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ABSTRACT

The purpose of this research project is to develop new theories, discuss, and extend some recent common
fixed point results established when the underlying ambient space is an extended b-metric space and the
contraction condition involves a new class of y-¢-C-contraction type mappings where s is the altering distance
function and ¢ is the ultra-altering distance function. The unique fixed point theorems for such mappings in
the setting of y-@-complete metric spaces are proven. We also prove the fixed point theorem in partially ordered
metric spaces. Moreover, some examples supporting the main results are given. Our results extend and
generalize corresponding results in the literature. The start of the development of the theory of fixed points
is tied to the end of the 19™ century. The method of successive approximations is used in order to prove the
solution's existence and uniqueness at the beginning of differential and integral equations. This branch of
nonlinear analysis has been developed through various classes of spaces, such as metric spaces, topological
spaces, probabilistic metric spaces, fuzzy metric spaces, and others. In developing the theory of fixed points,
achievements are applied in various sciences, such as optimization, economics, and approximation theory. A
very important step in the development of fixed point theory was taken by A.H. Ansari through the
introduction of a C-class function. Using C-class functions, we generalize some known fixed point results,
and Kamran et al. introduced a new intuitive concept of distance measure to extend the notion of b-metric
space by further weakening the triangle inequality.

Keywords: fixed point, extended b-metric space, C-class function

INTRODUCTION generalize metric spaces such as partial, G-metric,
and cone metric spaces. For fixed point theorems in
metric spaces, see [2, 4, 6,10-13, 15, 16] and references
therein. The concept of a b-metric space was introduced
by Bakhtin [7], and Czerwik [9] generalized the
structure of metric space by weakening the triangle
inequality called a b-metric space and proved some
results of the fixed point theorem in b-metric spaces.
Further, many authors use the concepts for trade
measures [5] and to measure ice floes [8]. In this
context, Kamran and his co-authors [14] introduced
the concept of extended b-metric space by further
weakening the triangle inequality. Later in 2014,
Ansari [1] introduced the concept of C-class functions
and proved the unique fixed point theorems for
specific contractive mappings concerning the C-class
functions.

Following the above results, the motivation of
this paper is to introduce the article's idea on some
fixed point theorems for C-class functions in b-metric

It is widely known that Thailand has a strategy
to develop the nation using science and technology,
particularly in applying scientific understanding to
biotechnology, materials science technology, and
suitable use of electronic and computer technology.
Therefore, acquiring information is crucial for
academic success, and it is evident that mathematics
is an essential instrument for discovering and growing
those above. Using knowledge of mathematics to
create a mathematical model to predict the effect of
soil temperature on plant growth, for example, In
2020, Boonwan ], et al. [3] created a mathematical
model to predict soil temperature for the growth of
chrysanthemum sprouts. However, fixed point theory
is another tool used to solve many nonlinear problems
in mathematical analysis. In 1922, Stefan Banach [17]
began modern functional analysis and subsequently
studied how to extend this principle for generalized
contraction transmission in many different ways.
Later, many researchers extended metric spaces to
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spaces [18] to cover more general cases. We then
prove the existence of unique fixed points in extended
b-metric space. Further, some examples supporting
the main results are given.

MATERIALS AND METHODS

This section has compiled definitions and
relevant theorems, a tool for further study and
research in the main results.

Definition 2.1. [14] Let X be a nonempty set and
0:XxX— [1,0). A function de:XxX— [1,0) is called an
extended b metric space, if for all x,y,z €X, it satisfies
EbM 1. de(x,y) = 0 if and only if x=y
EbM 2. ds(x,y )= de(y,x)
EbM 3. de(x,2)<0(x,2) [de(x,y)+ de(y,2)]
(X, dg) is called an extended b-metric space.

