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citations removed) received by a journal's published

documents during the three previous years. External
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self-citations from the total number of citations received
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documents signed by researchers from more than one
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research articles, reviews and conference papers.
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portal with scientometric indicators of journals indexed in Elsevier/Scopus.
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homepage (See submission/author guidelines) or contact the journal’s editorial staff , so

they could inform you more deeply.
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ถึง: nuttapol.pak@pcru.ac.th
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Dear Dr Pakkaranang,

Re: "Dynamical Inertial Extragradient Techniques for Solving Equilibrium and Fixed Point Problems in Real Hilbert Spaces"

We're delighted to let you know that your manuscript has been accepted for publication in Journal of Inequalities and Applications.

Prior to publication, our production team will check the format of your manuscript to ensure that it conforms to the journal's requirements. They will be in touch
shortly to request any necessary changes, or to confirm that none are needed.

Checking the proofs

Once we've prepared your paper for publication, you will receive a proof. At this stage, please check that the author list and affiliations are correct. For the main
text, only errors that have been introduced during the production process, or those that directly compromise the scientific integrity of the paper, may be
corrected.

As the corresponding (or nominated) author, you are responsible for the accuracy of all content, including spelling of names and current affiliations.

To ensure prompt publication, your proofs should be returned within two working days.

Publication policies

Acceptance of your manuscript is conditional on all authors agreeing to our publication policies at: https://www.springernature.com/gp/policies/editorial-policies

Licence to Publish and Article Processing Charge

As the corresponding author of an accepted manuscript, your next steps will be to complete an Open Access Licence to publish on behalf of all authors, confirm
your institutional affiliation, and arrange payment of your article-processing charge (APC). You will shortly receive an email with more information.

Once again, thank you for choosing Journal of Inequalities and Applications, and we look forward to publishing your article.

Kind regards,

Song Wang
Editor
Journal of Inequalities and Applications

Reviewer Comments:

Attachments:
• https://reviewer-feedback.springernature.com/download/attachment/4192138c-1829-4e51-8607-83837e8ae018

 

               

 
                    

     

 
                     
       



 Reviewer 2
All corrections done to my satisfaction and the paper can now be published.
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The entitle of this manuscript should revise to be “Dynamical Inertial Extragradient Techniques for Solving Equilibrium and Fixed-Point Problems in Real 
Hilbert Spaces” and see more comments in the attached file.
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Abstract
In this paper, we propose new methods for finding a common solution to
pseudomonotone and Lipschitz-type equilibrium problems, as well as a fixed-point
problem for demicontractive mapping in real Hilbert spaces. A novel hybrid
technique is used to solve this problem. The method shown here is a hybrid of the
extragradient method (a two-step proximal method) and a modified Mann-type
iteration. Our methods use a simple step-size rule that is generated by specific
computations at each iteration. A strong convergence theorem is established without
knowing the operator’s Lipschitz constants. The numerical behaviors of the
suggested algorithms are described and compared to previously known ones in
many numerical experiments.

MSC: 47H09; 47H05; 47J20; 49J15; 65K15

Keywords: Equilibrium problem; Subgradient extragradient method; Fixed-point
problem; Strong convergence theorems; Demicontractive mapping

1 Introduction
The equilibrium problem (EP) is a broad framework that includes many mathematical
models as special cases, such as variational inequality problems, optimization problems,
fixed-point problems, complementarity problems, Nash-equilibrium problems, and in-
verse optimization problems (for more details see [7, 8, 12, 33]). This equilibrium problem
can be expressed mathematically as follows.

Suppose that a bifunction L : Y × Y → R together with L(ℵ1,ℵ1) = 0, in accordance
with ℵ1 ∈ M. An equilibrium problem for a granted bifunction L on M is interpreted as
follows: Find s∗ ∈M such that

L
(
s∗,ℵ1

) ≥ 0, ∀ℵ1 ∈M, (1.1)

where Y represents a real Hilbert space and M represents a nonempty, closed, and convex
subset of Y . The study focuses on an iterative strategy for resolving the equilibrium prob-
lem. The solution set of problem (1.1) is denoted by EP(M,L). The problem (1.1) is widely
known as the Ky Fan inequality, which has since been studied in [14]. Many authors have
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focused on this topic in recent years, for example, see [10, 11, 13, 19, 21, 23, 32, 35, 50].
This interest comes from the fact that, as observed, it neatly combines all of the above
mentioned specific problems. Many writers have established and generalized many con-
clusions about the presence and nature of an equilibrium problem solution (for more de-
tails see [2, 7, 14]). Due to the obvious significance of the equilibrium problem and its
implications in both pure and practical sciences, numerous researchers have conducted
substantial studies on it in recent years [7, 9, 16]. Let us recall the definition of a Lipschitz-
type continuous bifunction. A bifunction L is said to be Lipschitz-type continuous [31] on
M if there exist two constants c1, c2 > 0, such that

L(ℵ1,ℵ3) ≤L(ℵ1,ℵ2) + L(ℵ2,ℵ3) + c1‖ℵ1 – ℵ2‖2 + c2‖ℵ2 – ℵ3‖2, ∀ℵ1,ℵ2,ℵ3 ∈M.

Flam [15] and Tran et al. [42] generated two sequences {sk} and {uk} in Euclidean spaces
in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

s1 ∈M,

uk = arg minu∈M{δL(sk , u) + 1
2‖sk – u‖2},

sk+1 = arg minu∈M{δL(uk , u) + 1
2‖sk – u‖2},

(1.2)

where 0 < δ < min{ 1
2c1

, 1
2c2

}. Due to Korpelevich’s earlier work on the saddle-point prob-
lems [25], this approach is often referred to as the two-step extragradient method. It is
interesting to note that the method generates a weakly convergent sequence and utilizes a
fixed step size that is entirely dependent on bifunctional Lipschitz-type constants. Because
Lipschitz-type variables are typically unknown or difficult to discover, this may limit ap-
plication possibilities. Inertial-type procedures, on the other hand, are two-step iterative
procedures wherein the following iteration is derived from the two preceding iterations
(see [4, 36] for further details). To increase the numerical efficiency of the iterative se-
quence, an inertial extrapolation term is usually applied. According to numerical research,
inertial phenomena improve numerical performance in terms of execution time and to-
tal number of iterations. Several inertial-type techniques have recently been explored for
various types of equilibrium problems [3, 5, 17, 19, 47].

In this study, we are interested to find a common solution to an equilibrium problem
and a fixed-point problem in a Hilbert space [20, 26, 28, 34, 40]. The motivation and idea
for researching such a common solution problem comes from its potential applicability to
mathematical models with limitations that may be stated as fixed-point problems. This is
especially true in practical scenarios such as signal processing, network-resource alloca-
tion, and picture recovery; see, for example, [22, 28, 29]. In this study, we are interested
in finding a common solution to an equilibrium problem and a fixed-point problem in a
Hilbert space [1, 20, 26, 28, 34, 40, 44–46, 48]. The motivation and idea for researching
such a common solution problem come from its potential applicability to mathematical
models with limitations that may be stated as fixed-point problems. This is especially true
in practical scenarios such as signal processing, network-resource allocation, and picture
recovery; see, for example, [22, 28, 29].

