

Source details

Lecture Notes in Networks and Systems

CiteScore 2022
0.7

Scopus coverage years: from 2016 to Present

Publisher: Springer Nature

ISSN: 2367-3370 E-ISSN: 2367-3389

SJR 2022
0.151

Subject area: Computer Science: Signal Processing Engineering: Control and Systems Engineering
Computer Science: Computer Networks and Communications

Source type: Book Series

SNIP 2022
0.190

[View all documents >](#) [Set document alert](#) [Save to source list](#) [Source Homepage](#)

[CiteScore](#) [CiteScore rank & trend](#) [Scopus content coverage](#)

Improved CiteScore methodology

CiteScore 2022 counts the citations received in 2019-2022 to articles, reviews, conference papers, book chapters and data papers published in 2019-2022, and divides this by the number of publications published in 2019-2022. [Learn more >](#)

CiteScore 2022

0.7 = 18,888 Citations 2019 - 2022
25,876 Documents 2019 - 2022

Calculated on 05 May, 2023

CiteScoreTracker 2023

0.6 = 19,669 Citations to date
33,567 Documents to date

Last updated on 05 May, 2023 • Updated monthly

CiteScore rank 2022

Category	Rank	Percentile
----------	------	------------

Computer Science		
Signal Processing	#108/122	11th
Engineering		
Control and Systems Engineering	#256/286	10th
Computer Science		

[View CiteScore methodology >](#) [CiteScore FAQ >](#) [Add CiteScore to your site](#)

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)

[Tutorials](#)

[Contact us](#)

ELSEVIER

[Terms and conditions](#) ↗ [Privacy policy](#) ↗

Copyright © Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies ↗.

 RELX

This author profile is generated by Scopus. Learn more

Srisamoodkham, Worachai

Phetchabun Rajabhat University, Phetchabun, Thailand 57216856843 Connect to ORCID

Is this you? Connect to Mendeley account

2 Citations by 2 documents	5 Documents	1 h-index View h-graph
-------------------------------	----------------	---------------------------

Document & citation trends

Scopus Preview

Scopus Preview users can only view a limited set of features. Check your institution's access to view all documents and features.

[Check access](#)

5 Documents Cited by 2 documents 0 Preprints 6 Co-Authors 0 Topics
Beta
0 Awarded Grants

Note:

Scopus Preview users can only view an author's last 10 documents, while most other features are disabled. Do you have [access](#) through your institution? Check your institution's access to view all documents and

5 documents

[Export all](#) [Save all to list](#)

Sort by Date (...

Book Chapter

Improvement of Real-Time Kinematic Positioning Using Kalman Filter-Based Singular Spectrum Analysis During Geomagnetic Storm for Thailand Sector

Srisamoodkham, W., Ansari, K., Jamjareegulgarn, P.

Lecture Notes in Networks and Systems, 2023, 551, pp. 79–87

[Show abstract](#) [Related documents](#)

0

Citations

Book Chapter

Applicability of Klobuchar Model for STEC Estimation Over Thailand Region

Srisamoodkham, W., Ansari, K., Jamjareegulgarn, P.

Lecture Notes in Networks and Systems, 2023, 551, pp. 511–518

[Show abstract](#) [Related documents](#)

0

Citations

Conference Paper

Detecting Equatorial Plasma Bubbles on All-Sky Imager Images Using Convolutional Neural Network

Srisamoodkham, W., Shiokawa, K., Otsuka, Y., Ansari, K., Jamjareegulgarn, P.

Lecture Notes in Networks and Systems, 2022, 461, pp. 481–487

[Show abstract](#) [Related documents](#)

0

Citations

Conference Paper

Positioning Comparison Using GIM, Klobuchar, and IRI-2016 Models During the Geomagnetic Storm in 2021

Srisamoodkham, W., Ansari, K., Jamjareegulgarn, P.

