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Double inertial extragradient algorithms for solving variational
inequality problems with convergence analysis
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Abstract
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Nuttapol Pakkaranang
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In this paper, we introduce a novel dual inertial Tseng's extragradient method for solving
variational inequality problems in real Hilbert spaces, particularly those involving
pseudomonotone and Lipschitz continuous operators. Our secondary method incorporates
variable step-size, updated at each iteration based on some previous iterates. A notable
advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-
type constants and without the need for any line-search procedure. We establish the
convergence theorem of the proposed algorithms under mild assumptions. To illustrate the
numerical behavior of the algorithms and to make comparisons with other methods, we
conduct several numerical experiments. The results of these evaluations are showcased and
thoroughly examined to exemplify the practical significance and effectiveness of the proposed
methods.
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In this paper, we introduce a novel dual inertial Tseng's extragradient method

for solving variational inequality problems in real Hilbert spaces, particularly

those involving pseudomonotone and Lipschitz continuous operators. Our sec-

ondary method incorporates variable step-size, updated at each iteration based

on some previous iterates. A notable advantage of these algorithms is their abil-

ity to operate without prior knowledge of Lipschitz-type constants and without

the need for any line-search procedure. We establish the convergence theorem

of the proposed algorithms under mild assumptions. To illustrate the numeri-

cal behavior of the algorithms and to make comparisons with other methods,

we conduct several numerical experiments. The results of these evaluations are

showcased and thoroughly examined to exemplify the practical significance and

effectiveness of the proposed methods.

KEYWORDS

Lipschitz continuity, Pseudomonotonemapping, Tseng's extragradientmethod, Variational inequal-

ities, Weak convergence theorem

MSC CLASSIFICATION
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1 INTRODUCTION

Consider a real Hilbert space  , equipped with an inner product ⟨·, ·⟩, and the associated norm || · ||. In this context, is

defined as a nonempty, closed, and convex subset of  .
This study introduces novel iterative methods designed to address approximate solutions to the variational inequality

problem, abbreviated as VIP, within the framework of a real Hilbert space. Let  ∶  →  represent an operator, and we
define the VIP for  on the set as follows, with reference to earlier studies [1, 2]:

Find u∗ ∈  such that ⟨(u∗), v − u∗⟩ ⩾ 0 for all v ∈ . (VIP)

To initiate the convergence study of the proposed methods, we assume the following conditions:

• (c1): The solution set for a VIP is nonempty, represented as Ω.

• (c2): An operator  ∶  →  is pseudomonotone if it satisfies the pseudomonotonicity condition defined as follows:
⟨(u1),u2 − u1⟩ ⩾ 0 ⇒ ⟨(u2),u1 − u2⟩ ⩽ 0 for all u1,u2 ∈ . (PM)

• (c3): Furthermore, an operator  ∶  →  is Lipschitz continuous if it has a positive constant L > 0 that satisfies the

Lipschitz continuity requirement stated as follows:
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||(u1) − (u2)|| ⩽ L||u1 − u2|| for all u1,u2 ∈ . (LC)

• (c4): Subsequently, a mapping  ∶  →  is considered sequentially weakly continuous if, for any sequence {uk} that
weakly converges to u, the sequence {(uk)} also weakly converges to (u).

The mathematical model of the VIP encompasses a wide range of mathematical problems, such as optimization, opti-

mal control, partial differential equations, mechanics, finance, and mathematical programming. For a comprehensive

overview, please refer to previous research [3–6]. The VIP holds a lot of importance in the field of applied sciences. Numer-

ous researchers have dedicated their efforts not only to exploring theoretical aspects related to the existence and stability

of solutions but also to devising iterativemethods for solving VIPs. Additionally, projectionmethods have emerged as cru-

cial tools for approximating numerical solutions to these inequalities, with researchers introducing various variations of

such approaches to efficiently address these challenging problems (further details are available in earlier studies [7–16])

and others in prior research [17–27].

Almost all solutions methods developed to address the challenge posed by Equation (VIP) revolve around the core

concept of projecting onto the feasible set. Pioneers in this field, such as Korpelevich [9] and Antipin [28], devised the
extragradient methods. Let us consider the following mathematical formulation represented as Equation (1.1):

⎧
⎪⎨⎪⎩

u0 ∈ ,

vk = P[uk − 𝛾(uk)],

uk+1 = P[uk − 𝛾(vk)].

(1.1)

It is critical to underline that the parameter 𝛾 must satisfy the condition 0 < 𝛾 <
1

L
for this approach to be effective.

During each iteration, this method employs a dual projection procedure onto the set. It is crucial to understand that the
computational efficiency of this techniquemay be impacted, especially when dealing with a complex structure within the

feasible set. In response to this constraint, we provide here multiple developed approaches for solution methods. First,
we provide the subgradient extragradient approach as described by Censor et al. [7]. This approach is expressed through

the following equations:

⎧
⎪⎨⎪⎩

u0 ∈ ,

vk = P[uk − 𝛾(uk)],

uk+1 = PTk [uk − 𝛾(vk)].

(1.2)

It is important to note here that 0 < 𝛾 <
1

L
, and the set Tk is defined as follows:

Tk = {z ∈  ∶ ⟨uk − 𝛾(uk) − vk, z − vk⟩ ⩽ 0}.

The primary objective of this study to provide the improvement of Tseng's extragradientmethod [11], which employs only

one projection in each iteration. This approach is represented by the following formulation:

⎧
⎪⎨⎪⎩

u0 ∈ ,

vk = P[uk − 𝛾(uk)],

uk+1 = vk − 𝛾[(vk) − (uk)],

(1.3)

It is crucial to emphasize that 0 < 𝛾 <
1

L
. However, it is important to note that these approaches have some key

drawbacks. Firstly, they rely on a fixed constant step-size rule, dependent on the mapping's Lipschitz constant, producing

an iteratively weakly convergent sequence. Determining the Lipschitz constant is often challenging or computationally

expensive. Secondly, from a computational standpoint, adhering to a set step-size limitation can impact the method's

efficiency and convergence rate.

The following natural question has been raised:

“Is it feasible to develop new double inertial Tseng's extragradient-typemethods, incorporating a combination of monotonic

and non-monotonic variable step-size rules, to effectively address variational inequalities while ensuring weak convergence?”
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We provide a positive answer to the prior question: Tseng's extragradient method generates a weakly convergent iter-

ative sequence while a fixed, monotone, and nonmonotone step-size rule is used. The primary objective of this study

is to provide an improved version of Tseng's extragradient method, strengthened with double inertial extrapolation

steps. The approach we propose has been developed for addressing variational inequalities in Hilbert spaces, particularly

when the operator exhibits pseudomonotonic characteristics and conforms to the Lipschitz condition. We provide three

distinct variants of Tseng's extragradient-type methods, each featuring corresponding theorems guaranteeing weak con-

vergence. Our approach is inspired by both the projection method [11] and the inertial method [29]. Notably, our method

only requires a single projection onto the feasible set  per iteration. We conduct an extensive investigation to conclu-

sively demonstrate that, with specifically defined control parameters, the iterative sequences generated by our proposed

approaches exhibit apparent weak convergence towards a solution. Additionally, we bolster our findings with practical

examples that showcase the computational performance of our new methods compared with established ones. In recent

years, algorithms incorporating inertial extrapolation steps have garnered attention for their ability to significantly accel-

erate convergence. When these procedures are integrated into algorithms, they consistently demonstrate their potential

to reduce the number of iterations and, consequently, CPU time when solving various problem sets.