To show the concreteness of the idea of
extended b-metric space, we give some examples of
extended b-metric space in the following:

Example 2.2. et X = {3,4,5},0: X X X - R" and
dg: XXX —>Rtaso(x,y) =x+y
de(3,3) = dp(4,4) = de(5,5) =0,
d9(3,4) = d9(4,3) = 50,
d9(3,5) = d9(5,3) = 250,
d9(4,5) = d9(5,4) = 400.
It is obvious from definition 2.1 in EbM 1. and EbM
2. We then prove EbM 3. in the following way:
50 = dg(3,4) < 0(3,4)[dg(3,5) + dg(5,4)] = 4,550
250 = dg(3,5) < 0(3,5)[dg(3,4) + dg(4,5)] = 3,600
450 = dg(4,5) < 0(4,5)[dg(4,3) + dg(3,5)] = 2,700
Therefore, (X, dg) is an extended b-metric space.
Example 2.3.[14] Let X = [0, +) and
0: XXX > [1,+40),0(xy)=1+x+y.
Define dg: X X X - [1, +0), as
de(x,y) =x+y forx,yeX,x#y
de(x,y) =0, forx,y €X,x=1y.
It is easy to show EbM1. and EbM 2. Hold. For EbM 3.
We split the consideration into four cases:
Case 1.1fx =y, we have EbM 3. hold.
Case 2.1fx # y,x = z, then
8(x,y) [de (x,2) + do(zy)]
=(1+x+ Y0+ (z+y)]
=1+x+y)(z+y)
>x+y=dy x,y).
Case 3.Ifx # y,y = z, then
B(x,y)[de (x,2) +dg (z,y)]
=1+x+y)[(x+z)+0]
=1+x+y)E+Yy)
2x+y=dg(xy)
Case4.Ifx #y,y # z,x # z, then
B(x,y)[de(x,2) + do (zy)]
=A1+x+y)[x+z)+(Z+y)]
>x+2z+y
>x+y=dg xy).
In conclusion, for any x,y,z € X,
do (x,2) < 0(x,2)[dg (x,y) + do (v,2)].

\ AND TEGHNOILOGY

Hence, (X, dg) is an extended b metric space.

In the next section, the concepts of convergence,
Cauchy sequence, and completeness are introduced in
extended b-metric space.
Definition 2.4.[14] Let (X, dg) be an extended b-metric
space. Then a sequence (x,) in X is said to be:
1) convergent if and only if there exists
x € X such that rlll_ILla Xy = X,

2)Cauchy if and only if lim dg(xy,x,) = 0.

Definition 2.5. An extended b metric space. (X, dg) is
complete if every Cauchy sequence in X is convergent.
Lemma 2.6. Let (X,dg) be a complete extended
b-metric space. If dy is continuous, then every
convergent sequence has a unique limit.

Definition 2.7. [1] A mapping F: [0,«)? — Ris called
a C-class function if it is continuous and for all a,b €
[0, )

1)F(a,b)<a;

2)F(a,b) = aimplies that eithera=0orb = 0.

We denote C as the family set of all C-class functions.
Example 2.8.[1] The following functions

F: [0,0)2 - R? are elements in C For all a,b € [0, )
1)f(a,b) =a—b,f(a,b) =a—->b=0;

2)f(a,b) =xa,f(a,b) =a—->a=0where0 <x<1;

3)f(a,b) =(a + x) (HLby)—x,f(a,b) =a->b=0
where x > 1,y € (0,);
4)f(a,b) = logbl:—xs,x > 1,
(a,b) =a=a=00rb=0;
5)f(a,b) =In(1 +xa)/2,x > e,
f(a,b)=a=>a=0;
6)f(a,b) =a(1+b)x;x € (0,),
f(a,b)=a=>a=0o0rb=0;
7)f(a,b) = alogpix X, x> 1,
f(a,b)=a=a=00rb=0;
1+a b
8)fab) =a—(333) (555)
f(ab)=a=>b=0;
9)f(a,b) = a; B(a),B:[0,0) - [0,1) is
f(a,b) =a=a=0;
b
10) f(a,b) = a—m,f(a,b) =a=b=0;
11) f(a,b) = a-¢(a),f(a,b) =a=a=0,
@ : [0,0) - [0,0) is a continuous function such that
e(t)=0->t=0;
12)f(a,b) = ah(a,b),f(a,b)y=a=a=0
h: [0,0) X [0,0) — [0,0) iS a continuous function
such that h(b,a) < 1 for all b,a > 0;
13)f(a,b) =a— (ﬁ)b,f(a,b) =a>a=0;
14)f(a,b) = Y/In(1 + a"),f(a,b) =a=>a=0;
15)f(a,b) = ¢(a),f(a,b) =a=>a=0
@ : [0,0) - [0,00 is a continuous function such that
@(0) =0and @(b) <bforb > 0;
16)f(a, b) =ﬁ,xe (0, ),
f(a,b) =a=a=0.

continuous
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Definition 2.9. [1] §: [0,0) —» [0,%0) is called an
altering distance function if the following properties
are satisfied:

1)y is non-decreasing and continuous;

2)y(t) = 0if and only if t = 0.