Let T : Y → Y be a mapping. Then, the fixed-point problem (FPP) for the mapping T
is to determine s∗ ∈ Y such that

T
(
s∗) = s∗. (1.3)
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The solution set of problem (1.3) is known as the fixed-point set of T and is represented
by Fix(T ). The majority of algorithms for addressing problem (1.3) are derived from the
basic Mann iteration, in particular from s1 ∈ Y , create a sequence {sk+1} for all k ≥ 1 by

sk+1 = ℘ksk + (1 – ℘k)T sk , (1.4)

where the random sequence {℘k} must meet certain conditions in order to achieve weak
convergence. The Halpern iteration is yet another formalized iterative mechanism for
achieving strong convergence in infinite-dimensional Hilbert spaces. The iterative pro-
cess can be expressed as follows:

sk+1 = ℘ks1 + (1 – ℘k)T sk , (1.5)

where s1 ∈ Y and a sequence ℘k ⊂ (0; 1) is slowly diminishing and nonsummable, i.e.,

℘k → 0, and
∞∑

k=1

℘k = +∞.

In addition to the Halpern iteration, there is a generic variant, namely, the Mann-type
algorithm [30], in which the cost mapping T is combined with such a contraction mapping
in the iterates. Furthermore, the hybrid steepest-descent algorithm introduced in [53] is
another strategy that yields strong convergence.

Vuong et al. [52] introduced a new numerical algorithm, the extragradient method
[15, 43] for trying to solve an equilibrium problem involving a fixed-point problem for a
demicontractive mapping using the extragradient method and the hybrid steepest-descent
technique in [53]. The authors proved that the proposed algorithm has strong convergence
under the premise that the bifunction is pseudomonotone and meets the Lipschitz-type
requirement [31]. As stated in [31], this technique has the benefit of being numerically
calculated utilizing optimization tools. The extragradient Mann-type approach described
in [31] also enables us to eliminate numerous strong criteria in establishing the conver-
gence of previously known extragradient algorithms. Other strongly convergent methods
for finding an element in s∗ ∈ Fix(T ) ∩ EP(M,L) that integrates the extragradient ap-
proach with the hybrid or shrinking projection technique may be found in [20, 34, 39].

In this study, inspired and motivated by the findings of Takahashi et al. [40], Maingé
[29], and Vuong et al. in [52] and based on the work of [27], we present a new strongly
convergent algorithm as a combination of the extragradient method (two-step proximal-
like method) and the Mann-type iteration [30] for approximating a common solution of a
pseudomonotone and Lipschitz-type equilibrium problem and a fixed-point problem for
a demicontractive mapping.

As indicated above, the result in this study is still valid for the more general class of
demicontractive mappings when examining a relaxation of a demicontractive mapping.
The typical Mann iteration produces weak convergence; however, the approach used in
this study, which employs the comparable Mann-type iteration, produces strong conver-
gence. This is especially true in infinite-dimensional Hilbert spaces, where strong norm
convergence is more valuable than weak norm convergence. Several numerical experi-
ments in finite- and infinite-dimensional Hilbert spaces demonstrated that the novel strat-
egy is promising and offers competitive advantages over previous approaches.
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The paper is organized as follows. Section 2 presented some basic results. Section 3
introduces new methods and validates their convergence analysis, while Sect. 4 describes
some applications. Finally, Sect. 5 provides some numerical statistics to demonstrate the
practical utility of the techniques presented.

2 Preliminaries
Let M be a nonempty, closed, and convex subset of Y , the real Hilbert space. The weak
convergence is denoted by sk ⇀ s and the strong convergence by sk → s. The following
information is available for each ℵ1,ℵ2 ∈ Y :

(1) ‖ℵ1 + ℵ2‖2 = ‖ℵ1‖2 + 2〈ℵ1,ℵ2〉 + ‖ℵ2‖2;
(2) ‖ℵ1 + ℵ2‖2 ≤ ‖ℵ1‖2 + 2〈ℵ2,ℵ1 + ℵ2〉;
(3) ‖aℵ1 + (1 – a)ℵ2‖2 = a‖ℵ1‖2 + (1 – a)‖ℵ2‖2 – a(1 – a)‖ℵ1 – ℵ2‖2.
A metric projection PM(ℵ1) of an element ℵ1 ∈ Y is defined by:

PM(ℵ1) = arg min
{‖ℵ1 – ℵ2‖ : ℵ2 ∈M

}
.

It is generally known that PM is nonexpansive, and PM completes the following useful
characteristics:

(1) 〈ℵ1 – PM(ℵ1),ℵ2 – PM(ℵ1)〉 ≤ 0, ∀ℵ2 ∈M;
(2) ‖PM(ℵ1) – PM(ℵ2)‖2 ≤ 〈PM(ℵ1) – PM(ℵ2),ℵ1 – ℵ2〉, ∀ℵ2 ∈M.

Definition 2.1 Assume that T : Y → Y is a nonlinear mapping and Fix(T ) �= ∅. Then,
I – T is called demiclosed at zero if, for each {sk} in Y , the following conclusion remains
true:

sk ⇀ s and (I – T )sk → 0 ⇒ s ∈ Fix(T ).

Lemma 2.2 ([37]) Suppose that there are sequences {gk} ⊂ [0, +∞), {hk} ⊂ (0, 1) and {rk} ⊂
R such as those that satisfy the following basic requirements:

gk+1 ≤ (1 – hk)gk + hkrk , ∀k ∈N and
+∞∑

k=1

hk = +∞.

If lim supj→+∞ rkj ≤ 0 for any subsequence {gkj} of {gk} meet

lim inf
j→+∞ (gkj+1 – gkj ) ≥ 0.

Then, limk→+∞ gk = 0.

Definition 2.3 LetM be a subset of a real Hilbert spaceY and� : M→R a given convex
function.

(1) The normal cone at ℵ1 ∈M is defined by

NM(ℵ1) =
{ℵ3 ∈ Y : 〈ℵ3,ℵ2 – ℵ1〉 ≤ 0,∀ℵ2 ∈M

}
. (2.1)

(2) The subdifferential of a function � at ℵ1 ∈M is defined by

∂�(ℵ1) =
{ℵ3 ∈ Y : �(ℵ2) – �(ℵ1) ≥ 〈ℵ3,ℵ2 – ℵ1〉,∀ℵ2 ∈M

}
. (2.2)
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Lemma 2.4 ([41]) Let � : M → R be a subdifferentiable and lower semicontinuous func-
tion on M. A member ℵ1 ∈M is called a minimizer of a mapping � if and only if

0 ∈ ∂�(ℵ1) + NM(ℵ1),

where ∂�(ℵ1) denotes the subdifferential of � at vector ℵ1 ∈M and NM(ℵ1) is the normal
cone of M at vector ℵ1.

3 Main results
In this section, we examine in detail the convergence of several different inertial extra-
gradient algorithms for solving equilibrium and fixed-point problems. First, we consider
that our algorithms have distinct characteristics. To justify the strong convergence, the
following conditions must be met:

(L1) The solution set Fix(T ) ∩ EP(M,L) �= ∅;
(L2) The bifunction L is said to be pseudomonotone [6, 8], i.e.,

L(ℵ1,ℵ2) ≥ 0 �⇒ L(ℵ2,ℵ1) ≤ 0, ∀ℵ1,ℵ2 ∈M;

(L3) The bifunction L is said to be Lipschitz-type continuous [31] on M if there exists
two constants c1, c2 > 0, such that

L(ℵ1,ℵ3) ≤L(ℵ1,ℵ2) + L(ℵ2,ℵ3) + c1‖ℵ1 – ℵ2‖2 + c2‖ℵ2 – ℵ3‖2, ∀ℵ1,ℵ2,ℵ3 ∈M;

(L4) For any sequence {ℵk} ⊂ M satisfying ℵk ⇀ ℵ∗, then the following inequality
holds:

lim sup
k→+∞

L(ℵk ,ℵ1) ≤L
(ℵ∗,ℵ1

)
, ∀ℵ1 ∈M;

(L5) Assume that T : Y → Y is a mapping such that (I – T ) is demiclosed at zero. A
mapping T is said to be ρ-demicontractive if there exists a constant 0 ≤ ρ < 1 such that

∥∥T (ℵ1) – ℵ2
∥∥2 ≤ ‖ℵ1 – ℵ2‖2 + ρ

∥∥(I – T )(ℵ1)
∥∥2, ∀ℵ2 ∈ Fix(T ),ℵ1 ∈ Y ;

or equivalently

〈
T (ℵ1) – ℵ1,ℵ1 – ℵ2

〉 ≤ ρ – 1
2

∥∥ℵ1 – T (ℵ1)
∥∥2, ∀ℵ2 ∈ Fix(T ),ℵ1 ∈ Y .