In this context, the primary goal is to develop an inertial-type technique based on the framework outlined in Tseng [11].

This method has been carefully designed to improve the convergence rate of iterative sequences. Notably, this method

draws inspiration from second-order dynamical systems known as “heavy friction balls”, as first presented by Polyak in

[29]. The utilization of knowledge gathered from two previous iterations to inform the construction of the current one

characterizes this method. Additionally, our proposed method features a notable aspect: the ability to incorporate an

inertial factor in the range [0, 1]. This distinctive characteristic sets our research apart from previous studies that did not

delve into such details. In short, our research advances our understanding of inertial approaches to solving VIPs.

The overall format of the paper is as follows: In Section 2, we delve into fundamental concepts and lay the groundwork

for our subsequent main results. Section 3 introduces our proposed methods, supported by well-established convergence

theorems that validate their effectiveness. Finally, Section 4 provides numerical data demonstrating the convergence and

overall efficacy of the proposed methods.

2 PRELIMINARIES

This section will explore fundamental concepts, important lemmas, and key definitions. To begin, we define the metric

projection P(v1) for v1 ∈  as follows:
P(v1) = argmin

v2∈
||v1 − v2||.

Lemma 2.1 ([30]). Let P ∶  →  be a metric projection. Then, the following conditions are satisfied.

(i) v3 = P(v1) if and only if

⟨v1 − v3, v2 − v3⟩ ⩽ 0, ∀v2 ∈ .

(ii)

||v1 − P(v2)||2 + ||P(v2) − v2||2 ⩽ ||v1 − v2||2, ∀v1 ∈ , v2 ∈  .
(iii)

||v1 − P(v1)|| ⩽ ||v1 − v2|| ∀v2 ∈ , v1 ∈  .
Lemma 2.2 ([30]). Consider any v1 and v2 in  and 𝓁 ∈ R. The following conditions are stated:

1. The square of the norm of a linear combination is expressed as follows:

||𝓁v1 + (1 − 𝓁)v2||2 = 𝓁||v1||2 + (1 − 𝓁)||v2||2 − 𝓁(1 − 𝓁)||v1 − v2||2.
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2. For the sum of two vectors, the following inequality holds:

||v1 + v2||2 ⩽ ||v1||2 + 2⟨v2, v1 + v2⟩.

Lemma 2.3 ([31]). Assume three sequences denoted as bk, ck, and dk, all of which correspond to the interval [0,+∞).

For any k ⩾ 1, these sequences satisfy the following inequality:

bk+1 ⩽ bk + dk(bk − bk−1) + ck.

Additionally, we are given that the series
+∞∑
k=1

ck converges, denoted as
+∞∑
k=1

ck < +∞. Under these conditions, there exists a

real number d such that 0 ⩽ dk ⩽ d < 1 for every k in the set of natural numbers. Consequently,

(i) The sum of all positive parts of the differences between successive terms in the sequence bk converges, denoted as
+∞∑
k=1

[bk − bk−1]+ < +∞. Here, [t]+ ∶= max{t, 0}.

(ii) Additionally, there exists a real number b∗ within the range [0,+∞) such that the limit of the sequence {bk} as k

approaches infinity is equal to b∗.

Lemma 2.4 ([32]). Take a nonempty subset of a Hilbert space  and a sequence denoted by {uk} in  . This sequence
must satisfy the following two requirements:

(i) For every u ∈ , limk→+∞ ||uk − u|| exists.
(ii) Every sequentially weak cluster point of {uk} is in.
Then, {uk} converges weakly to a point in.

3 MAIN RESULTS

In this section, introducing improved versions of Tseng's extragradient method for addressing VIPs, we employ a numer-

ical iterative method aimed at enhancing the convergence rate of the iterative sequence. This involves incorporating two

convex minimization problems with a two-step inertial scheme. The process commences from two given starting points

and systematically updates the outcome at each step using predefined formulas. Termination occurswhen a specified con-

dition ismet, specificallywhen vk = wk. Subsequent sectionswill delve into a comprehensive discussion of the algorithmic

procedures and conduct a thorough examination of its convergence characteristics.
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Lemma 3.1. A sequence of step-sizes {𝛾k} generated by (3.1) converges to a fixed positive value 𝛾 > 0.

Proof. The sequence {𝛾k} is clearly monotone and non-increasing. Considering the Lipschitz continuity of the

mapping  , we can demonstrate the existence of a positive constant L > 0 such that:

𝜇||wk − vk||
||(wk) − (vk)|| ⩾

𝜇||wk − vk||
L||wk − vk||

⩾
𝜇

L
.

(3.2)

This inequality implies that the sequence {𝛾k} has a lower bound, namely, min
{

𝜇

L
, 𝛾0

}
. Additionally, there exists a

positive number 𝛾 > 0 such that limk→∞𝛾k = 𝛾 . □

It is crucial to emphasize that the chosen step-size rule should align with the nature of the problem and the algorithm's

parameters. This consideration is especially significant as non-monotone rules may introduce additional computational

challenges. It is noteworthy that the selection of a step-size rule relies on the features of the VIP and the characteristics

of the optimization algorithm. Nonmonotone step-size rules may entail substantial trade-offs, such as increased memory

requirements and computational complexities, necessitating careful consideration. Consequently, determining the appro-

priate step-size rule should be based on a comprehensive evaluation of both the inherent characteristics of the problem

and the specific requirements of the algorithm.

Note 1: Algorithm 1 employs a monotone step-size rule, but it can be adapted to use a non-monotone step-size rule.

Nonmonotone step-size rules adjust the step-size based on prior iteration information, providing more adaptability and

exploration during optimization, to incorporate a nonmonotone step-size rule into the algorithm.

Choose a nonnegative real sequence denoted as {pk} with the requirement that
∑+∞

k=1 pk < +∞. The formula for 𝛾k+1 is

as follows:

𝛾k+1 =

{
min
{
𝛾k + pk,

𝜇||wk−vk||
||(wk)−(vk)||

}
if (wk) − (vk) ≠ 0,

𝛾k + pk otherwise.
(3.3)

Also, choose another nonnegative real sequence {pk} defined as pk = 1 + dk, where
∑+∞

k=1 dk < +∞. The formula for

𝛾k+1 is as follows:
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𝛾k+1 =

{
min
{
𝛾k · pk,

𝜇||wk−vk||
||(wk)−(vk)||

}
if (wk) − (vk) ≠ 0,

𝛾k · pk otherwise.
(3.4)

Lemma 3.2. The sequence {𝛾k} resulting from (3.3) converges to a fixed value 𝛾 > 0 and satisfies the following inequality:

min
{
𝜇

L
, 𝛾0

}
⩽ 𝛾k ⩽ 𝛾0 + P, where P =

+∞∑
k=1

pk.

Proof. The Lipschitz continuity of themapping yields a fixed constant L > 0. Consider the formula(wk)−(vk) ≠
0, which allows us to write the following:

𝜇||wk − vk||
||(wk) − (vk)|| ⩾

𝜇||wk − vk||
L||wk − vk||

⩾
𝜇

L
.

