. Numerical results are depicted in Figures 9–14 and Tables 3 and 4. A consistent pattern emerges across all these cases: our proposed algorithms consistently surpass their predecessors. It is crucial to highlight that the initial selection of the starting point does not significantly impact computational performance. However, it is essential to acknowledge that algorithm performance is influenced by other parameters as well. The selection of initial points does not significantly affect the number of iterations, although it does lead to variations in the time required to reach a solution. Factors beyond spatial dimensions also play a role and can significantly impact the efficiency of all associated algorithms. Therefore, it is

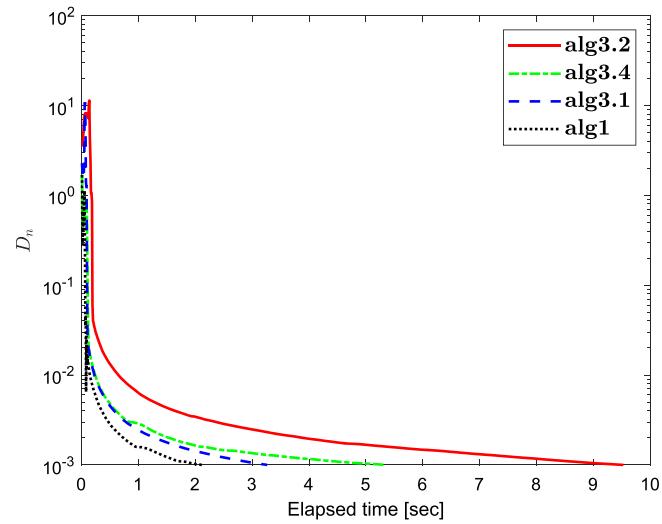


FIGURE 12 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time. These comparisons were conducted with the initialization $u_0 = (1, 2, 1, 2)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

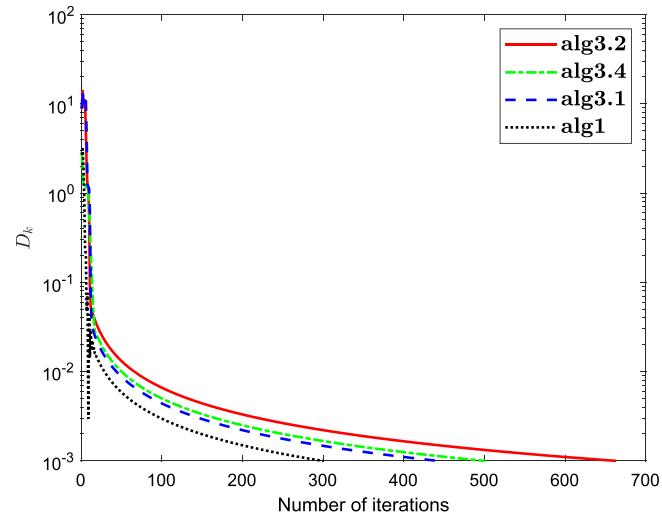


FIGURE 13 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of iterations. These comparisons were conducted with the initialization $u_0 = (3, 4, 3, 1)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

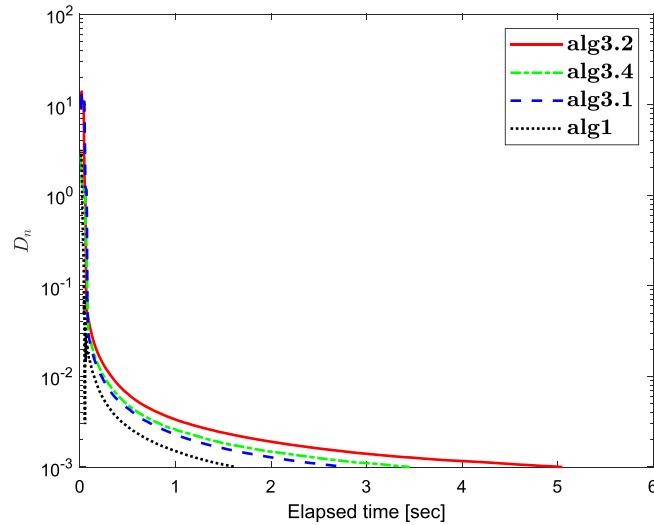


FIGURE 14 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time. These comparisons were conducted with the initialization $u_0 = (3, 4, 3, 1)^T$ using Example 4.2. [Colour figure can be viewed at wileyonlinelibrary.com]

u_0	Number of iterations			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
$(1, 2, 3, 4)^T$	667	502	445	301
$(1, 2, 1, 2)^T$	665	501	443	300
$(3, 4, 3, 1)^T$	663	501	442	300

u_0	Execution time in seconds			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
$(1, 2, 3, 4)^T$	7.40983310000000	3.43298360000000	2.78796480000000	1.71841050000000
$(1, 2, 1, 2)^T$	9.52541980000000	5.32200410000000	3.26604860000000	2.11793870000000
$(3, 4, 3, 1)^T$	5.04958530000000	3.45173320000000	2.77985460000000	1.62941670000000