Lecture Notes in Networks and Systems, 2022, 461, pp. 725–733

[Show abstract](#) [Related documents](#)

0

Citations

Conference Paper

A New Method for Computing Ionogram-Based TEC Based on Digisonde data for Disaster Prevention

Jamjareegulgarn, P., Duangsawan, S., Supnithi, P., Srisamoodkham, W.

2020 8th International Electrical Engineering Congress, iEECON 2020, 2020, 9077535

[Show abstract](#) [Related documents](#)

2

Citations

Based on 3 documents for 2013 - 2022

First author 67%

2	0	0
Documents	Average citations	Average FWCI

Last author 33%

Co-author 0%

Corresponding author 0%

Single author 0%

[View author position details >](#)

 [View list in search results format](#)

 [View references](#)

 [Set document alert](#)

Lecture Notes in Networks and Systems 461

Harish Sharma
Vivek Shrivastava
Kusum Kumari Bharti
Lipo Wang *Editors*

Communication and Intelligent Systems

Proceedings of ICCIS 2021

 Springer

Lecture Notes in Networks and Systems

Volume 461

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA,
School of Electrical and Computer Engineering—FEEC, University of
Campinas—UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering,
Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University of
Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of
Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering,
KIOS Research Center for Intelligent Systems and Networks, University of Cyprus,
Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

The series “Lecture Notes in Networks and Systems” publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose@springer.com).

Harish Sharma · Vivek Shrivastava ·
Kusum Kumari Bharti · Lipo Wang
Editors

Communication and Intelligent Systems

Proceedings of ICCIS 2021

Editors

Harish Sharma
Department of Computer Science
and Engineering
Rajasthan Technical University
Kota, India

Kusum Kumari Bharti
Design and Manufacturing
Indian Institute of Information Technology
Jabalpur, India

Vivek Shrivastava
Institutional Area Narela Delhi
National Institute of Technology Delhi
New Delhi, India

Lipo Wang
School of Electrical and Electronic
Engineering
Nanyang Technological University
Singapore, Singapore

ISSN 2367-3370

ISSN 2367-3389 (electronic)

Lecture Notes in Networks and Systems

ISBN 978-981-19-2129-2

ISBN 978-981-19-2130-8 (eBook)

<https://doi.org/10.1007/978-981-19-2130-8>

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Preface

This book contains outstanding research papers as the proceedings of the 3rd International Conference on Communication and Intelligent Systems (ICCIS 2021), which was held on 18–19 December 2021 at National Institute of Technology Delhi, India, under the technical sponsorship of the Soft Computing Research Society, India. The conference is conceived as a platform for disseminating and exchanging ideas, concepts, and results of researchers from academia and industry to develop a comprehensive understanding of the challenges of the advancements of intelligence in computational viewpoints. This book will help in strengthening congenial networking between academia and industry. This book presents novel contributions in areas of communication and intelligent systems, and it serves as reference material for advanced research. The topics covered are intelligent system: algorithms and applications, intelligent data analytics and computing, informatics and applications, and communication and control systems.

ICCIS 2021 received a significant number of technical contributed articles from distinguished participants from home and abroad. ICCIS 2021 received 476 research submissions from 43 different countries, viz. Australia, Bahrain, Bangladesh, Brazil, Bulgaria, Burkina Faso, Chile, China, Ecuador, Egypt, Ethiopia, Finland, Germany, India, Iran, Iraq, Italy, Japan, Liberia, Malaysia, Mauritius, Morocco, Nepal, Oman, Poland, Portugal, Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovakia, South Africa, South Korea, Sri Lanka, Thailand, Turkey, Ukraine, United Arab Emirates, UK, USA, Viet Nam, and Yemen. After a very stringent peer-reviewing process, only 92 high-quality papers were finally accepted for presentation and final proceedings.

This book presents novel contributions in areas of communication and intelligent systems, and it serves as reference material for advanced research.

