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The paper proposes multiple new extragradient methods for solving a variational inequal-
ity problem involving quasimonotone operators in infinite-dimensional real Hilbert
spaces. These methods contain variable stepsize rules that are revised at each itera-
tion and are dependent on prior iterations. These algorithms have the benefit of not
requiring prior knowledge of the Lipschitz constant or any line-search approach. Simple
conditions are used to demonstrate the algorithm’s convergence. A collection of simple
experiments is presented to show the numerical behavior of the algorithms.
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1. Introduction

The primary objective of this research is to investigate the iterative methods used
to figure out the solution to wariational inequality problem (VIP) [25] problem
involving quasimonotone operators in any real Hilbert space. Suppose that ¥ is a

T Corresponding author.
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real Hilbert space and A is a nonempty, closed, and convex subset of . Let an
operator I' : ¥ — X. The variational inequality problem for I" on A is illustrated in
the following manner:

Find w* € A such that (I'(w*),v —w*) >0, Vv € A. (VIP)

The mathematical design of the variational inequality problem is a key prob-
lem in nonlinear analysis. It is an important mathematical model that develops
a lot of fundamental concepts in applied mathematics such as a nonlinear system
of equations, optimization conditions for problems with the optimization process,
complementarity problems, network equilibrium problems, and finance (see for more
details [11, 15-18, 23]). As a consequence, this notion has various applications in
the fields of mathematical programming, engineering, transport analysis, network
economics, game theory, and computer science. The regularized method and the
projection technique are two outstanding and general schemes for finding a solution
to variational inequalities. It is also noted that the first approach is most frequently
used to deal with the variational inequalities characterized by the class of mono-
tone operators. The regularized sub-problem in this method is strongly monotone,
and its unique solution is found to be more convenient than the initial problem. In
this study, we discuss the projection methods that are well known for their simpler
numerical computing. Many authors have committed themselves to considering not
only the theory of existence and stability of solutions but also iterative methods for
solving variational inequality problems.

In addition, projection methods are effective in estimating the numerical solution
of variational inequalities. Many researchers have provided distinctive variations of
projection methods to deal with such problems (see for more details [3, 5, 6, 9,
10, 12-14, 19, 24, 27, 29, 30, 33, 35-37]) and others in [4, 7, 8, 22, 28, 31, 32, 38|.
All methods for figuring out the problem (VIP) are based on the computation of
a projection on the appropriate set A. Korpelevich [19] and Antipin [1] introduced
the accompanying extragradient method. Their method takes the following design:

uy € A,
Un = Paluy, — I (uy)], (1.1)
Unt1 = Palun — 2(vy,)],

where 0 < » < % In view of the above method, we have used two projections on
the underlying set A for each iteration. This, of course, can affect the computational
effectiveness of the method if the feasible set A has a complicated structure. Here,
we present some methods which can remove this drawback. The first is the following
subgradient extragradient method introduced by Censor et al. [9]. This method
takes the following form:

U € A,
0 = Palun — 3 (un)], (1.2)

Uni1 = P, [ty — 2(vy)],

2350091-2
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where 0 < » < % and
Yo ={z €2 : (up — 2 (up) — v,z — vp) <0}

In this paper, our primary concentrate on Tseng’s extragradient method [26] that
needs only one projection for each iteration. This method chooses the subsequent
manner:

uy € A,
Vn = Palun — #(uy)], (1.3)
Up+1 = Up + %[F(Un) - P(U'n)]’

where 0 < »x < % It is significant to indicate that the above-suggested methods
have two serious flaws: a fixed constant step size rule that is conditional on the
Lipschitz constant of mapping and develops a weakly convergent iterative sequence.
The Lipschitz constant is commonly unknown or challenging to figure out. From
a computational point of view, it can be difficult to consider a fixed step size
constraint that influences the method’s performance and rate of convergence. In
addition, the study of a strongly convergent iterative sequence is significant in the
situation of an infinite-dimensional Hilbert space.