The first algorithm is described below to find a common solution to an equilibrium and
a fixed-point problem. The main advantage of this method is that it employs a monotone
step-size rule that is independent of Lipschitz constants. The algorithm employs Mann-
type iteration to aid in the solution of a fixed-point problem, and the two-step extragradi-
ent approach to solve an equilibrium problem.
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Algorithm 1 (Inertial subgradient extragradient method with a monotone step-size
rule)

STEP 0: Take s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers
a, b such that 0 < a, b < 1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b)
and {�k} ⊂ (0, 1) satisfying the following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

STEP 1: Calculate

κk = sk + �k(sk – sk–1),

where �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(3.1)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0.
STEP 2: Calculate

uk = arg min
u∈M

{
δkL(κk , u) +

1
2
‖κk – u‖2

}
.

If κk = uk , then STOP. Else, move to STEP 3.
STEP 3: Given the current iterates sk , uk . First, choose ωk ∈ ∂2L(κk , uk) satisfying
κk – δkωk – uk ∈ NM(uk) and generate a half-space

Yk =
{

z ∈ Y : 〈κk – δkωk – uk , z – uk〉 ≤ 0
}

.

Compute

vk = arg min
u∈Yk

{
δkL(uk , u) +

1
2
‖κk – u‖2

}
.

STEP 4: Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

STEP 5: Calculate

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk , τ‖κk –uk‖2+τ‖vk –uk‖2

2[L(κk ,vk )–L(κk ,uk )–L(uk ,vk )] }
if L(κk , vk) – L(κk , uk) – L(uk , vk) > 0,

δk , otherwise.

(3.2)

Set k := k + 1 and move to STEP 1.
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The following lemma is used to demonstrate that the monotone step-size sequence gen-
erated by equation (3.2) is properly defined and bounded.

Lemma 3.1 A sequence {δk} is convergent to δ and min{ τ
max{2c1,2c2} , δ1} ≤ δk ≤ δ1.

Proof Let L(κk , vk) – L(κk , uk) – L(uk , vk) > 0. Thus, we have

τ (‖κk – uk‖2 + ‖vk – uk‖2)
2[L(κk , vk) – L(κk , uk) – L(uk , vk)]

≥ τ (‖κk – uk‖2 + ‖vk – uk‖2)
2[c1‖κk – uk‖2 + c2‖vk – uk‖2]

≥ τ

2 max{c1, c2} . (3.3)

Thus, we obtain limk→+∞ δk = δ. This completes the proof. �

The second method is described below to find a common solution to an equilibrium
and a fixed-point problem. The primary benefit of this method is that it employs a non-
monotone step-size rule that is independent of Lipschitz constants. The algorithm solves
a fixed-point problem using Mann-type iteration and an equilibrium problem with the
two-step extragradient approach.

Algorithm 2 (Accelerated subgradient extragradient method with a nonmonotone
step-size rule)

STEP 0: Take s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers
a, b such that 0 < a, b < 1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b)
and {�k} ⊂ (0, 1) satisfying the following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

STEP 1: Calculate

κk = sk + �k(sk – sk–1),

where �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(3.4)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0.
STEP 2: Calculate

uk = arg min
u∈M

{
δkL(κk , u) +

1
2
‖κk – u‖2

}
.

If κk = uk , then STOP. Else, move to STEP 3.
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STEP 3: Given the current iterates sk , uk . First, choose ωk ∈ ∂2L(κk , uk) satisfying
κk – δkωk – uk ∈ NM(uk) and generate a half-space

Yk =
{

z ∈ Y : 〈κk – δkωk – uk , z – uk〉 ≤ 0
}

.

Compute

vk = arg min
u∈Yk

{
δkL(uk , u) +

1
2
‖κk – u‖2

}
.

STEP 4: Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

STEP 5: Moreover, choose a nonnegative real sequence {χk} such that
∑+∞

k=1 χk <
+∞. Calculate

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk + χk , τ‖κk –uk‖2+τ‖vk –uk‖2

2[L(κk ,vk )–L(κk ,uk )–L(uk ,vk )] }
if L(κk , vk) – L(κk , uk) – L(uk , vk) > 0,

δk + χk , otherwise.

(3.5)

Set k := k + 1 and move to STEP 1.

The following lemma is employed to establish that the nonmonotone step-size sequence
created by equation (3.5) is properly defined and bounded. We give a proof that completely
establishes the boundedness and convergence of a step-size sequence.

Lemma 3.2 A sequence {δk} is convergent to δ and min{ τ
max{2c1,2c2} , δ1} ≤ δk ≤ δ1 + P along

with P =
∑+∞

k=1 χk .

Proof Let L(κk , vk) – L(κk , uk) – L(uk , vk) > 0. Thus, we have

τ (‖κk – uk‖2 + ‖vk – uk‖2)
2[L(κk , vk) – L(κk , uk) – L(uk , vk)]

≥ τ (‖κk – uk‖2 + ‖vk – uk‖2)
2[c1‖κk – uk‖2 + c2‖vk – uk‖2]

≥ τ

2 max{c1, c2} . (3.6)

The idea of δk+1 may be deduced through mathematical induction.

min

{
τ

max{2c1, 2c2} , δ1

}
≤ δk ≤ δ1 + P.

Assume that [δk+1 – δk]+ = max{0, δk+1 – δk} and

[δk+1 – δk]– = max
{

0, –(δk+1 – δk)
}

.
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We receive {δk} because of the definition

+∞∑

k=1

(δk+1 – δk)+ =
+∞∑

k=1

max{0, δk+1 – δk} ≤ P < +∞. (3.7)

That is, the series
∑+∞

k=1(δk+1 – δk)+ is convergent. The convergence must now be proven
of

∑+∞
k=1(δk+1 – δk)–. Let

∑+∞
k=1(δk+1 – δk)– = +∞. Due to the fact that

δk+1 – δk = (δk+1 – δk)+ – (δk+1 – δk)–,

we might be able to obtain

δk+1 – δ1 =
k∑

k=0

(δk+1 – δk) =
k∑

k=0

(δk+1 – δk)+ –
k∑

k=0

(δk+1 – δk)–. (3.8)

Letting k → +∞ in (3.8), we have δk → –∞ as k → +∞. This is an absurdity. As a result
of the series convergence

∑k
k=0(δk+1 – δk)+ and

∑k
k=0(δk+1 – δk)– taking k → +∞ in (3.8),

we obtain limk→+∞ δk = δ. This concludes the proof. �

The following lemma can be used to verify the boundedness of an iterative sequence.
It is critical in terms of proving the boundedness of a sequence and proving the strong
convergence of a proposed sequence to find a common solution.

Lemma 3.3 Suppose that {sk} is a sequence generated by Algorithm 1 that meets the con-
ditions (L1)–(L5). Then, we have

∥∥vk – s∗∥∥2 ≤ ∥∥κk – s∗∥∥2 –
(

1 –
τδk

δk+1

)
‖κk – uk‖2 –

(
1 –

τδk

δk+1

)
‖vk – uk‖2.

Proof By the use of Lemma 2.4, we have

0 ∈ ∂2

{
δkL(uk , ·) +

1
2
‖κk – ·‖2

}
(vk) + NYk (vk).