Kota, India
New Delhi, India
Singapore
Jabalpur, India

Harish Sharma
Vivek Shrivastava
Lipo Wang
Kusum Kumari Bharti

Implementation of Laboratory Information Management to Medical Analyzer Data Integration	411
Devashri Raich, Yashpal Singh, and Asha Ambhaikar	
Framework for the Integration of Transmission Optimization Components into LoRaWAN Stack	421
Bruno Mendes, Shani du Plessis, Dário Passos, and Noélia Correia	
Design of Low-Power Parallel Prefix Adder Templates Using Asynchronous Techniques	433
J. Sudhkar and E. Jagadeeswara Rao	
Intellectualization of Lean Production Logistic Technology Based on Fuzzy Expert System and Multi-agent Metaheuristics	447
Eugene Fedorov, Svitlana Smerichevska, Olga Nechyporenko, Tetyana Utkina, and Yuliia Remyha	
A Testing Methodology for the Internet of Things Affordable IP Cameras	463
Grazyna Dzwigala, Baraq Ghaleb, Talal A. Aldhaheri, Isam Wadhaj, Craig Thomson, and Nasser M. Al-Zidi	
Detecting Equatorial Plasma Bubbles on All-Sky Imager Images Using Convolutional Neural Network	481
Worachai Srisamoodkham, Kazuo Shiokawa, Yuichi Otsuka, Kutubuddin Ansari, and Punyawi Jamjareegulgarn	
A Comparative Study of Traditional Bank A and Digital Bank B from an Organizational Innovation Perspective	489
Easwaramoorthy Rangaswamy, Naresh Nadipilli, and Nishad Nawaz	
A Novel Approach to Improve the Performance of a Classifier Using Visual and Haptic Data	509
Sekhar R. Aravind and K. G. Sreeni	
KGAN: A Generative Adversarial Network Augmented Convolution Neural Network Model for Recognizing Kannada Language Digits	523
H. S. Shrisha, V. Anupama, D. Suresha, and N. Jagadisha	
Sparse Autoencoder-Based Speech Emotion Recognition	533
Vishal Balaji Sivaraman, Sheena Christabel Pravin, K. Surendaranath, A. Vishal, M. Palanivelan, J. Saranya, and L. Priya	
Hyperspectral Image Classification Using Transfer Learning	545
Usha Patel, Smit Patel, and Preeti Kathiria	

Detecting Equatorial Plasma Bubbles on All-Sky Imager Images Using Convolutional Neural Network

Worachai Srisamoodkham, Kazuo Shiokawa[✉], Yuichi Otsuka[✉],
Kutubuddin Ansari, and Punyawi Jamjareegulgarn

Abstract This paper proposes initially to apply convolutional neural network (CNN) for detecting the equatorial plasma bubbles on the ASI images. The considered CNN model is the YOLO v3 tiny model under a deep learning API (Keras), running on top of the machine learning platform (TensorFlow). Our program for EPB detection is written in Python that is extended easily to combine into a space weather web site for detecting and notifying EPBs in our next step. The results show that the YOLO v3-based CNN can detect the EPBs in ASI images with different intensities obtained from many countries. The threshold is tested and selected to be 0.40 suitably for detecting the anomaly (EPB existence). The maximum anomalous value is selected to decide the EPB occurrence.

Keywords ASI · Convolution neural network · Plasma bubble · YOLO

W. Srisamoodkham

Faculty of Agricultural and Industrial Technology, Phetchabun Rajabhat University, Sadiang, Thailand

e-mail: hs5xij@pcru.ac.th

K. Shiokawa · Y. Otsuka

Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
e-mail: shiokawa@nagoya-u.jp