The primary objective of this study is to set up a new strongly convergent
method by applying Mann and Tseng’s extragradient-type method, comprising
a monotonic and non-monotonic variable step size rule to figure out variational
inequalities involving the quasimonotone operator. Furthermore, to show that the
iterative sequences set up by all extragradient algorithms strongly converge to a
solution. We used the following conditions to examine strong convergence theo-
rems: (I'1) The solution set for problem (VIP) is denoted by VI(A,T') which is
nonempty; (I'2) An operator I' : ¥ — ¥ is said to be quasimonotone if

(T(u),v—u) >0= (T'(v),v —u) >0, Vu,vedl;
(I'3) An operator I' : ¥ — ¥ is said to be Lipschitz continuous if there exists a
constant L > 0 such that
IT(u) =T ()| < Llju—0|, Vu,vel;

(T4) An operator I' : ¥ — ¥ is sequentially weakly continuous if {I'(u,)} weakly
converges to I'(u) for every sequence {u,} weakly converges to u.

The paper is arranged in the following way. In Sec. 2, preliminary results were
presented. Section 3 gives all new algorithms and their convergence analysis. Finally,

Sec. 4 gives some numerical results to explain the practical efficiency of the proposed
methods.

2. Preliminaries

This part comprises a number of significant identities as well as relevant lemmas.
For any u,v € ¥, we have

lu+ ol = Jlull® +2(u, v) + [lo]*

2350091-3
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Lemma 2.1 ([2]). For any vi,v2 € ¥ and d € R. Then, the following inequalities
hold. (i) ||dv + (1 — d)va||* = d|jvi||® + (1 — d)[|v2]?* — d(1 = d)[jor — wa*. (1)
lor + 2|12 < [loa[l® + 2{v2, v1 + v2).

A metric projection Pa(v1) of v1 € ¥ is defined by

Pa(v1) = argmin{||v; — ve|| : v2 € A}

Lemma 2.2 ([2]). Let Pa : ¥ — A be a metric projection. Then, the following
conditions are satisfied:

(i) v3 = Pa(v1) if and only if (v1 — v3,v3 —v3) <0, Vg € A;
(i) flr = Pa(v2)||? + [|1Pa(v2) = v2ll® < [lvr — v2]?, v1 € A, v € 55
(iii) ||lv1 — Pa(v)|| < ||lv1 — va||, v2 € A,v; € 2.

Lemma 2.3 ([34]). Let {e,} C [0,4+00) be a sequence satisfying the following
condition: |

ent1 < (1 — fr)en + fugn, VneN.

In addition, two sequences {fn} C (0,1) and {gn} c R satisfy the following
conditions:

+00
nkrfoo fn =0, Zl fn =400 and lirﬁilggn < 0.
n=

Then, lim,, - €, = 0.

Lemma 2.4 ([20]). Let {e,} C R be a sequence and there exists a subsequence

{n;} of {n} such that
en; < €n;p, VieN.

Then, there ezists a nondecreasing sequence my C N such that mr — +o0o as
k — +o0o, with

Cmp < Empy, and  exp < ep,.,, VkeN

Indeed, my = max{j < k:e; <ejt1}.

3. Main Results

In this part, we present an iterative scheme for solving quasimonotone variational
inequality problems that is based on Tseng’s extragradient method [26] and and
Mann type scheme [21]. It is important to acknowledge that our approach has a
simple framework for obtaining a strong convergence. The first method is given as
follows.

2350091-4
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Algorithm 1. (Mann-type extragradient method with fixed step size rule)
STEP 0. Let u; € A, 0 < > < 1 and {an} C (a,b) C (0,1 —19,) and {J,} C
(0,1) satisfies the conditions: lim,,_, o, ¥, = 0 and Z:ij 9,, = +o00.
STEP 1. Compute

Uy = Pa(up — #'(uy)).