There is a vector ω ∈ ∂L(uk , vk) and there exists a vector ω ∈ NYk (vk) in order that

δkω + vk – κk + ω = 0.

The preceding phrase suggests that

〈κk – vk , u – vk〉 = δk〈ω, u – vk〉 + 〈ω, u – vk〉, ∀u ∈ Yk .

Since ω ∈ NYk (vk) implies that 〈ω, u – vk〉 ≤ 0, for all u ∈ Yk . As a result, we acquire

〈κk – vk , u – vk〉 ≤ δk〈ω, u – vk〉, ∀u ∈ Yk . (3.9)

Furthermore, ω ∈ ∂L(uk , vk) and because of the concept of subdifferential, we obtain

L(uk , u) – L(uk , vk) ≥ 〈ω, u – vk〉, ∀u ∈ Y . (3.10)
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We obtain by combining the formulas (3.9) and (3.10)

δkL(uk , u) – δkL(uk , vk) ≥ 〈κk – vk , u – vk〉, ∀u ∈ Yk . (3.11)

Due to the concept of a half-space Yk , we have

δk〈ωk , vk – uk〉 ≥ 〈κk – uk , vk – uk〉. (3.12)

Due to ωk ∈ ∂L(κk , uk) this indicates that

L(κk , u) – L(κk , uk) ≥ 〈ωk , u – uk〉, ∀u ∈ Y .

By inserting u = vk , we derive

L(κk , vk) – L(κk , uk) ≥ 〈ωk , vk – uk〉. (3.13)

From (3.12) and (3.13), we derive

δk
{
L(κk , vk) – L(κk , uk)

} ≥ 〈κk – uk , vk – uk〉. (3.14)

By inserting u = s∗ into formula (3.11), we obtain

δkL
(
uk , s∗) – δkL(uk , vk) ≥ 〈

κk – vk , s∗ – vk
〉
. (3.15)

Given s∗ ∈ EP(L,M), we conclude that L(s∗, uk) ≥ 0. Due to the pseudomonotonicity of
the bifunction L, we derive L(uk , s∗) ≤ 0. We have achieved this by using equation (3.15)
such that

〈
κk – vk , vk – s∗〉 ≥ δkL(uk , vk). (3.16)

By using the definition of δk+1, we obtain

L(κk , vk) – L(κk , uk) – L(uk , vk) ≤ τ‖κk – uk‖2 + τ‖vk – uk‖2

2δk+1
. (3.17)

Due to the expressions (3.16) and (3.17), we obtain

〈
κk – vk , vk – s∗〉 ≥ δk

{
L(κk , vk) – L(κk , uk)

}

–
τδk

2δk+1
‖κk – uk‖2 –

τδk

2δk+1
‖vk – uk‖2.

(3.18)

Integrating the formulas (3.14) and (3.18), we obtain

〈
κk – vk , vk – s∗〉 ≥ 〈κk – uk , vk – uk〉

–
τδk

2δk+1
‖κk – uk‖2 –

τδk

2δk+1
‖vk – uk‖2.

(3.19)
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We have the following identities that are valuable to us:

–2
〈
κk – vk , vk – s∗〉 = –

∥∥κk – s∗∥∥2 + ‖vk – κk‖2 +
∥∥vk – s∗∥∥2, (3.20)

2〈uk – κk , uk – vk〉 = ‖κk – uk‖2 + ‖vk – uk‖2 – ‖κk – vk‖2. (3.21)

By using expressions (3.19), (3.20), and (3.21), we obtain

∥
∥vk – s∗∥∥2 ≤ ∥

∥κk – s∗∥∥2 –
(

1 –
τδk

δk+1

)
‖κk – uk‖2

–
(

1 –
τδk

δk+1

)
‖vk – uk‖2. (3.22)

�

The following theorem is the main theorem that is used to establish the strong conver-
gence of an iterative sequence. This theorem proves the boundedness of a sequence and
the strong convergence of a suggested sequence to a common solution. This is the key
theorem, and it proves that the suggested sequence strongly converges to a solution in the
case of monotone and nonmonotone step-size criteria.

Theorem 3.4 Suppose that L : M × M → R satisfies the conditions (L1)–(L5). Then,
sequence {sk} generated by Algorithm 1 strongly converges to s∗ ∈ Fix(T )∩EP(M,L), where
s∗ = PFix(T )∩EP(M,L)(0).

Proof Claim 1: The sequence {sk} is bounded.
It is worth noting that EP(M,L) and Fix(T ) are both closed, convex subsets. It is given

that

s∗ = PEP(M,L)∩Fix(T )(0).

Namely, s∗ ∈ EP(M,L) ∩ Fix(T ), as well as

〈
0 – s∗, u – s∗〉 ≤ 0, ∀u ∈ EP(M,L) ∩ Fix(T ). (3.23)

As s∗ ∈ � and based on the description of sk+1, we have

∥∥sk+1 – s∗∥∥ =
∥∥(1 – ℘k – �k)vk + ℘kT (vk) – s∗∥∥

=
∥
∥(1 – ℘k – �k)

(
vk – s∗) + ℘k

(
T (vk) – s∗) – �ks∗∥∥

≤ ∥∥(1 – ℘k – �k)
(
vk – s∗) + ℘k

(
T (vk) – s∗)∥∥ + �k‖s∗‖. (3.24)

Then, we must compute the following:

∥∥(1 – ℘k – �k)
(
vk – s∗) + ℘k

(
T (vk) – s∗)∥∥2

= (1 – ℘k – �k)2‖vk – s∗‖2+℘2
k ‖T (vk) – s∗‖2

+ 2
〈
(1 – ℘k – �k)

(
vk – s∗),℘k

(
T (vk) – s∗)〉

≤ (1 – ℘k – �k)2‖vk – s∗‖2+℘2
k
[∥∥vk – s∗∥∥2 + ρ

∥∥vk – T (vk)
∥∥2]
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+ 2℘k(1 – ℘k – �k)
[∥
∥vk – s∗∥∥2 +

ρ – 1
2

∥
∥T (vk) – vk

∥
∥2

]

≤ (1 – �k)2‖vk – s∗‖2+℘k
[
℘k – (1 – ρ)(1 – �k)

]∥∥T (vk) – vk
∥∥2

≤ (1 – �k)2‖vk – s∗‖2. (3.25)

As a result, the previous expression implies that

∥∥(1 – ℘k – �k)
(
vk – s∗) + ℘k

(
T (vk) – s∗)∥∥ ≤ (1 – �k)‖vk – s∗‖. (3.26)

From expressions (3.24) and (3.26), we have

∥∥sk+1 – s∗∥∥ ≤ (1 – �k)
∥∥vk – s∗‖+�k‖s∗∥∥. (3.27)

In the context of Lemma 3.3, we derive

∥∥vk – s∗∥∥2 ≤ ∥∥κk – s∗∥∥2 –
(

1 –
τδk

δk+1

)
‖κk – uk‖2 –

(
1 –

τδk

δk+1

)
‖vk – uk‖2. (3.28)

Due to Lemma 3.1, we obtain

lim
k→+∞

(
1 –

τδk

δk+1

)
= 1 – τ > 0. (3.29)

Thus, this means that there exists N1 ∈ N such that

lim
k→+∞

(
1 –

τδk

δk+1

)
> 0, ∀k ≥ N1. (3.30)

According to expressions (3.28) and (3.30), we have

∥
∥vk – s∗∥∥2 ≤ ∥

∥κk – s∗∥∥2. (3.31)

From expression (3.1), we have

�k‖sk – sk–1‖ ≤ 	k , for all k ∈N

and

lim
k→+∞

(
	k

�k

)
= 0.