TABLE 3 The numerical results data corresponding to Figures 9 through 14 are presented.

TABLE 4 The numerical results data corresponding to Figures 9 through 14 are presented.

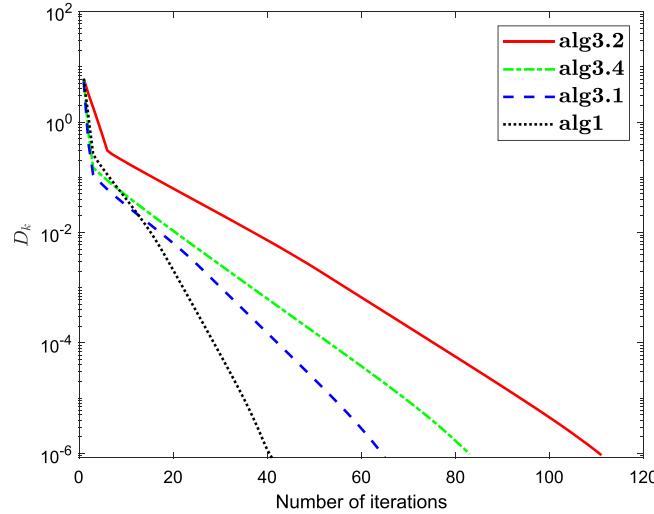


FIGURE 15 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number of iterations. These comparisons were conducted using the initialization $u_0 = 2(t + t^3)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

crucial to emphasize that we diligently sought to identify optimal parameters for each method, particularly within the context of Example 4.2. The objective of the second experiment was to compare the proposed method under different starting points. For all algorithms, we initialize the parameters as follows:

- (1) Algorithm 3.2 in Thong et al. [34] (**alg3.2**): $\alpha = 0.72, \tau_1 = 0.12, \mu = 0.934, \beta_k = \frac{1}{(3k+2)}, \epsilon_k = \frac{1}{(k+1)^2}, f(x) = \frac{x}{2}$.
- (2) Algorithm 3.4 in Anh et al. [35] (**alg3.4**): $\alpha = 0.72, \lambda_0 = 0.12, \mu = 0.934, \tau_k = \frac{1}{(k+1)^2}, \beta_k = \frac{1}{(3k+2)}, \theta_k = \frac{5}{10}(1 - \beta_k)$.
- (3) Algorithm 3.1 in Thong et al. [36] (**alg3.1**): $\alpha = 0.72, \lambda = \frac{1}{2L}, \beta_k = \frac{1}{(3k+2)}, \epsilon_k = \frac{1}{(k+1)^2}, f(x) = \frac{x}{2}$.
- (4) Algorithm 2 (**alg1**): $\gamma_0 = 0.32, \alpha = 0.25, \beta = 0.85, \mu = 0.934, \zeta = 0.245, D_k = \|w_k - v_k\|$.

Example 4.3. Consider the Hilbert space \mathcal{E} , denoted as $L^2([0, 1])$, along with its inner product defined by the following:

$$\langle u, v \rangle = \int_0^1 u(t)v(t)dt, \quad \forall u, v \in \mathcal{E}.$$

This inner product induces a norm on \mathcal{E} , denoted as $\|u\|$, that is given by the following: $\|u\| = \sqrt{\int_0^1 |u(t)|^2 dt}$. Now, take a unit ball \mathcal{D} within $L^2([0, 1])$ as follows: $\mathcal{D} := \{u \in L^2([0, 1]) : \|u\| \leq 1\}$. Within this framework, we introduce