If u, = v,, STOP. Otherwise, go to Step 2.
STEP 2. Compute

Zn = Up + 2 (un) — T'(vn)].
STEP 3. Compute
Un+1 = (1 — an — ) Un + an 2y,

Set n:=n + 1 and go back to STEP 1.

Algorithm 2. (Mann-type extragradient method with monotonic variable step
size rule)
STEP 0. Let u; € A, 54 > 0, {an} C (a,b) C (0,1 —9,) and {¥,} C (0,1)
satisfies the conditions: lim,_,~ ¥, = 0 and Z:;:i ¥y = o00.
STEP 1. Compute

Vn = Pa(tn — 2,1 (Un))-

If u,, = vy, STOP. Otherwise, go to Step 2.
STEP 2. Compute

Zn = Un + 20 [[(un) — T(vy)].
STEP 3. Compute
Uni1 = (1 — oy — Ip)Unp + Qp2p.

STEP 4. Compute

in < X[t = on it Nuy,) — (v
min o Ty g} o) ~ T £0,

%, otherwise.

(3.1)

An+1 =

Set n :=n 4 1 and go back to Step 1.

2350091-5
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Lemma 3.1. The sequence {s,} generated by (3.1) is decreasing monotonically
and converges to »x > 0.

Proof. Tt is given that I" is Lipschitz-continuous with constant L > 0. Let I'(u,,) #
I'(vy,) such that

X||un — vl Xllun —vnll X
> > = (32)
IT(un) = T(on)ll — Lllun —vnl| — L
The above expression implies that lim,,_, o 26, = 3. O

Algorithm 3. (Mann-type extragradient method with non-monotonic variable step
size rule)

STEP 0. Let u; € A, 54 > 0, x € (0,1) and sequence {p,} satisfying
+oo

a1 Pn < +oo. Moreover, {a,} C (a,b) C (0,1 —¥,) and {J,} C (0,1)
satisfies the conditions:

+oo
nEI-ir—loo Y, =0 and ;ﬂn = +00.

STEP 1. Compute

Vn = PA(Un — 2,7 (un)).

If u, = v,, STOP. Otherwise, go to Step 2.
STEP 2. Compute

Zn = Up + 20 (un) — T'(vn)].
STEP 3. Compute

Unt1 = (1 — ap — Ip)un + Qpzn.

STEP 4. Compute

. XHun - ’Un” i un) — T(v
_ min {%n + ©n, ||P(Un) — F(vn)ll} fF( n) P( n) # 0,

#n + On otherwise.

Set n:=mn + 1 and go back to Step 1.

Hn+1

(3.3)

Lemma 3.2. A sequence {s,} generated by (3.3) is convergent to ¢ and satisfying
the following inequality:

+oo
[ X _
mm{—i,%l} <y <+ P, whereP_ngn.

n=1

2350091-6
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Proof. It is given that I is Lipschitz-continuous with constant L > 0. Let I'(u,,) #
I'(vy,) such that

X”un - 'Un“ x| un —vn|
IT(un) = T(vy)|| = Elun=vnl

L> % (3.4)
By using mathematical induction on the definition of 5,1, we have
. X
mln{z,m} <, <+ P

Let [stn41—3,] = max{0, s6,41 — 56, } and 5,41 —3¢,]” = max{0, —(3tn4+1—30)}.
From the definition of {sz,}, we have

+oo +o0
Z(%n+1 — )T = ZmaX{O, Mpt1 — Mn} < P < 400. (3.5)
n=1 n=1

That is, the series Z::;(%nH — 7,)" is convergent. Next, we need to prove the
convergence of E:zj(%n_*_l — 2,) . Let Z:;(%n+l — 3,)” = 400. Due to the
reason that s, 1 — 36, = (36041 — 36,)" — (56041 — 36,) . Thus, we have

k k k

kg1 — 21 = Y (sny1 — n) = > (Gtng1 — o)t - D (stng1 —2m) " (3.6)

n=0 n=0 n=0

By allowing & — 400 in (3.6), we have 3, — —oo0 as k — +oo. This is
a iontradiction. Due to the convergence of the series ZZ:O(}’“H — »,)T and
Ym0 (#ny1—,)" taking k — +o0 in expression (3.6), we obtain lim,,_, { o 3¢, = 3.
This completes the proof of lemma. 0O