As a result, this indicates that

lim
k→+∞

�k

�k
‖sk – sk–1‖ ≤ lim

k+→∞
	k

�k
= 0. (3.32)

From the formulas (3.31) and (3.32) with the definition of {κk}, we obtain

∥
∥vk – s∗∥∥ ≤ ∥

∥κk – s∗∥∥ =
∥
∥sk + �k(sk – sk–1) – s∗∥∥

≤ ∥∥sk – s∗∥∥ + �k‖sk – sk–1‖
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=
∥∥sk – s∗∥∥ + �k

�k

�k
‖sk – sk–1‖

≤ ∥∥sk – s∗∥∥ + �kK1, (3.33)

where K1 > 0 is a constant

�k

�k
‖sk – sk–1‖ ≤ K1, ∀k ≥ 1. (3.34)

Considering the formulas (3.31) and (3.33), we obtain

∥∥vk – s∗∥∥ ≤ ∥∥κk – s∗∥∥ ≤ ∥∥sk – s∗∥∥ + �kK1, ∀k ≥ N1. (3.35)

Combining (3.26) and (3.35), we obtain

∥
∥sk+1 – s∗∥∥ ≤ (1 – �k)

∥
∥vk – s∗‖+�k‖s∗∥∥

≤ (1 – �k)
∥
∥sk – s∗∥∥+(1 – �k)�kK1 + �k

∥
∥s∗∥∥

≤ (1 – �k)‖sk – s∗‖+�k
(
K1 + s∗)

≤ max
{∥∥sk – s∗∥∥, K1 + s∗}

≤ max
{∥∥sN1 – s∗∥∥, K1 + s∗}. (3.36)

As a result, we infer that the sequence {sk} is bounded.
Claim 2:

(
1 –

τδk

δk+1

)
‖κk – uk‖2 +

(
1 –

τδk

δk+1

)
‖vk – uk‖2 + ℘k[1 – ρ – ℘k]

∥
∥T (vk) – vk

∥
∥2

≤ ∥∥sk – s∗∥∥2 –
∥∥sk+1 – s∗∥∥2 + �kK4 (3.37)

for some K4 > 0. Indeed, it follows from relation (3.35) that

∥∥κk – s∗∥∥2 ≤ (∥∥sk – s∗∥∥ + �kK1
)2

=
∥∥sk – s∗∥∥2 + �k

(
2K1

∥∥sk – s∗∥∥ + �kK2
1
)

≤ ∥∥sk – s∗∥∥2 + �kK2, (3.38)

for some K2 > 0. In addition, we have

∥
∥sk+1 – s∗∥∥2 =

∥
∥(1 – ℘k – �k)vk + ℘kT (vk) – s∗∥∥2

=
∥
∥(

vk – s∗) + ℘k
(
T (vk) – vk

)
– �kvk

∥
∥2

≤ ∥
∥(

vk – s∗) + ℘k
(
T (vk) – vk

)∥∥2 – 2�k
〈
vk , sk+1 – s∗〉

=
∥∥vk – s∗∥∥2 + ℘2

k
∥∥T (vk) – vk

∥∥2 + 2℘k
〈
T (vk) – vk , vk – s∗〉

+ 2�k
〈
vk , s∗ – sk+1

〉

≤ ∥∥vk – s∗∥∥2 + ℘2
k
∥∥T (vk) – vk

∥∥2 + ℘k(ρ – 1)
∥∥vk – T (vk)

∥∥2 + �kK3
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≤ ∥∥sk – s∗∥∥2 + �kK4 – ℘k
[
(1 – ρ) – ℘k

]∥∥T (vk) – vk
∥∥2

–
(

1 –
τδk

δk+1

)
‖κk – uk‖2 –

(
1 –

τδk

δk+1

)
‖vk – uk‖2, (3.39)

where K4 = K2 + K3. Finally, we have

(
1 –

τδk

δk+1

)
‖κk – uk‖2 +

(
1 –

τδk

δk+1

)
‖vk – uk‖2 + ℘k[1 – ρ – ℘k]

∥∥T (vk) – vk
∥∥2

≤ ∥∥sk – s∗∥∥2 –
∥∥sk+1 – s∗∥∥2 + �kK4. (3.40)

Claim 3:

∥∥sk+1 – s∗∥∥2 ≤ (1 – �k)
∥∥sk – s∗∥∥2 + �k

[
2℘k

∥∥T (vk) – vk
∥∥∥∥sk+1 – s∗∥∥

+
3Kðk

�k
‖sk – sk–1‖+2

〈
s∗, s∗ – sk+1

〉
]

. (3.41)

By setting the following value

tk = (1 – ℘k)vk + ℘kT (vk),

we have

sk+1 = tk – �kvk = (1 – �k)tk – �k(vk – tk) = (1 – �k)tk – �k℘k
(
vk – T (vk)

)
, (3.42)

where

vk – tk = vk – (1 – ℘k)vk – ℘kT (vk) = ℘k
(
vk – T (vk)

)
.

By definition of sk+1, we can write

∥∥sk+1 – s∗∥∥2

=
∥∥(1 – �k)tk + ℘k�k

(
T (vk) – vk

)
– s∗∥∥2

=
∥∥(1 – �k)

(
tk – s∗) +

[
℘k�k

(
T (vk) – vk

)
– �ks∗]∥∥2

≤ (1 – �k)2∥∥tk – s∗∥∥2

+ 2
〈
℘k�k

(
T (vk) – vk

)
– �ks∗, (1 – �k)

(
tk – s∗) + ℘k�k

(
T (vk) – vk

)
– �ks∗〉

= (1 – �k)2∥∥tk – s∗∥∥2 + 2�k
〈
℘k

(
T (vk) – vk

)
– s∗, sk+1 – s∗〉

≤ (1 – �k)
∥∥tk – s∗∥∥2 + 2℘k�k

〈
T (vk) – vk , sk+1 – s∗〉 + 2�k

〈
s∗, s∗ – sk+1

〉
. (3.43)

Next, we have to evaluate

∥
∥tk – s∗∥∥2

=
∥∥(1 – ℘k)vk + ℘kT (vk) – s∗∥∥2
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=
∥∥(1 – ℘k)

(
vk – s∗) + ℘k

(
T (vk) – s∗)∥∥2

= (1 – ℘k)2∥∥vk – s∗∥∥2 + ℘2
k
∥∥T (vk) – s∗∥∥2 + 2

〈
(1 – ℘k)

(
vk – s∗),℘k

(
T (vk) – s∗)〉

≤ (1 – ℘k)2∥∥vk – s∗∥∥2 + ℘2
k
∥
∥vk – s∗∥∥2 + ℘2

k ρ
∥
∥T (vk) – vk

∥
∥2

+ 2(1 – ℘k)℘k

[∥
∥vk – s∗∥∥2 –

1 – ρ

2
∥
∥T (vk) – s∗∥∥2

]

≤ ∥∥vk – s∗∥∥2 + ℘k[℘k – 1 + ρ]
∥∥T (vk) – s∗∥∥2. (3.44)

It is given that ℘k ⊂ (0, 1 – ρ) and using the expression (3.31), we obtain

∥
∥tk – s∗∥∥2 ≤ ∥

∥κk – s∗∥∥2. (3.45)

According to the definition of κk , one obtains

∥∥κk – s∗∥∥2 =
∥∥sk + �k(sk – sk–1) – s∗∥∥2

=
∥∥sk – s∗ + �k(sk – sk–1)

∥∥2

=
∥∥sk – s∗∥∥2 + �2

k‖sk – sk–1‖2 + 2
〈
sk – s∗,�k(sk – sk–1)

〉

≤ ∥∥sk – s∗∥∥2 + �2
k‖sk – sk–1‖2 + 2�k

∥∥sk – s∗∥∥‖sk – sk–1‖
=

∥
∥sk – s∗∥∥2 + �k‖sk – sk–1‖

[
2
∥
∥sk – s∗∥∥ + �k‖sk – sk–1‖

]

≤ ∥
∥sk – s∗∥∥2 + 3�kK‖sk – sk–1‖, (3.46)

where

K = sup
k∈N

{∥∥sk – s∗∥∥,�k‖sk – sk–1‖
}

.