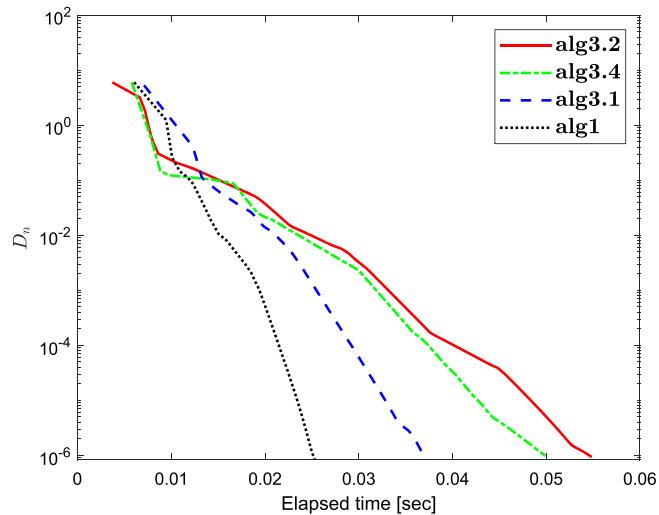


FIGURE 16 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the execution time. These comparisons were conducted using the initialization $u_0 = 2(t + t^3)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

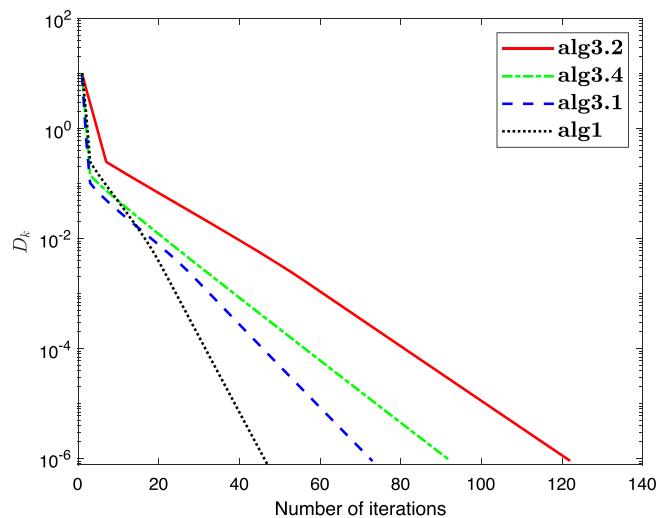


FIGURE 17 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number of iterations. These comparisons were conducted using the initialization $u_0 = 5t^3 \exp(t^3)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

a mapping \mathcal{P} operating from \mathcal{D} to \mathcal{E} , defined as follows:

$$\mathcal{P}(u)(t) = \int_0^1 (u(t) - H(t, s)f(u(s))) ds + g(t).$$

Here, the functions $H(t, s)$, $f(u)$, and $g(t)$ are expressed as follows:

$$H(t, s) = \frac{2tse^{(t+s)}}{e\sqrt{e^2 - 1}}, \quad f(u) = \cos u, \quad g(t) = \frac{2te^t}{e\sqrt{e^2 - 1}}.$$

The termination condition is defined as: $D_k = \|w_k - v_k\|$, and $u_{-1} = t$. The numerical results are depicted in Figures 15 through 20, as well as Tables 5 and 6. Additionally, specific parameter conditions have been established for the execution of these algorithms in the MATLAB environment.

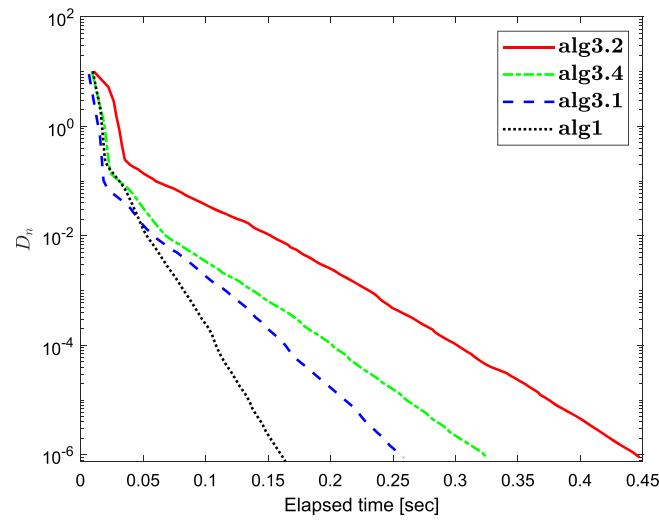


FIGURE 18 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the execution time. These comparisons were conducted using the initialization $u_0 = 5t^3 \exp(t^3)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