Y. Otsuka

e-mail: otsuka@isee.nagoya-u.ac.jp

K. Ansari

Integrated Geoinformation (IntGeo) Solution Private Limited, New Delhi, India

P. Jamjareegulgarn (✉)

King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand

e-mail: kjpunyaw@gmail.com

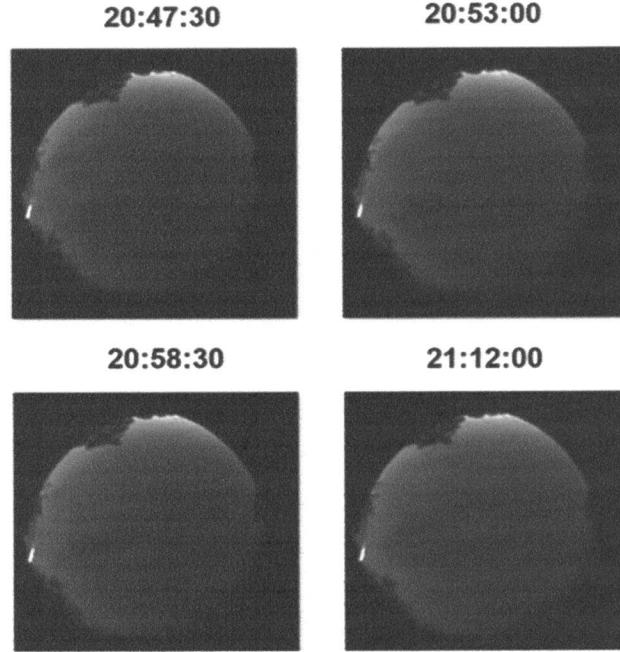
1 Introduction

Plasma instabilities over equatorial ionosphere can be a major source of large- and small-scale density depletions during after sunset and after midnight. The depleted plasma over magnetic equator (so-called equatorial plasma bubble or EPB) formulates at the bottomside F region and rises upwardly with its structure elongating along the magnetic field lines. The plasma instabilities exist various scales ranging from 10 cm to 1000 km where they can disrupt HF communication, satellite communication, positioning, as well as navigation systems within $\pm 20^\circ$ latitudes around geomagnetic equator [1]. In general, these perturbed ionosphere conditions can lead to another phenomenon named as equatorial spread-F (ESF) in F region, because they affect directly the HF communications by producing the echo spreads in ionograms. Both EPB and ESF have been known as the main sources for Global Navigation Satellite System (GNSS) disturbances. The scintillation is the amplitude and phase fluctuations of signals that leads to disrupt satellite-based communications and deteriorate the GNSS positioning accuracy [2, 3]. The main reason is that the sudden density depletions inside EPBs disturb the GNSS velocities passing the ionosphere. This is why the occurrence characteristics as well as probabilities of EPB have been studied for space weather and ionospheric physics. (e.g., [4, 5]).

Basically, the F region plasma irregularities at height 250–350 km can be observed as dark EPBs and bright plasma blobs. The plasma blobs were observed firstly by OI 630.0 nm all-sky imagers (ASIs) at Brazil [4]. Nade et al. [5] investigated the simultaneous plasma blobs and EPBs over low latitudes, but the generation mechanism of EPBs and blobs is not obviously comprehended [6] and should be made additional investigation. Paznukhov et al. [7] studied firstly the EPBs and the scintillations over Africa in 2010 for monitoring the ionospheric irregularities. Their results released that the EPBs are directly related to the scintillations and the scintillation severity relies on EPB depth. The scintillation amplitude is identified by S4 index, and the EPBs are analyzed based on spectral analysis and GPS TEC observation. Shiokawa et al. [8] conducted the experiments of atmospheric and ionospheric waves in the upper atmosphere over several countries using ASIs. Their results reported about the features of small gravity waves and medium disturbances in mesosphere, thermosphere and ionosphere. As for our earlier EPB investigations, the obvious airglow depletions incurred by EPBs can be observed by several OMTIs and analyzed at Chiang Mai, Darwin, and Kototabang etc. After storing the ASI images, they will be post-processed and analyzed with some kinds of program such as MATLAB, SCILAB, etc.