Combining expressions (3.43), (3.44), and (3.46), we obtain

∥∥sk+1 – s∗∥∥2

≤ (1 – �k)‖tk – s∗‖2+2℘k�k
〈
T (vk) – vk , sk+1 – s∗〉 + 2�k

〈
s∗, s∗ – sk+1

〉

≤ (1 – �k)‖sk – s∗‖2+�k

[
2℘k‖T (vk) – vk‖‖sk+1 – s∗‖

+ 2
〈
s∗, s∗ – sk+1

〉
+

3�kK
�k

‖sk – sk–1‖
]

. (3.47)

Claim 4: The sequence ‖sk – s∗‖2 converges to zero.
Set

pk :=
∥∥sk – s∗∥∥2

and

rk :=
[

2℘k‖T (vk) – vk‖‖sk+1 – s∗‖+2
〈
s∗, s∗ – sk+1

〉
+

3�kK
�k

‖sk – sk–1‖
]

.
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Then, Claim 4 can be rewritten as follows:

pk+1 ≤ (1 – �k)pk + �krk .

Indeed, from Lemma 2.2, it suffices to show that lim supj→∞ rkj ≤ 0 for every subsequence
{pkj} of {pk} satisfying

lim inf
j→+∞ (pkj+1 – pkj ) ≥ 0.

This is equivalent to the need to show that

lim sup
j→∞

〈
s∗, s∗ – skj+1

〉 ≤ 0

for every subsequence {‖skj – s∗‖} of {‖sk – s∗‖} satisfying

lim inf
j→+∞

(∥∥skj+1 – s∗∥∥ –
∥
∥skj – s∗∥∥) ≥ 0.

Assume that {‖skj – s∗‖} is a subsequence of {‖sk – s∗‖} satisfying

lim inf
j→+∞

(∥∥skj+1 – s∗∥∥ –
∥
∥skj – s∗∥∥) ≥ 0.

Then,

lim inf
j→+∞

(∥∥skj+1 – s∗∥∥2 –
∥
∥skj – s∗∥∥2)

= lim inf
j→+∞

(∥∥skj+1 – s∗∥∥ –
∥∥skj – s∗∥∥)(∥∥skj+1 – s∗∥∥ +

∥∥skj – s∗∥∥) ≥ 0. (3.48)

It follows from Claim 2 that

lim sup
j→∞

[(
1 –

τδkj

δkj+1

)
‖κkj – ukj‖2 +

(
1 –

τδkj

δkj+1

)
‖vkj – ukj‖2

+ ℘k[1 – ρ – ℘k]
∥∥T (vkj ) – vkj

∥∥2
]

≤ lim sup
j→∞

[∥∥skj – s∗∥∥2 –
∥
∥skj+1 – s∗∥∥2 + �kj K4

]

= – lim inf
j→∞

[∥∥skj+1 – s∗∥∥2 –
∥∥skj – s∗∥∥2]

≤ 0. (3.49)

The above relation implies that

lim
j→∞‖κkj – ukj‖ = 0,

lim
j→∞‖vkj – ukj‖ = 0,

lim
j→∞

∥
∥T (vkj ) – vkj

∥
∥ = 0.

(3.50)
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Therefore, we obtain

lim
j→∞‖vkj – κkj‖ = 0. (3.51)

According to the definition of κk one has

‖κkj – skj‖ = �kj‖skj – skj–1‖

= ℘kj

�kj

℘kj

‖skj – skj–1‖ → 0, as k → +∞. (3.52)

This, together with limj→∞ ‖vkj – κkj‖ = 0, yields that

lim
j→∞‖vkj – skj‖ = 0. (3.53)

From expressions (3.50) and (3.53), we deduce that

‖skj+1 – skj‖ ≤ ‖vkj – skj‖ + �kj‖vkj‖ + ℘kj

∥
∥T (vkj ) – vkj

∥
∥. (3.54)

Taking limit j → ∞ on both sides of the equation, we have

lim
j→∞‖skj+1 – skj‖ = 0. (3.55)

The following phrase suggests that

lim
j→∞‖κkj – skj+1‖ ≤ lim

j→∞‖κkj – skj‖ + lim
j→∞‖skj – skj+1‖ = 0. (3.56)

Due to expression (3.11), we have

δkjL(ukj , u) ≥ δkjL(ukj , vkj ) + 〈κkj – vkj , u – vkj〉. (3.57)

By expression (3.17), we obtain

δkjL(ukj , vkj ) ≥ δkjL(κkj , vkj ) – δkjL(κkj , ukj )

–
δkjτ (‖κkj – ukj‖2 + ‖vkj – ukj‖2)

2δkj+1
.

(3.58)

Combining relations (3.57), (3.58), and (3.14) we write

δkjL(ukj , u) ≥ 〈κkj – ukj , vkj – ukj〉 –
τδkj

2δkj+1
‖κkj – ukj‖2

–
τδkj

2δkj+1
‖ukj – vkj‖2 + 〈κkj – vkj , u – vkj〉,

(3.59)

where u is an arbitrary element in Yk . By using the boundedness of the sequence and
expression (3.50), that right-hand side of the last inequality goes to zero. By the use of
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δkj ≥ δ > 0, we obtain

0 ≤ lim sup
j→∞

L(ukj , u) ≤L(ŝ, u), ∀u ∈ Yk .

It is given that M ⊂ Yk , that is L(ŝ, u) ≥ 0, for all u ∈ M. This gives that ŝ ∈ EP(L,M).
By the demiclosedness of (I – T ), we obtain that ŝ ∈ Fix(T ). Since the sequence {sk} is
bounded, this implies that there exists a subsequence {skj} of {sk} such that skj ⇀ ŝ. It is
given that

s∗ = PEP(M,L)∩Fix(T )(0).

Namely, s∗ ∈ EP(M,L) ∩ Fix(T ) as well as

〈
0 – s∗, u – s∗〉 ≤ 0, ∀u ∈ EP(M,L) ∩ Fix(T ).

It is given that ŝ ∈ EP(M,A) ∩ Fix(T ). Thus, we have

lim sup
k→∞

〈
s∗, s∗ – sk

〉

= lim
j→∞

〈
s∗, s∗ – skj

〉
=

〈
s∗, s∗ – ŝ

〉 ≤ 0. (3.60)

By using the fact limj→∞‖skj+1 – skj‖ = 0. Thus, we have

lim sup
k→∞

〈
s∗, s∗ – sk+1

〉

≤ lim sup
j→∞

〈
s∗, skj – skj+1

〉
+ lim sup

j→∞

〈
s∗, s∗ – skj

〉

=
〈
s∗, ŝ – s∗〉 ≤ 0. (3.61)

Combining Claim 3 and in the light of Lemma 2.2, we observe that sk → s∗ as k → ∞. The
proof of Theorem 3.4 is completed. �

The third method does not involve subgradient techniques and is effective in some sit-
uations. Its proof is the same as that of Algorithm 1. The third strategy is discussed below
to obtain a common solution to an equilibrium and a fixed-point problem without using
the subgradient technique. The key feature of this method is that it adopts a monotone
step-size rule that is independent of Lipschitz constants. The algorithm uses Mann-type
iteration to solve a fixed-point problem and the two-step extragradient technique to solve
an equilibrium problem.