The family of all altering distance functions is denoted
by y.

Example 2.10. The following functions

Y;: Rt > R*,i€{1,2,3,...,6}are elements in s

1)y, (x) = kx wherek > 0,

2) P, (x) = x* where a > 0,

3) Y5(x) = sinh1x,

4)y,(x) =coshx—1,

5)Ps(x) =a*—1 where0 < a # 1.

Definition 2.11. [1] A function ¢ : [0,%) - [0,©)

is called an ultra-altering distance function if the
following properties are satisfied in the following

1) @ is continuous;

2)@(t) > 0 ifand only ift > 0.

We denoted Wu as the family of all ultra-altering
distance functions.

RESULTS AND DISCUSSION

In this section, we are now ready to prove our
main results.
Theorem 3.1. Let a function dg: X X X > [0,%) is
an extended b metric space,and f: X — Xisa self-
mapping. Suppose
¥ (8Cx y)do(fy £y))
< FUM(x,y), ¢(M(x,y))) + LN(x,y)
forallx,y € X,whereL > 0,F: [0,0)? -» R
is an element in C, § : [0,0) — [0,) is an element
in¥, @: [0,0) > [0,) is an element in Yu and

dg (x,fx)dg (y.fy)
M(X, y) = max {de (X, y), W} aI’ld

N(x,y) = min{dg(x,f,), do(xf;), de (v, f), do (v, £y )} -
Then f has a unique fixed point.

Proof. Let x, € X. Define a sequence (x,) c X by
X, = f*(x,) = fx,_, forn € Nu {0}. We now prove
that (x,) is a Cauchy sequence. First, we show
Illl_llrolo do (Xn, Xn+1) = 0.

(3.1)

From 3.1 we have,

de (Xn' Xn+1) < e(Xn' Xn+1)d9 (Xn: Xn+1)
= 0(Xp, Xn+1)de (f(Xn-1), f(X4) )-

Consequently ydg (X, Xn4+1)

< IIJ(G (Xn: Xn+1)d9 (f(Xn—l)' f(Xn))

< F(ll-’(M (Xn—1: Xn ))' (P(M (Xn—li Xn)))

+ LN(Xn—l' Xn)

where M(x,_1,Xp)

do (X1, Fn—1)do (Xn, X,
— maxldg(xo_ux), o (Xn—1, fXn_1)dg (Xy, fx )}

1+ dg(fxy_q, fXp)
de (Xn—l'xn)de (Xnﬁxn—l)}
1+ de (Xnﬁxn+1)

= max {de (Xn-1,Xn),

= de(Xn—an)
and N(xp_1,Xp)
= min{dg(Xn_1, fXn_1), do (X1, fXy), dg (Xp, fXn_1),

de(Xn, an)}

= min{de (Xn—li Xn)' dS(Xn—ll Xn+1)' de (Xn: Xn):

do(Xn, Xn41)}

= rgin{de (Xn-1,Xn), dg(Xn—1,Xn+1), 0, dg (Xp, Xn11)}
Therefore, it follows from 3.2 that we have
P(O(xn, Xn+1)de (f(xn-1), f(Xn))

< F(‘P(de (Xn—lﬁ Xn))' (P(de (Xn—lﬁ Xn)) + LN(Xn—l' Xn)

= F(Y(dg (xn-1,%n)), @(do (Xn-1,%Xn)) + L(0)

= F(W(do (Xn-1,%n)), @(dg (Xn-1,%n))
thus

lll(de (Xn: Xn+1) < F(lll(de(xn—p Xn))'

@(de(Xn-1,%Xn))- (3.3)
Since F is a function in C, we have

lll(de (Xn: Xn+1)

< F(Y(de(Xn-1,%n)), @(de(Xn-1,%n))

< llj(de(xn—lﬁxn)) (34)

= lll(de (Xn: Xn—l))

And y is non-decreasing, thus

do(Xp, Xns1) = 0Vn € N.

And {dg(xp, X541)} is @ descending sequence.
Then it converges, and there existsr > 0
such that rlll_r)g do (X, Xp41) = T.