Likewise, numerous literatures have proposed several methods to analyze the all-sky image data. For example, Kubota et al. [9] introduced a method to convert the pixel ASI images into the actual coordinates at the airglow emission layer. Afterward, Narayanan et al. [10] present an approach to convert the pixel values into the respective latitude–longitude values of each ASI image. In Thailand, the ASIs of optical mesosphere thermosphere imager were also installed at Chiang Mai and Chumphon provinces to monitor plasma bubbles. The ASI images of these two regions are very

important so as to investigate the EPB generation mechanism, the EPB movement and the impact of EPB on HF communication, positioning, and navigation over equatorial and low latitudes [11]. However, the EPB detection and notification have not proposed simultaneously; therefore, the authors have an idea to detect the nighttime ASI images and classify each ASI image with or without EPBs on web applications using convolution neural network (CNN). The ASI images at Chiangmai, Thailand, is employed as the train dataset for the proposed CNN method. Meanwhile, the ASI images are also taken from previous published manuscripts to be the test dataset such as Lynn et al. [15], observed at Darwin, Australia; Takahashi et al. [16], observed at São Luis, Brazil; and Makela et al. [17], observed at Haleakala, Hawaii [17].

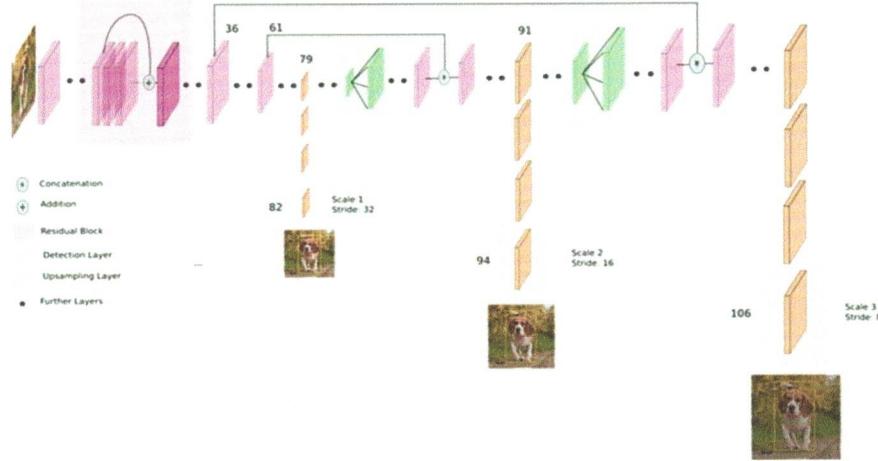

2 Optical Mesosphere Thermosphere Imagers (OMTI)

Optical Mesosphere Thermosphere Imagers (OMTI) was constructed by ISEE of Nagoya University in 1997 in order to investigate the dynamics of airglow emissions in upper atmosphere. The OMTI consists of all-sky imagers (ASIs), photometers, and interferometer. The imagers employ some cooled CCDs of 512×512 pixels. All of the ASIs in the OMTI have at least four filters and some gases' filters. The BPF bandwidths are about 1–2 nm and the ASI sensitivities are less than 0.4 counts per second providing smaller than 4000 count/R/s. Further details of the OMTI can be read and studied in Shiokawa et al. [8], and the airglow images of OMTI are obtained from the web: <https://stdb2.isee.nagoya-u.ac.jp/omti/index.html>. Otsuka et al. [9] suggested that the ASIs of OMTI are a crucial instrument for better understanding the coupling between ionosphere and thermosphere and detecting the EPBs. Figure 1 shows the examples of airglow images detected by OMTI at Chiang Mai, Thailand, on February 2, 2020.

3 YOLO Tool

Object detection is a significant mission that is concerned to identify the existence and the localization of one or more objects in a given figure. The methods of object recognition and classification seem to be the challenging tasks. Hence, the YOLO with convolutional neural networks (CNNs) approach has been proposed to be the modern tool for performing the real-time object detection [12]. That is the reason why the YOLO is selected to detect the real-time EPBs from ASI images in this work.