Algorithm 3 (Inertial extragradient method with a monotone step-size rule)
STEP 0: Take s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers
a, b such that 0 < a, b < 1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b)
and {�k} ⊂ (0, 1) satisfying the following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.
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STEP 1: Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(3.62)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0.
STEP 2: Calculate

uk = arg min
u∈M

{
δkL(κk , u) +

1
2
‖κk – u‖2

}
.

If κk = uk , then STOP. Else, move to STEP 3.
STEP 3: Calculate

vk = arg min
u∈M

{
δkL(uk , u) +

1
2
‖κk – u‖2

}
.

STEP 4: Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

STEP 5: Calculate

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk , τ‖κk –uk‖2+τ‖vk –uk‖2

2[L(κk ,vk )–L(κk ,uk )–L(uk ,vk )] }
if L(κk , vk) – L(κk , uk) – L(uk , vk) > 0,

δk , otherwise.

(3.63)

Set k := k + 1 and move to STEP 1.

The fourth method, which does not use a subgradient method, is successful in some

scenarios. Its proof is the same as that of Algorithm 1. The key feature of this tech-

nique is that it uses a nonmonotone step-size rule that is independent of Lipschitz con-

stants.

Algorithm 4 (Accelerated extragradient method with a nonmonotone step-size rule)

STEP 0: Take s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers
a, b such that 0 < a, b < 1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b)
and {�k} ⊂ (0, 1) satisfying the following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.
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STEP 1: Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(3.64)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0.
STEP 2: Calculate

uk = arg min
u∈M

{
δkL(κk , u) +

1
2
‖κk – u‖2

}
.

If κk = uk , then STOP. Else, move to STEP 3.
STEP 3: Calculate

vk = arg min
u∈M

{
δkL(uk , u) +

1
2
‖κk – u‖2

}
.

STEP 4: Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

STEP 5: Moreover, choose a nonnegative real sequence {χk} such that
∑+∞

k=1 χk <
+∞. Calculate

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk + χk , τ‖κk –uk‖2+τ‖vk –uk‖2

2[L(κk ,vk )–L(κk ,uk )–L(uk ,vk )] }
if L(κk , vk) – L(κk , uk) – L(uk , vk) > 0,

δk + χk , otherwise.

(3.65)

Set k := k + 1 and move to STEP 1.

4 Applications
In this section, we need to find a common solution of the variational inequalities and fixed-
point problems using the results from our main results. The expression (4.2) is employed
to obtain the following conclusions. All the methods are based on our main findings, which
are interpreted below.

Let A : M → Y be an operator. First, we look at the classic variational inequality prob-
lem [24, 38], which is expressed as follows:

〈
A

(
s∗),ℵ1 – s∗〉 ≥ 0, ∀ℵ1 ∈M. (4.1)
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Let us define a bifunction F defined as follows:

F (ℵ1,ℵ2) :=
〈
A(ℵ1),ℵ2 – ℵ1

〉
, ∀ℵ1,ℵ2 ∈M. (4.2)

Then, the equilibrium problem converts into the problem of variational inequalities de-
fined in (4.1) and the Lipschitz constant of the mapping A is L = 2c1 = 2c2.

The following corollary is derived from the proposed Algorithm 1 and the minimization
problem for solving equilibrium problems that transform into projections on a convex set.
This result helps in the finding of a common solution to a variational inequality problem
and a fixed-point problem.

Corollary 4.1 Suppose that A : M→ Y is a weakly continuous, pseudomonotone, and L-
Lipschitz continuous mapping and the solution set Fix(T ) ∩ VI(M,A) is nonempty. Take
s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers a, b such that 0 < a, b <
1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b) and {�k} ⊂ (0, 1) satisfying the
following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(4.3)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0. First, we have to com-
pute

⎧
⎨

⎩
uk = PM(κk – δkA(κk)),

vk = PYk (κk – δkA(uk)),

where

Yk =
{

z ∈ Y :
〈
κk – δkA(κk) – uk , z – uk

〉 ≤ 0
}

for each k ≥ 0.

Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).
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The following step size should be updated:

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk , τ‖κk –uk‖2+τ‖vk –uk‖2

2〈A(κk )–A(uk ),vk –uk〉 }
if 〈A(κk) – A(uk), vk – uk〉 > 0,

δk , otherwise.

Then, the sequence {sk} converges strongly to Fix(T ) ∩ VI(M,A).

The following corollary comes from the proposed Algorithm 2 and the minimization
problem for resolving equilibrium problems that transform into projections on a convex
set.

Corollary 4.2 Suppose that A : M→ Y is a weakly continuous, pseudomonotone, and L-
Lipschitz continuous mapping and the solution set Fix(T ) ∩ VI(M,A) is nonempty. Take
s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers a, b such that 0 < a, b <
1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b) and {�k} ⊂ (0, 1) satisfying the
following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(4.4)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0. First, we have to compute

⎧
⎨

⎩
uk = PM(κk – δkA(κk)),

vk = PYk (κk – δkA(uk)),

where

Yk =
{

z ∈ Y :
〈
κk – δkA(κk) – uk , z – uk

〉 ≤ 0
}

for each k ≥ 0.

Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).
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Moreover, choose a nonnegative real sequence {χk} such that
∑+∞

k=1 χk < +∞. The following
step size should be updated:

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk + χk , τ‖κk –uk‖2+τ‖vk –uk‖2

2〈A(κk )–A(uk ),vk –uk〉 }
if 〈A(κk) – A(uk), vk – uk〉 > 0,

δk + χk , otherwise.

Then, the sequence {sk} converges strongly to Fix(T ) ∩ VI(M,A).

The following corollary comes from the proposed Algorithm 3 and the minimization
problem for resolving equilibrium problems that transform into projections on a convex
set.

Corollary 4.3 Suppose that A : M→ Y is a weakly continuous, pseudomonotone, and L-
Lipschitz continuous mapping and the solution set Fix(T ) ∩ VI(M,A) is nonempty. Take
s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers a, b such that 0 < a, b <
1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b) and {�k} ⊂ (0, 1) satisfying the
following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(4.5)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0. First, we have to compute

⎧
⎨

⎩
uk = PM(κk – δkA(κk)),

vk = PM(κk – δkA(uk)).

Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

The following step size should be updated:

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk , τ‖κk –uk‖2+τ‖vk –uk‖2

2〈A(κk )–A(uk ),vk –uk〉 }
if 〈A(κk) – A(uk), vk – uk〉 > 0,

δk , otherwise.

Then, the sequence {sk} converges strongly to Fix(T ) ∩ VI(M,A).
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The proposed Algorithm 4 and the minimization problem for resolving equilibrium
problems that transform into projections on a convex set lead to the following corollary.

Corollary 4.4 Suppose that A : M→ Y is a weakly continuous, pseudomonotone, and L-
Lipschitz continuous mapping and the solution set Fix(T ) ∩ VI(M,A) is nonempty. Take
s0, s1 ∈M, � ∈ (0, 1), τ ∈ (0, 1), δ1 > 0. Choose two positive numbers a, b such that 0 < a, b <
1 – ρ and 0 < a, b < 1 – �k . Moreover, choose {℘k} ⊂ (a, b) and {�k} ⊂ (0, 1) satisfying the
following conditions:

lim
k→+∞

�k = 0 and
+∞∑

k=1

�k = +∞.

Calculate

κk = sk + �k(sk – sk–1),

while �k is taken as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , 	k
‖sk –sk–1‖ } if sk �= sk–1,

�
2 otherwise.

(4.6)

Moreover, a positive sequence 	k = ◦(℘k) satisfies limk→+∞ 	k
℘k

= 0. First, we have to compute

⎧
⎨

⎩
uk = PM(κk – δkA(κk)),

vk = PM(κk – δkA(uk)).

Calculate

sk+1 = (1 – ℘k – �k)vk + ℘kT (vk).