Lemma 3.3. Suppose that I' : ¥ — X satisfies the conditions (T'1)-(T4) and
sequence {u,} generated by Algorithm 1. Then, we have

Iz = w*[I* < llun — w*)I* = (1 = 3 L*)|Jup — va||.

Proof. Since w* € VI(A,T'), we have
122 = w*[I” = [[vn + [T (un) = T(va)] — w*||*
= Jlun = w*[|* + 5|7 (un) = T(vn)||” + 25¢(vn — w*, T(un) — T(vn))
= [lon +un — un — w*||* + 5T (un) — T(vn)||?
+ 25¢(vy, — W*, T(up) — T'(vp))
= |Jon, = unll® + lJun — W*||* + 2(vn — Un, up — w*)

+ 5D (un) = T(vn) > + 226(vn — w*, T(un) = T(vn))
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= [lun —w*|* + lon = uall + 2(vy — Un, Un — W")
+2(Un = Un, Un — n) + 3%||T () — T(vn)||?
+ 25¢(vy — w*, T(uy) — D(vy)).

(3.7)
It provides that v, = Pa[u, — #I'(u,)] and it implies that
(un — 7L (Un) — vy, v —v,) <0, VYo €A, (3.8)
Thus, we have
(Un = n, 0" — vn) < 5e(T(un),w* — vy). (3-9)

Combining expressions (3.7) and (3.9), we obtain

lzn =W I1* < flun = @™ |2 + llon = wn® + 256(0 (wn), & = v0) = 2t — v,
Un = Vn) + 5[0 (un) = D(vn) | = 25T (n) — T(vg), 0" = v3,)
= llun = w** = llun — vn]|® + 3| T (un) — T(w,)||?
— 25¢(T(vp), v — w"). (3.10)
It is given that w* is the solution of the problem (VIP) which implies that
(D(w*),v—w*) >0, VveA.

It implies that
(T(),v —w*) >0, VYveA.
By substituting v = v,, € A, we have
(C(vn), v — w™) > 0. (3.11)
From expressions (3.10) and (3.11), we obtain
12 — w*II* < flun = w1 = un = va|? + 5 L2||up, — v, |2
= [lun — w*[|* = (1 = 52L2)||un, — vn 2. (3.12)
g

Lemma 3.4. Assume that I': ¥ — X satisfies the conditions (I'1)~(T'4). Let {un}
be a sequence is generated by Algorithms 2 and 3. For each w* € VI(A,T), we
have

2
¥
l2n = w** < flun = @I = { 1 =" 52 ) llun — v
J{n-i-l
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Proof. Let w* € VI(A,T) and by definition of z,, we have
12n = @1 = [|vn + 54T (n) = T(v,)] — w*||2
= llon =" I* + 310 (un) — D(va)l|? + 2560 (v, — w*, T(n) — Tv,))
= l[on +un = un — w*|I> + 52 T (up) — D(v,)]?
+ 236, (Un, — W, D(up) — T'(v,))
= llon = unl® + llun = 0*|1* + 2(v — up, up — w*)
360 I (wn) = T(0n)|* + 2360 (0n — w*, T(up) - T(v,))
= |lun — w*||* + ||vn — Un||* + 2(vy, — up, vy — w*) + 2(v, —u

)

Un = Un) + 523 | T(un) = T(vn) |2 + 2564 (vn, — w*, ) — T(vn)).