(3.5)

Applying an inductive method based on 𝛾k+1, we prove the following:

min
{
𝜇

L
, 𝛾0

}
⩽ 𝛾k ⩽ 𝛾0 + P.

Now, set up the notations [𝛾k+1 − 𝛾k]
+ = max {0, 𝛾k+1 − 𝛾k} and [𝛾k+1 − 𝛾k]

− = max {0,−(𝛾k+1 − 𝛾k)}. Using {𝛾k}, we

can write the following:

+∞∑
k=1

(𝛾k+1 − 𝛾k)
+ =

+∞∑
k=1

max {0, 𝛾k+1 − 𝛾k} ⩽ P < +∞. (3.6)

This indicates that the series
+∞∑
k=1

(𝛾k+1 − 𝛾k)
+ is convergent. Now, examine the convergence of

+∞∑
k=1

(𝛾k+1 − 𝛾k)
−. Let

+∞∑
k=1

(𝛾k+1 − 𝛾k)
− = +∞.

Take advantage of the fact that:

𝛾k+1 − 𝛾k = (𝛾k+1 − 𝛾k)
+ − (𝛾k+1 − 𝛾k)

−.

This enables us to write the following:

𝛾k+1 − 𝛾0 =

k∑
k=0

(𝛾k+1 − 𝛾k) =

k∑
k=0

(𝛾k+1 − 𝛾k)
+ −

k∑
k=0

(𝛾k+1 − 𝛾k)
−. (3.7)

Considering the limit as k → +∞ in (3.7), we obtain 𝛾k → −∞ as k → ∞. This contradicts our previous findings. As

a result of the convergence of the series
k∑
k=0

(𝛾k+1 − 𝛾k)
+ and

k∑
k=0

(𝛾k+1 − 𝛾k)
−, we may deduce that limk→∞𝛾k = 𝛾 . This

completes the proof. □

Lemma 3.3. Consider the mapping  ∶  →  , which satisfies criteria (c1)–(c4) and a sequence {uk} generated by
Algorithm 1. Then, for any u∗ ∈ Ω, the inequality holds:

||qk − u∗||2 ⩽ ||wk − u∗||2 − (1 − 𝛾2L2
) ||wk − vk||2.
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Proof. Taking u∗ ∈ Ω and the definition of qk, we have the following:

||qk − u∗||2
= ||vk + 𝛾[(wk) − (vk)] − u∗||2
= ||vk − u∗|2 + 𝛾2||(wk) − (vk)||2 + 2𝛾⟨vk − u∗,(wk) − (vk)⟩
= ||vk + wk − wk − u∗||2 + 𝛾2||(wk) − (vk)||2
+ 2𝛾⟨vk − u∗,(wk) − (vk)⟩

= ||vk − wk||2 + ||wk − u∗||2 + 2⟨vk − wk,wk − u∗⟩
+ 𝛾2||(wk) − (vk)||2 + 2𝛾⟨vk − u∗,(wk) − (vk)⟩

= ||wk − u∗||2 + ||vk − wk||2 + 2𝛾⟨(wk),u
∗ − vk⟩ − 2⟨wk − vk,wk − vk⟩

+ 𝛾2||(wk) − (vk)||2 − 2𝛾⟨(wk) − (vk),u
∗ − vk⟩.

(3.8)

Given that

vk = P[wk − 𝛾(wk)],

and it further implies that

⟨wk − 𝛾(wk) − vk, v − vk⟩ ⩽ 0, ∀v ∈ . (3.9)

As a result, we can conclude the following:

⟨wk − vk,u
∗ − vk⟩ ⩽ 𝛾⟨(wk),u

∗ − vk⟩. (3.10)

Combining (3.8) with (3.10) gives the following result:

||qk − u∗||2 ⩽ ||wk − u∗||2 + ||vk − wk||2 + 2𝛾⟨(wk),u
∗ − vk⟩ − 2⟨wk − vk,wk − vk⟩

+ 𝛾2||(wk) − (vk)||2 − 2𝛾⟨(wk) − (vk),u
∗ − vk⟩

= ||wk − u∗||2 − ||wk − vk||2 + 𝛾2||(wk) − (vk)||2 − 2𝛾⟨(vk), vk − u∗⟩.
(3.11)

As u∗ is the solution to the problem (VIP), it follows that

⟨(u∗), v − u∗⟩ ⩾ 0, ∀v ∈ .

In addition, due to the pseudomonotone property of the mapping  on, we can conclude the following:
⟨(v), v − u∗⟩ ⩾ 0, ∀v ∈ .

By inserting v = vk ∈ , we obtain the following:
⟨(vk), vk − u∗⟩ ⩾ 0. (3.12)

Combining expressions (3.11) and (3.12), we conclude the following:

||qk − u∗||2 ⩽ ||wk − u∗||2 − ||wk − vk||2 + 𝛾2L2||wk − vk||2
= ||wk − u∗||2 − (1 − 𝛾2L2

) ||wk − vk||2.
(3.13)

This completes the proof of lemma. □
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Lemma 3.4. Let  ∶  →  be a mapping that satisfies the conditions (c1)–(c4). Moreover, let {uk} be a sequence

generated by Algorithm 2. For any u∗ ∈ Ω, the following inequality holds:

||qk − u∗||2 ⩽ ||wk − u∗||2 −
(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
||wk − vk||2.

Proof. Since u∗ ∈ Ω and using the definition of qk, we obtain

||qk − u∗|2 = ||vk + 𝛾k[(wk) − (vk)] − u∗||2
= ||vk − u∗||2 + 𝛾2

k
||(wk) − (vk)||2 + 2𝛾k⟨vk − u∗,(wk) − (vk)⟩

= ||vk + wk − wk − u∗||2 + 𝛾2
k
||(wk) − (vk)||2

+ 2𝛾k⟨vk − u∗,(wk) − (vk)⟩
= ||vk − wk||2 + ||wk − u∗||2 + 2⟨vk − wk,wk − u∗⟩
+ 𝛾2

k
||(wk) − (vk)||2

+ 2𝛾k⟨vk − u∗,(wk) − (vk)⟩
= ||wk − u∗||2 + ||vk − wk||2
+ 2⟨vk − wk, vk − u∗⟩ + 2⟨vk − wk,wk − vk⟩
+ 𝛾2

k
||(wk) − (vk)||2

+ 2𝛾k⟨vk − u∗,(wk) − (vk)⟩.

(3.14)

By using vk = P[wk − 𝛾k(wk)], we have the following:

⟨wk − 𝛾k(wk) − vk, v − vk⟩ ⩽ 0, ∀v ∈ . (3.15)

This implies that

⟨wk − vk,u
∗ − vk⟩ ⩽ 𝛾k⟨(wk),u

∗ − vk⟩. (3.16)

Combining Equations (3.14) and (3.16), we obtain the following:

||qk − u∗||2 ⩽ ||wk − u∗||2 + ||vk − wk||2
+ 2𝛾k⟨(wk),u

∗ − vk⟩ − 2⟨wk − vk,wk − vk⟩
+ 𝛾2

k
||(wk) − (vk)||2

− 2𝛾k⟨(wk) − (vk),u
∗ − vk⟩

= ||wk − u∗||2 − ||wk − vk||2
+ 𝛾2

k
||(wk) − (vk)||2

− 2𝛾k⟨(vk), vk − u∗⟩.