Moreover, choose a nonnegative real sequence {χk} such that
∑+∞

k=1 χk < +∞. The following
step size should be updated:

δk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{δk + χk , τ‖κk –uk‖2+τ‖vk –uk‖2

2〈A(κk )–A(uk ),vk –uk〉 }
if 〈A(κk) – A(uk), vk – uk〉 > 0,

δk + χk , otherwise.

Then, the sequence {sk} converges strongly to Fix(T ) ∩ VI(M,A).

5 Numerical illustrations
This section covers the computational consequences of the presented methodologies, as
well as an examination of how variations in control settings impact the numerical efficacy
of the suggested algorithms. All computations are run in MATLAB R2018b on an HP i5
Core (TM) i5-6200 laptop with 8.00 GB (7.78 GB useable) RAM.
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Example 5.1 The first sample problem here is taken from the Nash–Cournot Oligopolistic
Equilibrium model in [43]. Suppose that a function q : Y →R is described through

lev≤q :=
{

s ∈ Y : q(s) ≤ 0
} �= ∅.

The subgradient projection is a mapping that is characterized as follows:

T (s) =

⎧
⎨

⎩
s – q(s)

‖r(s)‖2 r(s), if q(s) ≥ 0,

s, otherwise,

wherein r(s) ∈ ∂q(s). In such instance, T is quasinonexpansive, demiclosed at zero, and
Fix(T ) = lev≤q. In this instance, the bifunction F can be expressed as follows:

F (s, u) = 〈Ps + Qu + c, u – s〉,

wherein c ∈R
M and P, Q are matrices of order M. The matrix Q–P is symmetric negative-

semidefinite, while the matrix P is symmetric positive-semidefinite, through Lipschitz-like
parameters c1 = c2 = 1

2‖P – Q‖ (for additional information, see [43]). The starting point
for this study is s0 = s1 = (2, 2, . . . , 2) and the size of the space is chosen differently with the
stopping condition Dk = ‖κk – uk‖ ≤ 10–3. Figures 1–10 depict numerical observations
for Example 5.1. The following control criteria are in use:

(1) Algorithm 1 in [52] (briefly, EGM):

℘k =
1

(10k + 4)
, �k =

1 – �
5

, δk = min

{
1

4c1
,

1
4c2

}
;

Figure 1 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 10 for the first 100 iterations
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Figure 2 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 10 for the first 100 iterations

Figure 3 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 20 for the error term 10–3

(2) Algorithm 2 in [51] (briefly, I-EGM):

℘k =
1

(10k + 4)
, �k =

1 – �
5

, δk = min

{
1

4c1
,

1
4c2

}
;

(3) Algorithm 1 in [18] (briefly, H-EGM):

℘k =
1

(10k + 4)
, �k =

1
5

, δk = min

{
1

4c1
,

1
4c2

}
;
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Figure 4 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 20 for the error term 10–3

Figure 5 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 30 for the first 500 iterations

(4) Algorithm 1 (briefly, M-EGM):

δ1 = 0.36, � = 0.57, τ = 0.264, 	k =
10

(1 + k)3 ,

�k =
1 – �

5
, ℘k =

1
(10k + 4)

, g(s) =
s
5

;
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Figure 6 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 30 for the first 500 iterations

Figure 7 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 40 for the error term 10–3

(5) Algorithm 2 (briefly, IM-EGM):

δ1 = 0.36, � = 0.57, τ = 0.264, 	k =
10

(1 + k)2 ,

�k =
1 – �

5
, ℘k =

1
(10k + 4)

, g(s) =
s
5

, χk =
20

(1 + k)2 .
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Figure 8 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 40 for the error term 10–3

Figure 9 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 50 for the error term 10–3

Example 5.2 Consider the fact that Y = L2([0, 1]) is a real Hilbert space through an inner
product 〈s, u〉 =

∫ 1
0 s(t)u(t) dt, ∀s, u ∈ Y , in which the induced norm obtains

‖s‖ =

√∫ 1

0

∣
∣s(t)

∣
∣2 dt.

Assume an operator A : M→ Y is specified by

A(s)(t) =
∫ 1

0

(
s(t) – H(t, s)f

(
s(t)

))
ds + g(t),
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Figure 10 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while N = 50 for the error term 10–3

where M := {s ∈ L2([0, 1]) : ‖s‖ ≤ 1} is the unit ball and

H(t, s) =
2tse(t+s)

e
√

e2 – 1
, f (s) = cos s, g(t) =

2tet

e
√

e2 – 1
.

The bifunction is stated as follows:

F (s, u) :=
〈
A(s), u – s

〉
, ∀s, u ∈M.

Moreover, F is clearly a Lipschitz-type continuous bifunction with the Lipschitz constant
c1 = c2 = 1 and the monotone [49]. A metric projection on M is evaluated as follows:

PM(s) =

⎧
⎨

⎩

s
‖s‖ if ‖s‖ > 1,

s, ‖s‖ ≤ 1.

A T : L2([0, 1]) → L2([0, 1]) is written as follows:

T (s)(t) =
∫ 1

0
ts(s) ds, t ∈ [0, 1].

A simple calculation shows that T is 0-demicontractive. The solution to the problem is
s∗(t) = 0. Figures 11–18 depict numerical observations for Example 5.2. The following con-
trol criteria are in use:

(1) Algorithm 1 in [52] (briefly, EGM):

℘k =
1

(5k + 10)
, �k =

1 – �
4

, δk = min

{
1

4c1
,

1
4c2

}
;
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Figure 11 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = t for the first 500 iterations

Figure 12 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = t for the first 500 iterations

(2) Algorithm 2 in [51] (briefly, I-EGM):

℘k =
1

(5k + 10)
, �k =

1 – �
4

, δk = min

{
1

4c1
,

1
4c2

}
;

(3) Algorithm 1 in [18] (briefly, H-EGM):

℘k =
1

(5k + 10)
, �k =

1
5

, δk = min

{
1

4c1
,

1
4c2

}
;
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Figure 13 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = sin(t) for the first 500 iterations

Figure 14 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = sin(t) for the first 500 iterations

(4) Algorithm 1 (briefly, M-EGM):

δ1 = 0.42, � = 0.67, τ = 0.33, 	k =
10

(1 + k)2 ,

�k =
1 – �

3
, ℘k =

1
(5k + 10)

, g(s) =
s
3

;
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Figure 15 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = cos(t) for the first 500 iterations

Figure 16 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = cos(t) for the first 500 iterations

(5) Algorithm 2 (briefly, IM-EGM):

δ1 = 0.42, � = 0.67, τ = 0.33, 	k =
10

(1 + k)2 ,

�k =
1 – �

3
, ℘k =

1
(5k + 10)

, g(s) =
s
3

, χk =
10

(1 + k)2 .
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Figure 17 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = cos(t) for the first 500 iterations

Figure 18 Numerical comparison of Algorithm 1 and Algorithm 2 using Algorithm 1 in [52], Algorithm 2 in
[51], and Algorithm 1 in [18], while s0 = s1 = cos(t) for the first 500 iterations

6 Conclusion
The paper provides two explicit extragradient-like approaches for finding a common so-
lution to an equilibrium problem containing a pseudomonotone and Lipschitz-type bi-
function with such a fixed-point problem needing a ρ-demicontractive mapping in a real
Hilbert space. A new step-size criterion that is not reliant on Lipschitz-type constant in-
formation has been developed. Under certain standard conditions, strong convergence
theorems for the proposed algorithms are established. The computational data was stud-
ied to confirm the suggested approaches’ arithmetic superiority over current methods.
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These computational findings show that the nonmonotone variable step-size rule contin-
ues to improve the iterative sequence’s performance in this case.
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