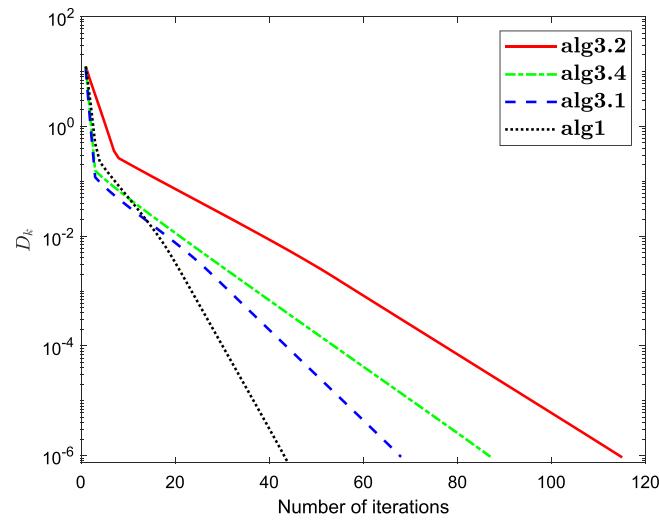


FIGURE 19 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number of iterations. These comparisons were conducted using the initialization $u_0 = 3\sin^2(t)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

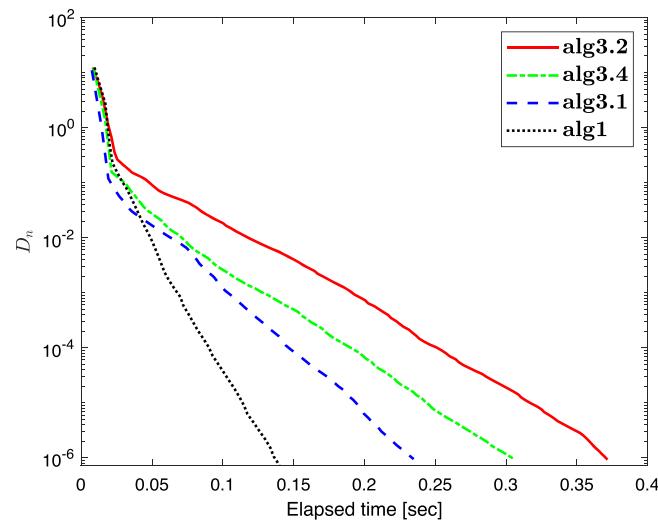


FIGURE 20 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the execution time. These comparisons were conducted using the initialization $u_0 = 3\sin^2(t)$ and referring to Example 4.3. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 The numerical data outcomes for Figures 15 through 20.

u_0	Number of iterations			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
$2(t + t^3)$	111	83	65	41
$5t^3 \exp(t^3)$	122	92	73	47
$3\sin^2(t)$	115	87	68	44

TABLE 6 The numerical data outcomes for Figures 15 through 20.

u_0	Execution time in seconds			
	(alg3.2)	(alg3.4)	(alg3.1)	(alg1)
$2(t + t^3)$	0.054863700000	0.049899200000	0.0371664000	0.02528950000
$5t^3 \exp(t^3)$	0.447367000000	0.324047800000	0.2584931000	0.16380220000
$3\sin^2(t)$	0.371565000000	0.305563900000	0.2347713000	0.13997550000

- (1) Algorithm 3.2 in Thong et al. [34] (**alg3.2**): $\alpha = 0.45, \tau_1 = 0.45, \mu = 0.85, \beta_k = \frac{1}{(4k+2)}, \epsilon_k = \frac{1}{(k+1)^2}, f(x) = \frac{x}{2}$.
- (2) Algorithm 3.4 in Anh et al. [35] (**alg3.4**): $\alpha = 0.45, \lambda_0 = 0.45, \mu = 0.85, \tau_k = \frac{1}{(k+1)^2}, \beta_k = \frac{1}{(4k+2)}, \theta_k = \frac{5}{10}(1 - \beta_k)$.
- (3) Algorithm 3.1 in Thong et al. [36] (**alg3.1**): $\alpha = 0.45, \lambda = \frac{1}{2L}, \beta_k = \frac{1}{(4k+2)}, \epsilon_k = \frac{1}{(k+1)^2}, f(x) = \frac{x}{2}$.
- (4) Algorithm 2 (**alg1**): $\gamma_0 = 0.45, \alpha = 0.25, \beta = 0.95, \mu = 0.85, \zeta = 0.328$.