(3.17)

It is given that u∗ is the solution to the problem (VIP), we have the following:

⟨(u∗), v − u∗⟩ ⩾ 0, ∀v ∈ .

Using the pseudomonotonicity feature of the mapping  on, we may deduce the following:
⟨(v), v − u∗⟩ ⩾ 0, ∀v ∈ .

By inserting v = vk ∈ , we obtain the following:

⟨(vk), vk − u∗⟩ ⩾ 0. (3.18)
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Considering Equations (3.17) and (3.18), we derive the following:

||qk − u∗||2 ⩽ ||wk − u∗||2 − ||wk − vk||2 + 𝜇2
𝛾2
k

𝛾2
k+1

||wk − vk||2

= ||wk − u∗||2 −
(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
||wk − vk||2.

(3.19)

□

Theorem 3.5. Assume {uk} represents a sequence created by Algorithm 1 under conditions (c1)–(c4) and with

𝜁 ⩽
1

2
and 𝜁 ⩽

1 + 𝛼2 − 2𝛼

(1 + 2𝛼2 − 𝛼) + 𝛽(1 + 𝛽)
.

Consequently, it can be inferred that the sequence {uk} weakly converges to the limit u∗ ∈ Ω.

Proof. By the use of Lemma 3.4, we have

||qk − u∗||2 ⩽ ||wk − u∗||2 −
(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
||wk − vk||2. (3.20)

Since the step-size sequence 𝛾k → 𝛾 and there exists a constant number 𝜖 ∈ (0, 1 − 𝜇2) such that

lim
k→∞

(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
= 1 − 𝜇2 > 𝜖 > 0.

From the above explanation, there exists a fixed number K∗
1 ∈ N such that

(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
> 𝜖 > 0, ∀k ⩾ K∗

1 . (3.21)

Furthermore, we have

||qk − u∗||2 ⩽ ||wk − u∗||2, ∀k ⩾ K∗
1 . (3.22)

On the other hand, we have

||uk+1 − u∗|| = ||(1 − 𝜁 )sk + 𝜁qk − u∗||
= ||(1 − 𝜁 )(sk − u∗) + 𝜁 (qk − u∗)||
= (1 − 𝜁 )||sk − u∗||2 + 𝜁 ||qk − u∗||2 − 𝜁 (1 − 𝜁 )||qk − sk||2.

(3.23)

Substituting (3.22) into (3.23), we obtain

||uk+1 − u∗|| ⩽ (1 − 𝜁 )||sk − u∗||2 + 𝜁 ||wk − u∗||2 − 𝜁 (1 − 𝜁 )||qk − sk||2, ∀k ⩾ K∗
1 . (3.24)

We observe that the update rule for the sequence is given by the following:

uk+1 = (1 − 𝜁 )sk + 𝜁qk. (3.25)
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Moreover, we can deduce from (3.25) that the difference between consecutive iterates qk and sk can be expressed

as follows:

qk − sk =
1

𝜁
(uk+1 − sk). (3.26)

Substituting (3.26) into (3.24), we obtain

||uk+1 − u∗|| ⩽ (1 − 𝜁 )||sk − u∗||2 + 𝜁 ||wk − u∗||2 − (1 − 𝜁 )

𝜁
||uk+1 − sk||2. (3.27)

By substituting the value of wk from Algorithm 1 and utilizing Lemma 2.2 (i), we can derive the following

expressions. First, we find the value of ||wk − u∗||2 as follows:

||wk − u∗||2 = ||uk + 𝛽(uk − uk−1) − u∗||2
= ||(1 + 𝛽)(uk − u∗) − 𝛽(uk−1 − u∗)||2
= (1 + 𝛽)||uk − u∗||2 − 𝛽||uk−1 − u∗||2 + 𝛽(1 + 𝛽)||uk − uk−1||2.

(3.28)

Next, we determine the value of ||sk − u∗||2 as follows:

||sk − u∗||2 = ||uk + 𝛼(uk − uk−1) − u∗||2
= ||(1 + 𝛼)(uk − u∗) − 𝛼(uk−1 − u∗)||2
= (1 + 𝛼)||uk − u∗||2 − 𝛼||uk−1 − u∗||2 + 𝛼(1 + 𝛼)||uk − uk−1||2.

(3.29)

These formulations offer valuable insights into the connection between ||wk − u∗|| and ||sk − u∗|| and how they

are influenced by the parameters 𝛼 and 𝛽, along with the variances between consecutive iterates uk and uk−1. These

insights will play a crucial role in our subsequent analysis. By substituting (3.28) and (3.29) into (3.27), we obtain the

following inequality:

||uk+1 − u∗|| ⩽ (1 − 𝜁 )
[
(1 + 𝛼)||uk − u∗||2 − 𝛼||uk−1 − u∗||2 + 𝛼(1 + 𝛼)||uk − uk−1||2]

+ 𝜁
[
(1 + 𝛽)||uk − u∗||2 − 𝛽||uk−1 − u∗||2 + 𝛽(1 + 𝛽)||uk − uk−1||2] − (1 − 𝜁 )

𝜁
||uk+1 − sk||2

⩽ [(1 − 𝜁 )(1 + 𝛼) + 𝜁 (1 + 𝛽)] ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2

+ [(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽)] ||uk − uk−1||2 − (1 − 𝜁 )

𝜁
||uk+1 − sk||2.

(3.30)

By replacing the value of sk and employing the Cauchy inequality, we obtain the following:

||uk+1 − sk||2 = ||uk+1 − uk − 𝛼(uk − uk−1)||2
= ||uk+1 − uk||2 + 𝛼2||uk − uk−1||2 − 2𝛼⟨uk+1 − uk,uk − uk−1⟩

(3.31)

⩾||uk+1 − uk||2 + 𝛼2||uk − uk−1||2 − 2𝛼||uk+1 − uk||||uk − uk−1||
⩾||uk+1 − uk||2 + 𝛼2||uk − uk−1||2 − 𝛼||uk+1 − uk||2 − 𝛼||uk − uk−1||2
= (1 − 𝛼)||uk+1 − uk||2 + (𝛼2 − 𝛼)||uk − uk−1||2.

(3.32)

These findings offer a detailed comprehension of the iterative process and the connections among the iterates

uk, uk+1, and the desired solution u∗. These inequalities will play a pivotal role in our subsequent analysis and proofs

of convergence. By incorporating (3.32) into (3.30), we infer



PAKKARANANG 11

||uk+1 − u∗|| ⩽ [(1 − 𝜁 )(1 + 𝛼) + 𝜁 (1 + 𝛽)] ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2
+ [(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽)] ||uk − uk−1||2

−
(1 − 𝜁 )

𝜁

[
(1 − 𝛼)||uk+1 − uk||2 + (𝛼2 − 𝛼)||uk − uk−1||2]

= [(1 − 𝜁 )(1 + 𝛼) + 𝜁 (1 + 𝛽)] ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2

+

[
(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽) − (𝛼2 − 𝛼)

(1 − 𝜁 )

𝜁

]
||uk − uk−1||2

−
(1 − 𝜁 )

𝜁
(1 − 𝛼)||uk+1 − uk||2

= ||uk − u∗||2 + [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2

+

[
(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽) − (𝛼2 − 𝛼)

(1 − 𝜁 )

𝜁

]
||uk − uk−1||2

−
(1 − 𝜁 )

𝜁
(1 − 𝛼)||uk+1 − uk||2

= ||uk − u∗||2 + [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2
+ 𝜇||uk − uk−1||2 − 𝜌||uk+1 − uk||2

(3.33)

where

𝜌 =
(1 − 𝜁 )

𝜁
(1 − 𝛼)

and

𝜇 =

[
(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽) − (𝛼2 − 𝛼)

(1 − 𝜁 )

𝜁

]
.