(3.13)
It is given that v, = Pa [tn — 36,T'(uy)] and indicates that
(Un — 56, (Un) — vp, v — ) <0, YoeA (3.14)
or equivalently for some w* € VI(A,T), we can write
(Un = Vn, " = vn) < 56, (D(tn),w* — vy,). (3.15)

Combining expressions (3.13) and (3.15), we have

lzn = w™I* < llun = &7 + o = un|l? + 250 (T (un), w* — va) — 2t — v,
Un = Un) + 36 [T (un) = T(vn) |* = 2360 (D(1n) — T(vg), w* — v,)
= llun = @ [I* = llun — val|* + 32T (n) — D(v,)||2
— 236, (T'(vp), vy, — wW*). (3.16)
It is given that w* is the solution of the problem (VIP), which implies that

(Lw"),v—w*) >0, VveA.
Due to the property of I" on A, we obtain
(T(w),v—w*) >0, VveA.
Substituting v = v, € A, we have
(T(vn), vn, — w™) > 0. (3.17)
Combining expressions (3.16) and (3.17), we obtain

2
. V4
lzn =™ I° < flun = w*|I? = flun = a2 + % o lun — n®

n+1
112 2 %721 2
= flup —w*[|? = (1 —x 2 ) lun —onl. (3.18)
n+1
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Theorem 3.1. Assume that the conditions (I'1)-(T'4) are satisfied. Then, the

sequence {un} generated by Algorithm 3 converges strongly to an element w* =
Py 1(a.r)(0).

Proof. Since s, — 1 such that there exists a fixed number € € (0,1 — x?) such
that

n—-+4oo )24

22
lim (1—X2 5 >=1—X2>6>0.
n+1

Thus, expression (3.18) implies that

lzn — w*||* < [lun — w*[|?, V7 > mng. (3.19)
It is given that w* € VI(A,T'), we obtain

[unt1 — W™l = I(1 = an — In)un + anzn — w*||
= [|(1 = an = 9p)(un — w*) + an(zn — w*) — Spw?||
< (1= an = 9n)(un — w*) + an(2n — )| + In[lw*||. (3.20)
Following that, we calculate the following:
I = an = Fn)(un — w*) + an (2, — w")||?
= (1= an = 9n)"[lun — 0*||*+a2| 20 — w*|*+2((1 — an — 9y,)
X (Up —w"), on (2, —w™))
< (1= an = 0n)*|lun — " *+aqll2n — w*|P+2an(1 = oy — 9,,)
X fJun = w™[lllzn — " (3.21)
< (1= an = 9n)’llun — w*[*+ai || 2 — w*|?
+an(l—an = On)llun — WP +an(l — an — 9,)|| 20, — w*|2
< (1 —an = )1 = On)llun — WP +an(l = On)||l2n — w*|%. (3.22)
Combining expressions (3.19) into (3.22), we get
(1 = an — In) (Un — w*) + an(zn — w*)||?
< (1= an = 0) (L~ Ou)llun = 0[P (1 = B, g — "

= (1= 95)%|lun —w*|*. (3.23)
Therefore, we have to calculate the following:

1(1 = e = Fn)(un = w") + anlzn — W) < (1= 9,)|Juy — w*]]. (3.24)
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Combining expressions (3.20) and (3.24), we have
[tnt1 — ™| < (1 =Fn)llun — ™[] + nllw]

< max{|up — ™[], [|w*[|}

< max{[|un, — w ], [|w™[|}- (3.25)

Thus, the above expression implies that {u,} is bounded sequence. Next, our aim
1S to prove that the sequence {u,} is strongly convergent. Indeed, by the use of
definition of {u,1}, we have

[tnt1 — w12 = [[(1 = an — 9n)un + anzn — w*|?
= ||(1 —ap — ) (up — W) + ap(zn — w*) — ﬂnw*|l2
= |(1 = o — 9n) (un — w*) + an(zn — w*)||> + 93 [|w*||?