Letn — oo, then from 34 it implies that

IIJ(I') = LIJ rlli_rgade(xnlxn+1) < lll(xnyxn—l)

= lim lll(de(Xn; Xn+1)) = lIJ lim dS(Xn—li Xn)

< EIHEOF(¢(dB(Xn—1'Xn)) '(p(de(xn—ltxn)) < lIJ(I‘)

= Fglil')?o(qj(de(xn—ltxn)) ,@(do(Xn-1,%n)) < Y(1)

= F ((lim ((do (xn-1,%n))) , (@(lim ((de (Xn-1,Xn)))
Sy

= FU(), @()) < W(r)

thereforer = 0 and rll% dg(Xp_1,%,) = 0. (3.5)

Next, it is proved that the sequence (x,) is a Cauchy

sequence. Suppose that (x,) is not a Cauchy sequence.

By definition 2.4, we have ¢ > 0, for which we can

find two sequences of positive integers (m(k)) and

(n(k)) such that for all positive integers k, n(k) >

m(k) >k and d(Xmao Xngy) = & Let n(k) be the

smallest such positive integer n(k) > m(k) > k

such that vk e I*

do(*mag Xno) = &

d(Xma Xnao-1) > €

by3.6and6: X x X - [1,0)

we have

lim inf (¢) < lim inf (dg (Xm(oy» Xn@)-1))

oo
e < lim inf (de (Xm) Xn(-1))
0 Em@) Xno-1) = 1.

Since 3.7 a?d 3.8, we have

0 < m <

< lim inf (dg (Xm(i Xn(0-1))
where M(Xpm@, Xno-1)

= max {dg (xm(k), Xn(k)—l)'
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do (Xn(-1, Knao-1)de (Xm@ey Kmao)
1 + do(fXngo-1, Xmaw)
= max{dg (Xm@, Xn(0-1)»
de(Xn(k)—an(k))de(Xm(k)er(k)ﬂ)}
1+dg (Xn(k) Xm(1)+1) ’

Letk — o and apply 3.4, 3.5, and 3.6. We get
e < limin f(M(Xmgio» Xngo-1) ) -
Also 11<1—r»?o N(xm(k),xn(k)_l)

= lim min {do (%n(9-1, Xna9-1) » do (Xm» Fimaio-1),
do (Xna0» FXmao)}

= min {lim do (Xn(9-1,Xn(9) » [imdo (Xm(9» Xmao+1),
limde (n (9, Xm(o+1), Jimde (Xmag, Xmao)}

= min {lim do (Xn(9-1,Xn(9) » [imdo (Xm(9» Xmao+1),
limdg (Xm0, Xmao )}

= 0.

Then

de(Xm(k): Xn(k)) - e(Xm(k): Xn(k))de(xm(k): Xm(k)+1)
< 0(Xm@ Xnt )6 (Xm0 +1- Xni) ) - (3.10)
from 3.7 and 3.9 we get

W(e) = (lim sup do(Xm), Xn(w)))

Y(lim sup do (Xm0, Xn(0))do Km@o +1- Xn(o))

F(y (11(1_{1010 sup M(Xmqo» Xn(k)—l)):
‘P((ll(i_{ginfM(Xm(k)'Xn(k)—l)))

< Y(e)

and F (qJ(s), @ (llg?oinfM(xm(k),xn(k)_l)> = Y(e). by
definition 2.7 2) we get yi(¢) = 0 or

® (]l(i_r)roloinfM(xm(k),xn(k)_l) =0

and by definition 2.9 2)we get £ = 0 or
ll(im infM(Xm(k),Xn(k)_l =0.

}

(3.9)

IA

AN

it is a contradiction with € > 0 and
lim inf (M(x , X0 (k) — >—F
Koo ( ( m(k)’ 4n(k) 1)) de(xm(k)rxn(k))z

thus (x,) is an extended b-Cauchy sequence in X. Since

(X,d) is a completely extended b metric space, there

existsu € X such that lim x, = u now, we show u is a
n—oo

fixed point of f since

1 < 6(u,fu) and dg(u,fu) = 0

we get dg(u, fu) < 06(uy, fu)dg (u, fu).