Subsequently, we substitute

Ψk = ||uk − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2 + 𝜇||uk − uk−1||2.

Following that, it is necessary to calculate

Ψk+1 − Ψk = ||uk+1 − u∗||2 − [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk − u∗||2 + 𝜇||uk+1 − uk||2
− ||uk − u∗||2 + [(1 − 𝜁 )𝛼 + 𝜁𝛽] ||uk−1 − u∗||2 − 𝜇||uk − uk−1||2

⩽ − (𝜌 − 𝜇)||uk+1 − uk||2.
(3.34)

Let us calculate

𝜌 − 𝜇 =

[
(1 − 𝜁 )

𝜁
(1 − 𝛼)

]
−

[
(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽) − (𝛼2 − 𝛼)

(1 − 𝜁 )

𝜁

]

=

[
(1 − 𝜁 )

𝜁
(1 − 𝛼)

]
− [(1 − 𝜁 )𝛼(1 + 𝛼) + 𝜁𝛽(1 + 𝛽)] +

[
(𝛼2 − 𝛼)

(1 − 𝜁 )

𝜁

]

=

[
(1 − 𝜁 )

𝜁
(1 − 𝛼)2 − (1 − 𝜁 )𝛼(1 + 𝛼) − 𝜁𝛽(1 + 𝛽)

]
.

(3.35)

Starting with the constraints 𝜁 ⩽
1

2
and 𝜁 ⩽

1+𝛼2−2𝛼

(1+2𝛼2−𝛼)+𝛽(1+𝛽)
, let us consider the equation:

𝜁 ⩽
1 + 𝛼2 − 2𝛼

(1 + 2𝛼2 − 𝛼) + 𝛽(1 + 𝛽)
. (3.36)
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Considering that 𝛼 ∈ [0, 1) and 𝛽 ∈ [0, 1], we can assert that (1+ 2𝛼2−𝛼)+ 𝛽(1+ 𝛽) > 0. Simplifying the right-hand

side, we derive the following:

𝜁
[
(1 + 2𝛼2 − 𝛼) + 𝛽(1 + 𝛽)

]
⩽ (1 − 𝛼)2. (3.37)

Moreover, we have the following:

[
(1 + 2𝛼2 − 𝛼) + 𝛽(1 + 𝛽)

]
⩽
1

𝜁
(1 − 𝛼)2. (3.38)

Moreover, we can infer the following:

1

𝜁
(1 − 𝛼)2 − (1 + 2𝛼2 − 𝛼) − 𝛽(1 + 𝛽) ⩾ 0. (3.39)

It is evident that (1 + 2𝛼2 − 𝛼) ⩾ 𝛼(1 + 𝛼) for 𝛼 ∈ [0, 1), leading to the following:

1 − 𝜁

𝜁
(1 − 𝛼)2 − (1 − 𝜁 )𝛼(1 + 𝛼) − (1 − 𝜁 )𝛽(1 + 𝛽) ⩾ 0. (3.40)

Furthermore, we obtain the following:

𝜁 ⩽
1

2

⇒ 𝜁 + 𝜁 ⩽ 1.
(3.41)

Moreover, the inequality:

𝜁 ⩽ 1 − 𝜁. (3.42)

When combining (3.41) with (3.42), it implies the following:

1 − 𝜁

𝜁
(1 − 𝛼)2 − (1 − 𝜁 )𝛼(1 + 𝛼) − 𝜁𝛽(1 + 𝛽) ⩾ 0. (3.43)

This leads to the conclusion that

𝜌 − 𝜇 ⩾

[
(1 − 𝜁 )

𝜁
(1 − 𝛼)2 − 𝛼(1 + 𝛼) + 𝜁𝛼(1 + 𝛼) − 𝜁𝛽(1 + 𝛽)

]
⩾ 0. (3.44)

By expressing (3.34), we can rewrite it as follows:

Ψk+1 − Ψk ⩽ −(𝜌 − 𝜇)||uk+1 − uk||2 ⩽ 0. (3.45)

The above analysis indicates that the sequence {Ψk} is nonincreasing. Let us consider that

𝜖 = [(1 − 𝜁 )𝛼 + 𝜁𝛽] ⩽ max{𝛼, 𝛽} < 1.

This expression transforms into

Ψk = ||uk − u∗||2 − 𝜖||uk−1 − u∗||2 + 𝜇||uk − uk−1||2.

From Ψk+1, we have

Ψk+1 = ||uk+1 − u∗||2 − 𝜖||uk − u∗||2 + 𝜇||uk+1 − uk||2
⩾ − 𝜖||uk − u∗||2. (3.46)
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Similarly by definition of Ψk, we obtain

Ψk = ||uk − u∗||2 − 𝜖||uk−1 − u∗||2 + 𝜇||uk − uk−1||2
⩾||uk − u∗||2 − 𝜖||uk−1 − u∗||2. (3.47)

Inequality (3.47) suggests that

||uk − u∗||2 ⩽Ψk + 𝜖||uk−1 − u∗||2
⩽Ψ1 + 𝜖||uk−1 − u∗||2
⩽ · · · ⩽ Ψ1(𝜖

k−1 + · · · + 1) + 𝜖k||u0 − u∗||2

⩽
Ψ1

1 − 𝜖
+ 𝜖k||u0 − u∗||2.

(3.48)

Combining (3.46) and (3.48), we obtain

−Ψk+1 ⩽ 𝜖||uk − u∗||2

⩽ 𝜖
Ψ1

1 − 𝜖
+ 𝜖k+1||u0 − u∗||2. (3.49)

It follows from expressions (3.34) and (3.49) such that

(𝜌 − 𝜇)

n∑
k=1

||uk+1 − uk||2 ⩽Ψ1 − Ψn+1

⩽Ψ1 + 𝜖
Ψ1

1 − 𝜖
+ 𝜖n+1||u0 − u∗||2

⩽
Ψ1

1 − 𝜖
+ ||u0 − u∗||2.