5 | CONCLUSION

To summarize, our study has introduced a new improvement of Tseng's extragradient method, aiming to improve convergence rates while concurrently reducing computational complexity, with a particular emphasis on cost reduction. The proposed methods are specifically designed for solving VIPs in real Hilbert spaces. Initially, we achieved weak convergence results contingent upon the operator satisfying pseudomonotonicity and Lipschitz continuity conditions. It is noteworthy that the step-size rule we propose does not rely on Lipschitz continuity. To showcase the practical utility and real-world applicability of our method, we conducted various numerical examples. This study represents a notable advancement in optimizing methods for solving VIPs.

AUTHOR CONTRIBUTIONS

Nuttapol Pakkaranang: Writing—review and editing; writing—original draft; funding acquisition; validation; methodology; conceptualization; investigation; formal analysis; software; visualization; project administration; data curation; supervision; resources.

ACKNOWLEDGEMENTS

The author would like to thank Professor Dr. Poom Kumam from King Mongkut's University of Technology Thonburi, Thailand for his advice and comments to improve the results of this paper. This work (grant no. RGNS 65-168) was supported by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI), and Phetchabun Rajabhat University.

CONFLICTS OF INTEREST STATEMENT

This work does not have any conflicts of interest.

ORCID

Nuttapol Pakkaranang <https://orcid.org/0000-0002-0224-4661>

REFERENCES

1. I. V. Konnov, *On systems of variational inequalities*, Izv. Vyssh. Uchebn. Zaved. Mat. **41** (1997), 79–88.
2. G. Stampacchia, *Formes bilinéaires coercitives sur les ensembles convexes*, C. R. Acad. Sci. Paris **258** (1964), no. 18, 4413–4416.
3. C. M. Elliott, *Variational and quasivariational inequalities: applications to free-boundary problems*, SIAM Rev. **29** (1987), no. 2, 314–315.
4. I. Konnov, *Equilibrium models and variational inequalities*, vol. **210**, Elsevier, 2007.
5. A. Nagurney, *Network economics: A variational inequality approach*, vol. 1, Kluwer Academic Publishers, 1993, DOI 10.3390/math7100881.
6. W. Takahashi, *Introduction to nonlinear and convex analysis*, Yokohama Publishers, 2009.
7. Y. Censor, A. Gibali, and S. Reich, *The subgradient extragradient method for solving variational inequalities in Hilbert space*, J. Optim. Theory Appl. **148** (2010), no. 2, 318–335.
8. Y. Censor, A. Gibali, and S. Reich, *Extensions of Korpelevich extragradient method for the variational inequality problem in Euclidean space*, Optimization **61** (2012), no. 9, 1119–1132.
9. G. Korpelevich, *The extragradient method for finding saddle points and other problems*, Matecon **12** (1976), 747–756.
10. M. A. Noor, *Some iterative methods for nonconvex variational inequalities*, Comput. Math. Model. **21** (2010), no. 1, 97–108.
11. P. Tseng, *A modified forward-backward splitting method for maximal monotone mappings*, SIAM J. Control Optim. **38** (2000), no. 2, 431–446.
12. J. Yang, H. Liu, and Z. Liu, *Modified subgradient extragradient algorithms for solving monotone variational inequalities*, Optimization **67** (2018), no. 12, 2247–2258.
13. L. Zhang, C. Fang, and S. Chen, *An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems*, Numer. Algo. **79** (2018), no. 3, 941–956.
14. L. C. Ceng, X. Qin, Y. Shehu, and J.-C. Yao, *Mildly inertial subgradient extragradient method for variational inequalities involving an asymptotically nonexpansive and finitely many nonexpansive mappings*, Mathematics **7** (2019), no. 10, 881, DOI 10.3390/math7100881.
15. L. C. Ceng, A. Petrușel, and J.-C. Yao, *On mann viscosity subgradient extragradient algorithms for fixed point problems of finitely many strict pseudocontractions and variational inequalities*, Mathematics **7** (2019), no. 10, 925, DOI 10.3390/math7100925.
16. L. C. Ceng and Q. Yuan, *Composite inertial subgradient extragradient methods for variational inequalities and fixed point problems*, J. Inequal. Appl. **2019** (2019), no. 1, 1–20, DOI 10.1186/s13660-019-2229-x.
17. H. Rehman, P. Kumam, W. Kumam, and K. Sombut, *A new class of inertial algorithms with monotonic step sizes for solving fixed point and variational inequalities*, Math. Methods Appl. Sci. **45** (2022), no. 16, 9061–9088, DOI 10.1002/mma.8293.
18. H. Rehman, P. Kumam, M. Ozdemir, I. Yildirim, and W. Kumam, *A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities*, Demonstr. Math. **56** (2023), no. 1, 20220202, DOI 10.1515/dema-2022-0202.
19. H. Rehman, P. Kumam, M. Ozdemir, and I. Karahan, *Two generalized non-monotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications*, Math. Comput. Simulation **201** (2022), 616–639, DOI 10.1016/j.matcom.2021.05.001.
20. H. Rehman, A. Gibali, P. Kumam, and K. Sitthithakerngkiet, *Two new extragradient methods for solving equilibrium problem*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM **115** (2021), no. 2, 75, DOI 10.1007/s13398-021-01017-3.
21. Y. Arfat and K. Sombut, *Shrinking accelerated forward-backward-forward method for split equilibrium problems and monotone inclusion problem in Hilbert spaces*, Nonlinear Convex Anal. Optim. **1** (2022), no. 1, 75–95.
22. P. Thammasiri and K. Ungchitrakool, *Accelerated hybrid Mann-type algorithm for fixed point and variational inequality problems*, Nonlinear Convex Anal. Optim. **1** (2022), no. 1, 97–111.
23. A. Adamu, D. Kitkuan, and T. Seangwattana, *An accelerated Halpern-type algorithm for solving variational inclusion problems with applications*, Bangmod Int. J. Math. Comput. Sci. **8** (2022), 37–55, DOI 10.58715/bangmodjmcs.2022.8.4.
24. P. Phairatchatniyom, H. Rehman, J. Abubakar, P. Kumam, and J. Martínez-Moreno, *An inertial iterative scheme for solving split variational inclusion problems in real Hilbert spaces*, Bangmod Int. J. Math. Comp. Sci. **7** (2021), no. 1–2, 35–52.
25. H. Rehman, W. Kumam, and K. Sombut, *Inertial modification using self-adaptive subgradient extragradient techniques for equilibrium programming applied to variational inequalities and fixed-point problems*, Mathematics **10** (2022), no. 10, 1751, DOI 10.3390/math10101751.