And since  is a nondecreasing function implies

Y(dg(u, fu)) < Y(B(y, fu)dg(u, fu)) (3.11)
W(O(u, fu)dg(f(lim x,, £ (lim x, ))

= P(B(u, fu)(defu, f(fu)))

= P(0(u, fu)dg (u, fu))Y(O(u, fu)o(u, fu)(u, fu))

< F(U(M(u, ), (M(u, fu))) + LN(u, fu) (3.12)

but M(u, fu) = dg(u, fu) and N(u, fu) = 0 thus
Y(d(u, f(w))) < Fy(6(y, f(u))), @d(u, f(u)

< Y(d(u, f(u)))
So y(d(u, f(w))) = F(B(u, f(u))), ¢d(u, f(u)).
~ P(0(y, f(u))) = 0or gd(y,f(u)) = 0.
By definition 2.1 we have d(u, f(u)) = 0 sou = f(u)

\ AND TEGHNOILOGY

Now, we will show that u is a unique fixed point of
f.Suppose v # u is another fixed point of f from 3.1.
We have

Y(du, f(u))) < YO, v),d(u,v))

Y(O(u,v), d(f(u), f(v))

F(p(M(u,v)), @M(u,v)) + LN(u,v)

F(yM(u,v)), oM(u,v))

F((d(u,v)), @d(u,v))

Y(d(u,v))

so Yd(u,v) = F(P(d(u,v), @ d(u,v))

thus ¢(d(u,v) = 0or @d(u,v) = 0.

By definition 2.9, we have d(u,v) = 0so thatu = v It
means that f has a unique fixed point.

Example 3.2. Let dg:X x X » Rtand (X,dg) is an
extended b metric space.f: X — Xbesuchthatf(x) =
2 ,0: X xX — RY satisfy

INININ A

_(Ix=yPP;x=#y
0(x.y) _{ 1 ;x=y
And define F:[0,0)? - R? by F(x,y) = x —y and
define  :[0,0) = [0,%0),¢ : [0,00) - [0,50) by
Y(x) = 2xand @(x) = xrespectively.

do (x,fx)dg (v.fy)
M(x,y) = max { dg(X, y),%} and

N(x,y) = min{de(x,x), de(x,fy), de (v, fx), de(y, fy)}-
From, example 2.8, definition 2.9, and definition 2.11
invoke that Fis in C,y isin ¥, and ¢ is in Wu. Next, it
will be considered that
W(0(x, y)do (fx, fy))
< FU(M(x,y)), @(M(x,y))) + LN(x, y).
It will be considered in 3 cases: x = y,x > yandx <
y as follows.
Case 1:ifx = y
Since x = y therefore that 6(x,y) = 1 and
do(x,y) = dg(fx,fy) = 0and
do(x,fx) = do(y,fy) = do(x.fy) = do(y, %)
—-Di= 5

2

x4
So that dexfdew.f) _ () _x

1+dg (fx fy) 140 256"
And consider that

M(xy) = max {do(xy),

X8 X8
= max {0,—} = — and
256 256

N(xy) = min{de(x, x), de (x, x), do (. £x), do (v, fy)}

X

de(X.fX)de(y,fY)}
1+dg (fxfy)

16
Next, it will be considered that

Y(6(x y)do(fx, fy)) by 8(x,y) = 1and
de(x,y) = dg(fx,fy) = 0. We have

And F(p(M(x,y)), @(M(x,))) + LN(x,y)

X8 XB XB
Y(M(x,y)) = lIJ(R) = z(ﬁ) = ==
PM(%,y)) = @(=
F(lIJ(M(X,Y)).(P(M(x,y))) = F(% ';R) _ ZXR.

) = x then we have
256 256
Hence F(U(M(x,y)), e(M(x,y))) + N(x, )
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=X—8+§ suchthat 0 < X—8+§soifx = y then
256 16 256 16

we have

P(0(x, y)do(fx, fy))

< FMx,y), oM(x,y))) + N(x,y).