(3.50)

By letting (n → +∞) in the above expression implies that

+∞∑
k=1

||uk+1 − uk||2 < +∞. (3.51)

This follows that

lim
k→+∞

||uk+1 − uk|| = 0. (3.52)

From expressions (3.31), we have

||uk+1 − sk||2 = ||uk+1 − uk||2 + 𝛼2||uk − uk−1||2 − 2𝛼⟨uk+1 − uk,uk − uk−1⟩ (3.53)

From expressions (3.52) and (3.53), we obtain

||uk+1 − sk||→ 0 as k → +∞. (3.54)

Inequality (3.33) with Lemma 2.3 and
∑∞

k=1 ||uk+1 − uk|| < +∞ imply that

lim
k→+∞

||uk − u∗||2 = l, for some finite l > 0. (3.55)

From expressions (3.28), (3.52), and (3.55), we obtain

lim
k→+∞

||wk − u∗||2 = l. (3.56)
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Combining expression (3.26) and (3.54), we have

lim
k→+∞

(qk − sk) =
1

𝜁
lim
k→+∞

(uk+1 − sk) = 0. (3.57)

lim
k→+∞

(sk − uk) = 𝛼 lim
k→+∞

(uk − uk−1) = 0. (3.58)

lim
k→+∞

(wk − uk) = 𝛽 lim
k→+∞

(uk − uk−1) = 0. (3.59)

Combining expressions (3.58) and (3.59), we have

lim
k→+∞

(sk − wk) = 0. (3.60)

It follows from (3.57) and (3.60) that

lim
k→+∞

(qk − wk) = 0. (3.61)

As a result of expressions (3.20) and (3.28), we have

(
1 − 𝜇2

𝛾2
k

𝛾2
k+1

)
||wk − vk||2 ⩽ ||wk − u∗||2 − ||qk − u∗||2. (3.62)

⩽ (1 + 𝛽k)||uk − u∗||2 − 𝛽k||uk−1 − u∗||2 + 2𝛽k||uk − uk−1||2 − ||qk − u∗||2
⩽ ||uk − u∗||2 − ||qk − u∗||2 + 𝛽k

(||uk − u∗||2 − ||uk−1 − u∗||2) + 2𝛽k||uk − uk−1||2.
(3.63)

Taking the limit as k → +∞ in the expression (3.63), we obtain

lim
k→+∞

||wk − vk|| = 0. (3.64)

It follows that

||qk − vk|| = ||vk + 𝛾k[(wk) − (vk)] − vk|| ⩽ 𝛾kL||wk − vk||.

The above expression implies that

lim
k→∞
||qk − vk|| = 0. (3.65)

Thus, the expressions (3.58), (3.59), and (3.64) give that

lim
k→+∞

||qk − u∗|| = lim
k→+∞

||sk − u∗|| = lim
k→+∞

||vk − u∗|| = l. (3.66)

According to the above discussion, the sequences {uk}, {vk}, {wk}, {sk}, and {qk} are bounded, and for each u∗ ∈ Ω,

exists the limk→+∞ ||uk − u∗||2, limk→+∞ ||vk − u∗||2, limk→+∞ ||wk − u∗||2, limk→+∞ ||sk − u∗||2, limk→+∞ ||qk − u∗||2.
Following that, we will show that the sequence {uk}weakly converges to u∗. As a result, all sequences {uk}, {wk} and

{vk} are bounded.We now demonstrate that each sequential weak cluster point in the sequence {uk} is in the solution

set Ω. Consider that û is a weak cluster point of {uk}, which means that there is a subsequence {ukl} of {uk} that is

weakly convergent to û ∈ . Also, subsequence {vkl} is weakly convergent to û. Now let us prove that û ∈ Ω. It is

proven before that the sequences {wk}, {sk} and {vk} are also bounded sequences. Due to reflexivity of a Hilbert space and the boundedness of a sequence {uk} guarantees that there exists a subsequence {ukl} such that {ukl} ⇀ û ∈ 
as l → +∞. Next, we need to show that û ∈ Ω. By value of vk, we have

vkl = P
[
wkl − 𝛾kl(wkl)

]
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that is equivalent can be written as follows:

⟨wkl − 𝛾kl(wkl) − vkl , v − vkl⟩ ⩽ 0, ∀v ∈ . (3.67)

The above inequality further implies that

⟨wkl − vkl , v − vkl⟩ ⩽ 𝛾kl⟨(wkl), v − vkl⟩, ∀v ∈ . (3.68)

Thus, we obtain

1

𝛾kl
⟨wkl − vkl , v − vkl⟩ + ⟨(wkl), vkl − wkl⟩ ⩽ ⟨(wkl), v − wkl⟩, ∀v ∈ . (3.69)

Due to the boundedness of the sequence {wkl}, it implies that {(wkl)} is also a bounded sequence. By the use of

liml→+∞ ||wkl − vkl || = 0 and l → +∞ in expression (3.69), we obtain

lim inf
l→+∞

⟨(wkl), v − wkl⟩ ⩾ 0, ∀v ∈ . (3.70)

Moreover, we obtain

⟨(vkl), v − vkl⟩ = ⟨(vkl) − (wkl), v − wkl⟩ + ⟨(wkl), v − wkl⟩ + ⟨(vkl),wkl − vkl⟩. (3.71)

Since liml→+∞||wkl − vkl || = 0 and  is L-Lipschitz continuous on  such that
lim
l→+∞

||(wkl) − (vkl)|| = 0, (3.72)

which together with expressions (3.71) and (3.72), we obtain

lim inf
l→+∞

⟨(vkl), v − vkl⟩ ⩾ 0, ∀v ∈ . (3.73)

Next, let us take a positive sequence {𝜖l} that is decreasing and converges to zero. We represent ml by the smallest

positive integer for each 𝜖l such that

⟨(wki), v − wki⟩ + 𝜖l ⩾ 0, ∀ i ⩾ ml. (3.74)

As {𝜖l} is decreasing, it is easy to see that the sequence {ml} is increasing.

Case I: Let {wkml𝑗
} be a subsequence of a sequence {wkml

} such that (wkml𝑗
) = 0 (∀ 𝑗). Let 𝑗 → ∞, we get

⟨(û), v − û⟩ = lim
𝑗→∞

⟨ (wkml𝑗

)
, v − û

⟩
= 0. (3.75)

As û ∈ , we have û ∈ Ω.

Case II: If there exists N0 ∈ N such that for all kml
⩾ N0, (wkml

) ≠ 0. Consider that

Υkml
=

(wkml
)

||(wkml
)||2 , ∀ kml

⩾ N0. (3.76)

Due to the above definition, we have

⟨(wkml
),Υkml

⟩ = 1, ∀kml
⩾ N0. (3.77)
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Moreover, from expressions (3.74) and (3.77) for all kml
⩾ N0, we have

⟨(wkml
), v + 𝜖lΥkml

− wkml
⟩ ⩾ 0. (3.78)

By the definition of pseudomonotone mapping  for kml
⩾ N0, we have

⟨(v + 𝜖lΥkml
), v + 𝜖lΥkml

− wkml
⟩ ⩾ 0. (3.79)

That is, for all kml
⩾ N0, we obtain

⟨(v), v − wkml
⟩ ⩾ ⟨(v) − (v + 𝜖lΥkml

), v + 𝜖lΥkml
− wkml

⟩ − 𝜖l⟨(v),Υkml
⟩. (3.80)

Due to {wkl}weakly converges to û ∈  through  is sequentially weakly continuous on the set, we get
{(wkl)} weakly converges to (û). Consider that (û) ≠ 0, we have

||(û)|| ⩽ lim inf
l→∞

||(wkl)||. (3.81)

Since {wkml
} ⊂ {wkl} and liml→∞ 𝜖l = 0, we have

0 ⩽ lim
l→∞
||𝜖lΥkml

|| = lim
l→∞

𝜖l

||(wkml
)|| ⩽

0

||(û)|| = 0. (3.82)

For letting l → +∞ in the expression (3.80), we obtain

⟨(v), v − û⟩ ⩾ 0, ∀v ∈ . (3.83)

This demonstrates that û ∈ Ω. Thus, Lemma 2.4 assures that {wk}, {uk} and {vk} converge weakly toj u∗

as k → +∞.