YOLO tool was built and released to the public in April, 2018. It is recognized to outperform the previous YOLO versions. Its algorithm depends on a variant of Darknet which has 53 hidden-layer network trained on Imagenet. The latest version of YOLO is YOLOv3. In this work, a CNN program is coded with python using YOLOv3 model that is contained in Keras API and TensorFlow. Note that TensorFlow

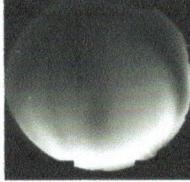
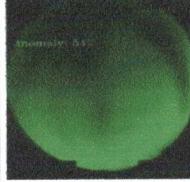
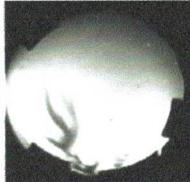
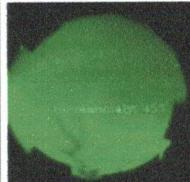
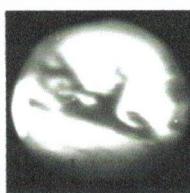
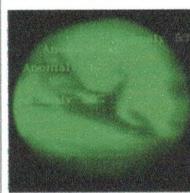
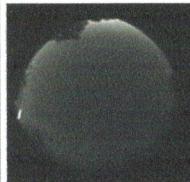
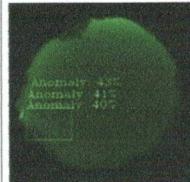
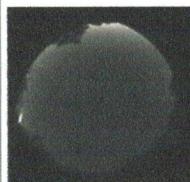
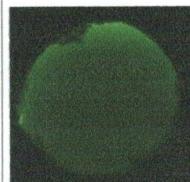

Fig. 1 The airglow images detected by all-sky airglow imagers of OMTI at Chiang Mai, Thailand, on February 2, 2020

is the open-source of Google for developing the applications based on machine learning and deep learning. It can be used on several platforms (e.g., windows, Linux, etc.) for making machine learning.

As for YOLO v3, a fully convolutional neural network (CNN) with larger than 100 layers can be processed for its object detection due to 53-hidden layers. The operating procedure of YOLO v3 is depicted in Fig. 2 where YOLO v3 includes the down-sampling three levels for the input image dimensions. Especially, the object prediction of YOLO v3 are forecasted using logistic regression [13]. As for several advantages of YOLO v3, it is thus employed to train the all-sky imager (ASI) images and classify those images with or without plasma bubbles in this work.

4 Results

The ASI images with and without EPBs at Chiang Mai, Thailand, were used as the training images. Afterward, those images were extracted the image features and classified with and without EPBs using YOLOv3 (CNN model). YOLOv3 tiny model











Fig. 2 The operating procedure of YOLO v3 [13]

was employed in this work, because it has a slightly lower recognition accuracy, but runs faster as compared to the standard model. The accuracy and the computational power of the tiny model are equal to 33.1 and 5.56 Bn, respectively, that are much less than those of the standard model [14]. During training the number of ASI images, we find that the suitable threshold is equal to 0.40 (or 40%) for classifying the EPBs and also use the word “anomaly” in each image to represent the EPB occurrence. In Table 1 case (a)–(d), the ASI images with EPBs show their anomalies of greater than and equal to 40%. The maximum anomalies in each ASI image are selected to decide surely the EPB existence. In contrast, the case e) of Table 1 depicts an ASI image without EPBs whose anomaly is less than 40% (no anomaly).

5 Conclusion

Equatorial plasma bubble (EPB) in all-sky imager (ASI) images are detected using the convolutional neural network (CNN) for the first time. The YOLO v3 “Tiny” model is used to detect the EPBs due to its several benefits. Our EPB detection program is written in Python that can be gathered into a web site at once. After gathering the ASI images from different countries and Chiang Mai, Thailand, we start extracting the features and classify the ASI images with and without EPBs like “supervised learning” with YOLO v3-based CNN. Note that the YOLO v3 framework is based on Keras API (deep learning) operated on TensorFlow (machine learning) platform. We find that the CNN model can be used to detect admirably the EPBs in ASI images with the suitable threshold setting of 0.40. This threshold was defined after more than two hundred ASI images with and without EPBs were trained and

Table 1 ASI Images before and after CNN model with maximum anomalies and sources

Case	ASI Images Before CNN model	ASI Images After CNN model	Maximum of anomalies	Image Sources
(a)			54%	Lynn et al. [15], observed at Darwin, Australia
(b)			45%	Takahashi et al. [16], observed at São Luis, Brazil
(c)			53%	Makela et al. [17], observed at Haleakala, Hawaii
(d)			43%	Chiang Mai, Thailand, observed by Nagoya University
(e)			No anomaly	Chiang Mai, Thailand, observed by Nagoya University

classified completely. In the future, this CNN-based EPB detection program will be combined on the space weather web site and will be used as an EPB precursor over Thailand.