Case2:x >y

Sincex > y then we have
b y) =Ix—ylI° = (x — y)°
and dg(x,y) = (x — y)*

do(x fx) = (X_§)4 _ >1<_46

Qo) = (-2 = 2

do(x,fy) = (x—%)4 - %

Qo) = (y-2) = B

wem = (G-3) =5
et - - ()

Next, it will be considered that

) do (% ) do (7, fy)
M(xy) = max{de(X'Y)' 1+ do(Fx, fy) }

ﬂ
= max{(x -yt ,(16+(1;_y)4> } =(x — y)*and
N(x,y) = min{dg(x, {x), do(x,fy), de(y, fx), de (v, fy)}

o xt ex-n)t @y-x* oy L eyt
= min]—, , ,—t = .
16’ 16 16 16 16

And Y(0(x,y)do(fx, fy)) by 6(x,y) = Ix — y|°

and do(fx, fy) = 222"

_ ; =)t
YOGV do(fx ) = Wllx — y1* =57
- (455)
- &7

And gext regard
FAb(M(x,¥)), o(M(x,¥))) + N(x,y)

M) = W(x - »*) = 2(x -9
PMxy) = o((x — »*) = x —n*.
We have

F(u(Mxy), o(M(xy)))

= FQx - »*, x - »N*)

=2x =y - -yt = x-y*

So F(y(M(x,¥)), ¢(M(x,¥))) + N(xy)

2y —x*
— (v — )4
&-n'"+—
—v)7 )4
such that % < (x — y)* +%. Consequently,

ifx > y we have
P(8(x, y)de (fx, fy))

< FAO(M(x,y)), o(M(x,¥))) + N(x,y).
Case3:ifx <y

Since x < y, we have
Bxy) =Ix-yl> = —(x — y)* and
de(x,y) = (x — y)*

do(x, ) = (X_g)4 _ ’1‘_46
Qi) = (-2 = 2
do(x,fy) = (x—§)4 = y
do(y, ) = (y—§)4 _ y
do(Bofy) = (3-2)" = &2
x4\ (y*
Then del(’::;)g:(fs;)fy) _ 1?@) = (16%”4), Consider

that
dg (%, fx) dg(y, fy)
MGy) = max{de(x’”’ 81+d9(f[:< fy) }

N(xy) = min{dg(x, x), dg(x, £y), do (v, ), dg (v, fy)}

max{(x - y)4,<16:(§_y)4) } =(x — y)*and
N(x,y) = min{dg(x, fx), de(x,fy), do (v, fx), de (v, fy)}
o (xr2x=nt Qy-0t vy @y -0t
- {E’ 16 ' 16 ’R}_ 16
W(B(xy)de(fx fy)) by 8(xy) = —(x—y)*

and do(f fy) = 42"

V(O y)do(fx,fy)) = w(lx — y|?
= (5)

_ -y’

(x-y*
16

)

Next, it will be considered that
Fh(M(x,¥)), ¢(M(x,¥))) + N(x,y)
YMxy) = W(x — n*) = 2(x - 99
o(Mx,y) = o(x = N*) = x = N
Therefore F((M(x,y)), @(M(x,y)))

= FQx - »*, x - »*)

=2x - -&x - =x -t

SO F(y(M(x, ), ¢(M(x,y))) + N(x,y)

3 L 2x=y)*
=x -y +7T
such that% < (x -
Consequently, if x < ywe have

b(6(x,y)do (f,fy)) < FWM(x,¥)), @(M(x,y))) +
N(x, y).

By the fact that f(x) = (2) function f has a unique

fixed point that is 0.

Corollary 3.3, let (X,d) be a complete extended b-
metric spaceon X and f: X - X be self-mapping. If
P(8(xy)de(fx, fy)) < F(U(M(xy)), @(M(x,¥))) +
N(x,y).forall x,y € X, where {s: [0,00) — [0,) is
an ultra altering distance function and

_ do (%) do(,fy)
M(x,y) = max {de xy), 1+dg (fxfy) } and

N(xy) = min{dg(x, x), dg(x, £y), de (v, ), dg (v, fy)}

4, x-p*
'+
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then f has a unique fixed point.

Proof. Let F(a,b) = a- b. By example 2.8, we have F
as a C-class function.

so Y(8(x, y)dg(fx, fy))

< y(M(xy)) — ¢(M(x,y)) + LN(x,y)

= FU(M(x,y)), ¢(M(x,y))) + LN(x,y).

Thus all the conditions of theorem 3.1 are satisfied.
Hence f has a unique fixed point.

Corollary 3.4, let (X,d) be a complete extended
b-metric space on X and f: X — X be self-mapping.
8: XXX - [1,0).Suppose y(0(x,y)dg(fx, fy))

< Y(MEY))BYM(x,y) + LN(x,Y)).

forall x,y € X, where f:[0,00) > [0,1) is
continuous and

_ do () do(,fy)
M(xy) = max{de(X’Y)' 1+dg (fxfy) }and

N(x,y) = min{de(x,x), do(x,fy), de(y, fx), de(y, fy)}
then f has a unique fixed point.