□

FIGURE 1 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

number of iterations. These comparisons were conducted under the consideration of a spatial dimension ofm = 10 and utilizing

Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


PAKKARANANG 17

4 NUMERICAL ILLUSTRATIONS

In this section, we conducted a series of numerical experiments to showcase the efficacy of the proposed methodologies.

These experiments serve dual purposes: Firstly, they offer valuable insights into the process of choosing optimal control

parameters, and secondly, they illustrate the superior performance of our methods when compared to those previously

documented in the literature. It is crucial to emphasize that, throughout this section, the error term is consistently denoted

asDk in allmethods and computations under consideration. AllMATLAB codeswere run on amachinewith the following

specifications: Intel(R) Core(TM) i5-6200 Processor CPU @ 2.30GHz 2.40GHz, and 8.00 GB RAM.

Example 4.1. The first problem is HP hard problem, originally introduced in Harker and Pang [33]. The problem

involves a mapping  that operates from R
m to Rm. This mapping is defined as follows:

(u) = Mu + q.

FIGURE 2 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

execution time. These comparisons were conducted under the consideration of a spatial dimension ofm = 10 and utilizing Example 4.1.

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

number of iterations. These comparisons were conducted under the consideration of a spatial dimension ofm = 20 and utilizing

Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Here, the matrixM is defined as follows:

M = NNT + B + D.

In the above expressions, q is an element of Rm. To clarify the components involved: N is a random matrix, where

N = rand(m). B is a skew-symmetric matrix, given by B = 0.5K − 0.5KT , where K = rand(m). D is a diagonal matrix

represented as D = diag(rand(m, 1)). Now, let us define the feasible set as follows:

 = {u ∈ R
m ∶ Qu ⩽ b}.

In this definition: Q is a random matrix with dimensions 100 × m, that is, Q = rand(100,m). Moreover, b is a ran-

dom vector with dimensions 100× 1, that is, b = rand(100, 1). It is worth noting that the mapping  is both Lipschitz

continuous and monotone. The primary aim of the initial experiment is to assess the suggested algorithm under the

assumption of knowing the Lipschitz constants. It is important to highlight that, although we have access to all the

FIGURE 4 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

execution time. These comparisons were conducted under the consideration of a spatial dimension ofm = 20 and utilizing Example 4.1.

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

number of iterations. These comparisons were conducted under the consideration of a spatial dimension ofm = 30 and utilizing

Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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proposed algorithms, we specifically employed Algorithm 2 for comparative purposes in this specific scenario. This

choicewasmade due to the variable step-size rule in Algorithm 2, which changeswith each iteration, facilitating to fin

an optimal parameter. The numerical results are presented in Figures 1 to 8 and Tables 1 and 2. A consistent pattern is

evident across all these cases: Our proposed algorithms consistently surpass the performance of pre-existing ones. It

is crucial to underscore that the chosen spatial dimension significantly influences computational performance. How-

ever, it is essential to acknowledge that algorithm performance is affected by various factors. As the spatial dimension

expands, both the number of iterations and the execution time needed to attain a solution also increase. Aside from

the spatial dimension, additional criteria come into consideration and can significantly impact the efficacy of all

corresponding algorithms.

For all algorithms, we initialize the vectors as follows: u−1 = (1, 1, · · · , 1, 1m)T , u0 = (1, 1, · · · , 1, 1m)T . The condition

for termination is defined as follows: Dk = ||wk − vk||. Furthermore, for the purpose of running these algorithms in
the MATLAB environment, we have specified the following parameter conditions:

(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): 𝛼 = 0.65, 𝜏1 = 0.22, 𝜇 = 0.90, 𝛽k =
1

(5k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

FIGURE 6 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

execution time. These comparisons were conducted under the consideration of a spatial dimension ofm = 30 and utilizing Example 4.1.

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

number of iterations. These comparisons were conducted under the consideration of a spatial dimension ofm = 50 and utilizing

Example 4.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 The numerical results offered a comparison between our proposed algorithms and existing ones, with a specific focus on the

execution time. These comparisons were conducted under the consideration of a spatial dimension ofm = 50 and utilizing Example 4.1.

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 A detailed numerical results data provided for Figures 1–8. Number of iterations

m (alg3.2) (alg3.4) (alg3.1) (alg1)

10 114 104 84 56

20 189 146 122 82

30 311 270 217 127

50 772 549 451 354

TABLE 2 A detailed numerical results data provided for

Figures 1–8.
Execution time in seconds

m (alg3.2) (alg3.4) (alg3.1) (alg1)

10 0.6495358000 0.6487179000 0.6158434000 0.3862360000

20 1.7357792000 2.0538113000 1.2634578000 0.8583252000

30 1.8570223000 2.4490376000 1.2166346000 0.7644448000

50 6.9629246000 4.2014935000 5.0742774000 4.1819123000

FIGURE 9 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of

iterations. These comparisons were conducted with the initialization u0 = (1, 2, 3, 4)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]
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(2) Algorithm 3.4 in Anh et al. [35] (alg3.4): 𝛼 = 0.65, 𝜆0 = 0.22, 𝜇 = 0.90, 𝜏k =
1

(k+1)2
, 𝛽k =

1

(5k+2)
, 𝜃k =

4

10
(1 − 𝛽k).

(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): 𝛼 = 0.65, 𝜆 =
1

2L
, 𝛽k =

1

(5k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

(4) Algorithm 2 (alg1): 𝛾0 = 0.25, 𝛼 = 0.55, 𝛽 = 0.454, 𝜇 = 0.90, 𝜁 = 0.328.

Example 4.2. Let us consider a mapping  ∶ R
4
→ R

4 is defined as follows:

(u) =

⎛
⎜⎜⎜⎜⎝

u1 + u2 + u3 + u4 − 4u2u3u4
u1 + u2 + u3 + u4 − 4u1u3u4
u1 + u2 + u3 + u4 − 4u1u2u4
u1 + u2 + u3 + u4 − 4u1u2u3

⎞
⎟⎟⎟⎟⎠
.

FIGURE 10 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.

These comparisons were conducted with the initialization u0 = (1, 2, 3, 4)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 11 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of

iterations. These comparisons were conducted with the initialization u0 = (1, 2, 1, 2)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Moreover, we define the feasible set as follows:

 = {u ∈ R
4 ∶ 1 ⩽ ui ⩽ 5, i = 1, 2, 3, 4}.

It is evident that the mapping  does not exhibit monotonic behavior within the set . It can be proven that  is

pseudomonotone when examined within the bounds of  using a Monte Carlo technique as discussed in Hu and

Wang [37]. Furthermore, it is essential to note that the presented problem has a unique solution u∗ = (5, 5, 5, 5)T and

u−1 = (1, 1, 1, 1)T . The termination condition is defined as Dk = ||wk − vk||. Numerical results are depicted in

Figures 9–14 and Tables 3 and 4. A consistent pattern emerges across all these cases: our proposed algorithms

consistently surpass their predecessors. It is crucial to highlight that the initial selection of the starting point

does not significantly impact computational performance. However, it is essential to acknowledge that algorithm

performance is influenced by other parameters as well. The selection of initial points does not significantly affect the

number of iterations, although it does lead to variations in the time required to reach a solution. Factors beyond spatial

dimensions also play a role and can significantly impact the efficiency of all associated algorithms. Therefore, it is

FIGURE 12 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.