- 2((1 — Qp — 19n)(un - w*) + an(zn - W*)v ﬁnW*> (326)

By the use of expression (3.22), we have

“(1 — O — ﬁn)(un —w") + Qn (2n — W*)Hz
< (1 —an —90)(1 =) |Jun — w*||P+an(l —9,)|2n — w*||?. (3.27)

Combining expressions (3.26) and (3.27) (for some K5 > 0), we have
|unt1 — W*HQ < (1 —an—Un)(1 = n)llun — W*||2+an(1 —n)llzn — W*”2+‘9nK2

< (1—ap—9,)(1 —9,)||u, — w*||2+19nK2

. »;,
tan(1— ) [uun M - (1 2 )nun —vnuﬂ

%n-l—l

= (1- 197%)2”“71 — W*”2 + 9, Ko

~an( = 90) | (136 222 Y fun = ]

%n—i—l

2
< [ter — wW*||* + 9 Ko — an(1 — 9y) {(1 — 2 };" )Hun — vn||2} :
%n-{—l

(3.28)

By following the conditions (I'1)—(I'4), the solution set VI(A,T') is a closed and
convex set. It is given that w* = Py ;A r)(0), and by Lemma 2.2 (ii), we have

(0—-w v —-—w*) <0, VveVIAT). (3.29)
Next, we divide the rest of the proof into the following two parts:
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Case 1. Suppose that there exists a fixed number n; € N such that
|tnt1 —w*|| < Jlun —w*||, Vn>ni. (3.30)

Then limp—, o ||un — w*| exists. From (3.28), we have

< lun - W*HZ + UKo — ”Un+1 - ‘*’*”2-

o
an(l —9y,) [(1 - X2 2 )”un - Un||2

n+1
(3.31)
The existence of limy,_, o [|un, — w*|| and 9,, — 0, we infer that
nligloo |un, — v, || = 0. (3.32)
It follows that
12n = vnll = llvn + 5u[L(un) = T(0n)] = vnl| < 320 L[t = vn])-
The above expression implies that
nEr+noo |z, — vnl|| = 0. (3.33)
It follows that
= 2ol Tl —vall B o, -z =0, (3.3)
It follows from expression (3.34) and 9,, — 0, such that
[unt1 = unll = I(1 = an — Fn)un + anzn — un||
= [[un — Intin + anzn — Qnty — Uy
< allzn = tn] + Bnlfun]. (3.35)
which gives that
|unt1 —un|| =0 asn — +oo. (3.36)

We can also deduce that {v,} and {2,} are bounded. The reflexivity of ¥ and the
boundedness of {u,} guarantee that there exists a subsequence {un,} such that
{tn,} — 14 € ¥ as k — +oo. Since {un, } weakly convergent to @ and due to

limg— 400 |[tny, — Vn, || = 0, the sequence {v,, } also weakly convergent to 4. Next,
we need to prove that 4 € VI(A,T'). By value of v,, we have

Uny, = Paltn, — %nkF(unk)]
that is equivalent to
<'U/nk - %nkr(unk) — Unyy U — vnk) < Oa Vv e A. (337)
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The above inequality implies that
(Uny, = Vnyy ¥ — Vny) < 320, (D(Uny ), 0 — Vpy), Vo €A, (3.38)

Thus, we obtain

1
<unk — Uny, U — v”k) + <F(unk)’ Unp — unk)
%nk

< (T(up,),v — up,), VveA. (3.39)
By the use of limg_, 4 o0 ||Un, — ¥n, || =0 and k — +o0 in (3.39), we have

lijmlnfﬂ“(unk),v —Up,) >0, VveA. (3.40)

Furthermore, it implies that

<F(U'ﬂk)’v - Unk) = <F(Unk) - F(unk)’v - unk) + (F(unk)’v - u”k)
+ (T'(vn, ), Un, — Uny)- (3.41)

Since limg—, oo ||tn, — Vn, || = 0. Thus, we have

kEr_'{loo ”I‘(unk) - F(U'nk)” = 07 (342)

which together with (3.41) and (3.42), we obtain

lkiminfa‘(vnk),v —Up,) 20, YveA. (3.43)