Proof. Let F(a,b) = 08(x,y)B(a)

where : [0,0) — [0,1)is continuous.

And let yi(b) = b by corollary 3.3 we have
Y(O(x,y)de(fx, fy)

< M y)BWM(x,y))) + LN(xy)

= Fy(M(x,y)), B(W(M(x,¥)))) + LN(x,y)

Thus, all the conditions of theorem 3.1 are satisfied.
Hence, f has a unique fixed point.

Corollary 3.5, let (X,d) be a complete extended
b-metric spaceonXandf: X - X

be self-mapping.0: X x X — [1,).

Suppose

a(F09, £y)) = [P M(x, ) + LN )

forallx,y € X,whereL > 0,

B: [0,0) - [0,1) is continuous. And

dg(x.fx) dg(v.fy)
M(x,y) = max {de xy), m—f}‘:f;’)y } and

N(x,y) = min{dg(x,fx), dg(x,fy), dg (v, fx), de (v, fy)}
Then f has a unique fixed point.

Proof. Let F(a,b) = ¢(a) by theorem 3.1 where ¢ :
[0,0) — [0, ) is continuous and

®(0) = 0,p(b) < bwhereb > 0and y(b) =b.
Thus, all the conditions of corollary 3.3 are
satisfied. Hence, f has a unique fixed point.
Corollary 3.6, let (X,dg) be a complete b-metric
space,and f: X —» Xbe a self

Mapping. Suppose

0(x,y)dg(fx, fy) < G(M(X, y)) + LN(x,y)

vx,y € X whereL = 0,0:[0,0) - [0,)

is a continuous function such that

0(0) = 0and 6(t) < tfort > 0and

_ do () do(,fy)
M(xy) = max {de xy), 1+dg (fxfy) } and

N(x,y) = min{de(x,x), do(x,fy), de(y,fx), de(y, fy)}
Then f has a unique fixed point.

Proof. With choice 8(b) = 1b,0 < 1< 1.

Thus, all the conditions of corollary 3.5 are satisfied.
Hence, f has a unique fixed point.

Example 3.7. Let X = C([a,b]; R) be a real value

\ AND TEGHNOILOGY

2x+5
7

where f(x) =
b metric space.

By dg(xy) = supeepap/x(t) — y(t)|* and
0: X x X - [1,0) where

8(xy) = [x(O] = ly(®O] + 2.
So (X,dg) is a complete b-metric space. Thus

2x(t)+5
de(%,fX) = supiepaplx(t) — — |?

and define (X, dg) is an extended

6x(t)+5 |2
7

= SUDPte[a,b] |

2y(t)+5 |2

de(y,fy) = Suptefaply(® — -

6y(t)+5
= SUPefap)l — —I°

2x(t)+5 _ 2y(t)+5 |2

do(fx, fy) = supeefap)| —— 7

6x(t)-2y(t) |2

= SUPte[a,b] | 7

de (%, £x) do (v, fy) }

Mxy) = max{de(x’”’ 1+ do(F fy)

= maX{ SUPtefa,b) [X(1)

SUPtefa by X(V) —

2x(t) +5 6y(t)+5
5 %F SUPte[ab] | %F
- y@®I*,

6x(t) — 2y(t
1+ supe(ap! M |2

= SUPiefap]IX(t) — y(®I?.
Such that 8(x, y)dg (fx, fy)

2x(t) — 2
= (Ix(®] = ly®Ol + 2)supefapl Mlz

x(t) —y(t) E

. 7

< (Ix®] = ly®] + 2)supefapIx(®) —y(®) |?
4

=19 do(x, y)M(x,y)

Thus, all the conditions of corollary 3.6 are satisfied.
Hence, 1 is a unique fixed point of f.

= 4(Ix®] = ly(O] + 2)supiefa |

CONCLUSIONS

This article presents the concept of C-class
functions of the fixed theorem in incomplete extended
b-metric spaces. We also prove that a fixed point of
C-class functions exists in incomplete extended
b-metric spaces. Further, some examples supporting
the main results are provided. Our results extend and
generalize corresponding results in the literature. The
work presented provides a basis for researchers to
work on in the future, and the work presented here
is likely to provide a ground for the researchers to work
in different structures by using these conditions.
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