26. H. Rehman, P. Kumam, I. K. Argyros, and N. A. Alreshidi, *Modified proximal-like extragradient methods for two classes of equilibrium problems in Hilbert spaces with applications*, Comput. Appl. Math. **40** (2021), no. 2, 38, DOI 10.1007/s40314-020-01385-3.
27. W. Kumam, H. Rehman, and P. Kumam, *A new class of computationally efficient algorithms for solving fixed-point problems and variational inequalities in real Hilbert spaces*, J. Inequal. Appl. **2023** (2023), no. 1, 48, DOI 10.1186/s13660-023-02948-8.
28. A. S. Antipin, *On a method for convex programs using a symmetrical modification of the Lagrange function*, Ekonomika i Matematicheskie Metody **12** (1976), no. 6, 1164–1173.
29. B. Polyak, *Some methods of speeding up the convergence of iteration methods*, USSR Comput. Math. Math. Phys. **4** (1964), no. 5, 1–17.
30. H. H. Bauschke and P. L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces*, vol. **408**, Springer, 2011.
31. F. A. H. Attouch, *An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping*, Set-Valued Var. Anal. **9** (2001), 3–11.
32. Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Am. Math. Soc. **73** (1967), 591–598.
33. P. T. Harker and J.-S. Pang, *A damped-newton method for the linear complementarity problem*, Comput. Sol. Nonlin. Syst. Equ. **26** (1990), 265–284.
34. D. V. Thong, D. V. Hieu, and T. M. Rassias, *Selfadaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems*, Optim. Lett. **14** (2020), no. 1, 115–144.
35. P. K. Anh, D. V. Thong, and N. T. Vinh, *Improved inertial extragradient methods for solving pseudomonotone variational inequalities*, Optimization **71** (2022), no. 3, 505–528.
36. D. V. Thong, N. T. Vinh, and Y. J. Cho, *A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems*, Optim. Lett. **14** (2020), no. 5, 1157–1175.
37. X. Hu and J. Wang, *Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network*, IEEE Trans. Neural Netw. **17** (2006), no. 6, 1487–1499.

How to cite this article: N. Pakkarang, *Double inertial extragradient algorithms for solving variational inequality problems with convergence analysis*, Math. Meth. Appl. Sci. (2024), 1–28, DOI 10.1002/mma.10147.