Moreover, let us take a positive sequence {ex} that is decreasing and convergent to
zero. For each {e} there exists a least positive integer denoted by my, such that

(T(tn; ), v — Up,) + € >0, Vi>myg. (3.44)

Since {ex} is decreasing sequence and it is easy to see that the sequence {mz} is
increasing. If there exists a natural number Ny € N such that for all I‘(unmk) # 0,
N, > No. Consider that

N, = M—‘ YV 1m, > Np. (345)
™I (un, P Lo
Due to the above definition, we have
(C(tny, ), Rn, ) =1, Vnm, > No. (3.46)

Moreover, from expressions (3.44) and (3.46) for all n,,, > Ny, we have

(C(Unp, )0+ exRn,, = tp,, ) >0. (3.47)
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By the definition of quasimonotone, we have
(C(v+ xR, ), 0 + Ry, — Un, ) > 0. (3.48)
For all n,,, > Ny, we have
(T'(v),v = Un,, ) > (T(v) —T(v+ €kRn,, ),V + Np, —Un,, )
—€x((v), R, ). (3.49)

Due to {un, } converges weakly to 4 € A with T' is weakly sequentially continuous

on the set A we obtain {I'(u,,)} converges weakly to I'(@). Let I'(%) # 0, which
implies that

IP(@)] < i inf [P (un, ). (3.50)

Since {un,, } C {un,} and limg_, 4o € = 0, we have

: : €
0 Jim e, | = Mm@ = G5V
By letting k — 400 in expression (3.49), we get
(C(v),v—1a) >0, VoveA. (3.52)
Let u € A be arbitrary element and for 0 < s < 1. Consider that
;e = s2u + (1 — 2)4. (3.53)
Then 4, € A and from expression (3.52), we have
x(I'(s.), u — 4y > 0. (3.54)
Hence, we have
(C(ds),u —4) > 0. (3.55)

Let ¢ — 0. Then 4,, — 4 along a line segment. By the continuity of an operator,
I'(@,) converges to I'(4) as » — 0. It follows from expression (3.55) such that

([(@),u—a) > 0. ~ (3.56)

Therefore @ is a solution of problem (VIP). Furthermore, we have

b3

lim sup(w*, w* — u,) = limsup(w*, w
n——400 k—+o00

~Uny) = (W",w* —4) 0. (3.57)

By the use of lim,,_, 1o ||Un+1 — Un|| = 0. We might conclude that

. . % * .
limsup(w®,w* — tp41) < limsup(w”, w™ — uy) + lim sup(w*, u,, — Un+1) < 0.
n—-+00 n—-+00 n—-4o00 —

(3.58)
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Next, assume that ¢, = (1 — an)un + anz,. Thus, we obtain
Unt1 = tn — Vnlp = (1 — Ip)tn — Op(un — tn)
= (1 — In)tn — Inan(un — 2zn), (3.59)
where up — tn = up — (1 — ap)Un — @nzn = an(Un — 2,). Thus, we have
[ns1 = W I = |(1 = In)tn + andn(zn — un) — w*|?
= [I(1 = 9n)(tn — w") + [anBn(2n — un) — 9nw*]||?
< (1= 9n)?|Itn — w*||2+2(nOn(2n — un) — Fpw™,
(1 =9,)(tn — ") + ann(zn — un) — Inw™)
= (1 = 9n)?Itn — w*||24+2(@nOn(2n — Un) — Inw™, tn — Intn
— O (Upn — tn) — w*)
= (1 = n)ltn — w*|?+20n9n (20 = Un, Unt1 — w*)
+ 20, (W, w* — Upy1)

< (1= n)|[tn — W*HZ“‘QO‘nﬂn“zn — Unp||||un+1 — w™||

+ 20, (W*, W — Upt1)- (3.60)
Next, we need to evaluate
[t — w*[|? = |1 = an)un + anzy — w*||?