These comparisons were conducted with the initialization u0 = (1, 2, 1, 2)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 13 The numerical results provide a comparison between the proposed algorithms and existing ones in term of the number of

iterations. These comparisons were conducted with the initialization u0 = (3, 4, 3, 1)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 14 The numerical results provide a comparison between the proposed algorithms and existing ones in term of execution time.

These comparisons were conducted with the initialization u0 = (3, 4, 3, 1)T using Example 4.2. [Colour figure can be viewed at

wileyonlinelibrary.com]

Number of iterations

u0 (alg3.2) (alg3.4) (alg3.1) (alg1)

(1, 2, 3, 4)T 667 502 445 301

(1, 2, 1, 2)T 665 501 443 300

(3, 4, 3, 1)T 663 501 442 300

TABLE 3 The numerical results data corresponding to Figures 9 through 14

are presented.

Execution time in seconds

u0 (alg3.2) (alg3.4) (alg3.1) (alg1)

(1, 2, 3, 4)T 7.40983310000000 3.43298360000000 2.78796480000000 1.71841050000000

(1, 2, 1, 2)T 9.52541980000000 5.32200410000000 3.26604860000000 2.11793870000000

(3, 4, 3, 1)T 5.04958530000000 3.45173320000000 2.77985460000000 1.62941670000000

TABLE 4 The numerical results

data corresponding to Figures 9

through 14 are presented.

FIGURE 15 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number

of iterations. These comparisons were conducted using the initialization u0 = 2(t + t3) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

crucial to emphasize that we diligently sought to identify optimal parameters for eachmethod, particularly within the

context of Example 4.2. The objective of the second experiment was to compare the proposed method under different

starting points. For all algorithms, we initialize the parameters as follows:

http://wileyonlinelibrary.com
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(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): 𝛼 = 0.72, 𝜏1 = 0.12, 𝜇 = 0.934, 𝛽k =
1

(3k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

(2) Algorithm 3.4 in Anh et al. [35] (alg3.4): 𝛼 = 0.72, 𝜆0 = 0.12, 𝜇 = 0.934, 𝜏k =
1

(k+1)2
, 𝛽k =

1

(3k+2)
, 𝜃k =

5

10
(1 − 𝛽k).

(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): 𝛼 = 0.72, 𝜆 =
1

2L
, 𝛽k =

1

(3k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

(4) Algorithm 2 (alg1): 𝛾0 = 0.32, 𝛼 = 0.25, 𝛽 = 0.85, 𝜇 = 0.934, 𝜁 = 0.245,Dk = ||wk − vk||.

Example 4.3. Consider the Hilbert space  , denoted as L2([0, 1]), along with its inner product defined by the

following:

⟨u, v⟩ = ∫
1

0

u(t)v(t)dt, ∀u, v ∈  .

This inner product induces a norm on  , denoted as ||u||, that is given by the following: ||u|| =
√

∫ 1

0 |u(t)|2dt. Now,
take a unit ball within L2([0, 1]) as follows: ∶= {u ∈ L2([0, 1]) ∶ ||u|| ⩽ 1}.Within this framework, we introduce

FIGURE 16 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the

execution time. These comparisons were conducted using the initialization u0 = 2(t + t3) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 17 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number

of iterations. These comparisons were conducted using the initialization u0 = 5t3 exp(t3) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PAKKARANANG 25

a mapping  operating from to  , defined as follows:

(u)(t) = ∫
1

0

(u(t) −H(t, s)𝑓 (u(s))) ds + g(t).

Here, the functions H(t, s), 𝑓 (u), and g(t) are expressed as follows:

H(t, s) =
2tse(t+s)

e
√
e2 − 1

, 𝑓 (u) = cosu, g(t) =
2tet

e
√
e2 − 1

.

The termination condition is defined as:Dk = ||wk−vk||, and u−1 = t. The numerical results are depicted in Figures 15

through 20, as well as Tables 5 and 6. Additionally, specific parameter conditions have been established for the

execution of these algorithms in the MATLAB environment.

FIGURE 18 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the

execution time. These comparisons were conducted using the initialization u0 = 5t3 exp(t3) and referring to Example 4.3. [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 19 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the number

of iterations. These comparisons were conducted using the initialization u0 = 3sin2(t) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


26 PAKKARANANG

FIGURE 20 The numerical results present a comparison between our proposed algorithms and existing ones, with a focus on the

execution time. These comparisons were conducted using the initialization u0 = 3sin2(t) and referring to Example 4.3. [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 5 The numerical data outcomes for Figures 15 through 20. Number of iterations

u0 (alg3.2) (alg3.4) (alg3.1) (alg1)

2(t + t3) 111 83 65 41

5t3 exp(t3) 122 92 73 47

3sin2(t) 115 87 68 44

TABLE 6 The numerical data outcomes for

Figures 15 through 20.
Execution time in seconds

u0 (alg3.2) (alg3.4) (alg3.1) (alg1)

2(t + t3) 0.054863700000 0.04989920000 0.0371664000 0.02528950000

5t3 exp(t3) 0.447367000000 0.32404780000 0.2584931000 0.16380220000

3sin2(t) 0.371565000000 0.30556390000 0.2347713000 0.13997550000

(1) Algorithm 3.2 in Thong et al. [34] (alg3.2): 𝛼 = 0.45, 𝜏1 = 0.45, 𝜇 = 0.85, 𝛽k =
1

(4k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

(2) Algorithm 3.4 in Anh et al. [35] (alg3.4): 𝛼 = 0.45, 𝜆0 = 0.45, 𝜇 = 0.85, 𝜏k =
1

(k+1)2
, 𝛽k =

1

(4k+2)
, 𝜃k =

5

10
(1 − 𝛽k).

(3) Algorithm 3.1 in Thong et al. [36] (alg3.1): 𝛼 = 0.45, 𝜆 =
1

2L
, 𝛽k =

1

(4k+2)
, 𝜖k =

1

(k+1)2
, 𝑓 (x) = x

2
.

(4) Algorithm 2 (alg1): 𝛾0 = 0.45, 𝛼 = 0.25, 𝛽 = 0.95, 𝜇 = 0.85, 𝜁 = 0.328.

5 CONCLUSION

To summarize, our study has introduced a new improvement of Tseng's extragradient method, aiming to improve con-

vergence rates while concurrently reducing computational complexity, with a particular emphasis on cost reduction. The

proposedmethods are specifically designed for solvingVIPs in realHilbert spaces. Initially,we achievedweak convergence

results contingent upon the operator satisfying pseudomonotonicity and Lipschitz continuity conditions. It is noteworthy

that the step-size rule we propose does not rely on Lipschitz continuity. To showcase the practical utility and real-world

applicability of our method, we conducted various numerical examples. This study represents a notable advancement in

optimizing methods for solving VIPs.
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