Acknowledgements This research is funded by BTFP organization (project code: B2-001/6-2-63). The authors would like to express the gratitude to the ASI images taken from [15–17]. Particularly, several ASI images employed to train the CNN model were obtained from Chiang Mai station owned by Nagoya University, Japan.

References

1. Woodman RF, Lahoz C (1976) Radar observations of F region equatorial irregularities. *J Geophys Res* 81:5447–5466
2. Datta-Barua S, Doherty PH, Delay SH, Dehnel T, Klobuchar JA (2010) Ionospheric scintillation effects on single and dual frequency GPS positioning. In: Proceedings of the 2010 institute of navigation ION GNSS meeting, Portland, OR
3. Carrano CS, Groves KM (2010) Temporal decorrelation of GPS satellite signals due to multiple scattering from ionospheric irregularities. In: Proceedings of the 2010 institute of navigation ION GNSS meeting, Portland, OR
4. Pimenta AA, Sahai Y, Bittencourt JA, Rich FJ (2007) Ionospheric plasma blobs observed by OI 630 nm all-sky imaging in the Brazilian tropical sector during the major geomagnetic storm of April 6–7, 2000. *Geophys Res Lett* 34(2)
5. Nade DP et al (2014) Observations of plasma blobs by OI 630 nm using ASI and photometer over Kolhapur, India. *Earth Moon Planet* 112(1–4):89–101
6. Choi HS, Kil H, Kwak YS, Park YD, Cho KS (2012) Comparison of the bubble and blob distributions during the solar minimum. *J Geophys Res Space Phys* 117(4)
7. Paznukhov VV et al (2012) Equatorial plasma bubbles and L-band scintillations in Africa during solar minimum. *Ann Geophys* 30(2012682):675–682
8. Shiokawa K, Otsuka Y, Ogawa T (2009) Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes. *Earth Planet Space* 61:479–491. <https://doi.org/10.1186/BF03353165>
9. Otsuka Y, Shiokawa K, Ogawa T, Yokoyama T, Yamamoto M, Fukao S (2004) Spatial relationships of equatorial plasma bubbles and field-aligned irregularities observed with an all-sky airglow imager and the equatorial atmosphere radar. *Geophys Res Lett* 31(20)
10. Kubota M, Fukunishi H, Okano S (2001) Characteristics of medium- and large-scale TIDs over Japan derived from OI 630-nm nightglow observation. *Earth Planets Space* 53(7):741–751
11. Lakshmi NV, Gurubaran S, Emperumal K (2009) Imaging observations of upper mesospheric nightglow emissions from Tirunelveli (8.7°N). *Indian J Radio Space Phys* 38(3):150–158
12. How to Perform Object Detection with YOLOv3 in Keras. <https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/>. Last accessed 29 Nov 2020
13. What's new in YOLO v3? <https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b>. Last accessed 29 Nov 2020
14. YOLOv3 (2020) A machine learning model to detect the position and type of an object. <https://medium.com/axinc-ai/yolov3-a-machine-learning-model-to-detect-the-position-and-type-of-an-object-60f1c18f8107>. Last accessed 29 Nov 2020
15. Lynn KJW, Otsuka Y, Shiokawa K (2011) Simultaneous observations at Darwin of equatorial bubbles by ionosonde-based range/time displays and airglow imaging. *Geophys Res Lett* 38(L23101)
16. Takahashi H et al (2018) Equatorial plasma bubble seeding by MSTIDs in the ionosphere. *Progr Earth Planet Sci* 5(32)
17. Jonathan JM, Ledvina BM, Kelley MC, Kintner PM (2004) Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii. *Ann Geophys* 22(9)