= (1 = an)(un — w*) + an(2n — w)|*

= (1 - an)?[lun — w*[I*+aillzn — W [P +2((1 = an) (un — w),
an(2n — w"))

< (1= an)?lun — w*[*+aqllzn — W [P +2an(1 — an)llun — w*|
X ||zn — 7|

< (1= an)?flun — w*l*+anllzn — W +an(l — an)llun — w*||?
+an(l - an)|lzn — *|I?

= (1= an)l[tm — [P anlzn — "

< (1 = an)lun — "> +amlun — w*|?

= ||un — w*||*. (3.61)

Combining expressions (3.60) and (3.61) gives that
tmsr = @ [2 < (1= ) llin — 0|+ 20l 2 — wnllfunss — w7

+ 20, (W*, W — Up41)]- (3.62)
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By the use of expressions (3.58), (3.62) and Lemma 2.3, we can derive that [Ju, —
w*|| — 0 as n — +o0.
Case 2. Assume that there is a subsequence {n;} of {n} such that
“uni _W*“ < ||uni+1 _w*Hv VieN.

By the use of Lemma 2.4, there exists a sequence {my} C N ({my} — +00), such
that

lumy = @™l < llumyy —w®[| and  fug — w*|| < [ltm,,, —w*], VEkeN.
(3.63)

By the use of expression (3.31), we have

2.2
X %
amk(]‘ - ﬁmk) [(1 - T3 k> ”umk - ,Umk”2]

%mk—{—l

< e — w1 + Vi K2 = [[tmy1 — w*|%. (3.64)

Due to ¥, — 0, we can deduce the following:

n—lil-lr-loo [ Um, || = 0. (3.65)
It continues from that
”umk+1 — Umy, ” = ”(1 — Omy, — ﬁmk)umk + Om2my, — 'U'mk”

= ”umk - ﬁmkumk T Qmp Zmy, — QmyUm,, — umk“

< Oy, “ka = Uy || + Vmy, ”umk“ — 0. (3.66)

By using similar argument as in Case 1, we get

lim sup(w™, tm,+1 — w*) < 0. (3.67)
k—+o0

By the use of expressions (3.62) and (3.63), we have
U1 — W*”2 < (1 =)ty — W*Hz‘}‘ﬁmk 2ol zm,, — |
X [tmget1 = @[ 420, (W7, W = Uy 41)]
< (U= )ty g = " [P+ O, [200m, |2, =t |
X [[timyer1 = W[ 420m, (0", " = gy 41)]- (3.68)
It follows that
[tm1 — W*II° < 20m ]| 2ms — Ui | [tmpt1 = W [+20m, (", w* — Umj+1)-

(3.69)
Since ¥y, — 0 and ||um, —w*|| is bounded, (3.67) and (3.69), yield

Ilumk-i—l - w*“2 - 07 as k — +00. (370)
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The above implies that

lim |uy - w*||? < lim |wmy+1 — w*||> < 0. (3.71)
As a result, up, — w* and the desired result will be obtained. This completes the

proof of the theorem. u

4. Numerical Experiment

This section describes the numerical performance of the proposed algorithms, in
contrast to some related work in the literature, as well as the analysis of how
variations in control parameters affect the numerical effectiveness of the proposed

algorithms. All computations are done in MATLAB R2018b and run on HP i-b
Core(TM)i5-6200 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let ¥ =I5 be a real Hilbert space with with the sequences of real
numbers satisfying the following condition:

un|? + Jual® + - + un > + -+ < +00. (4.1)
Assume that a mapping T': A — A is defined by
P(u) = (6= lullu, Yues,

where A = {u € ¥ : [ju|| < 3}. We can easily seen that T' is weakly sequentially
continuous on ¥ and the solution set is VI(A,T') = {0}. For any u,v € ¥, we have

IP(w) = T@)| = 115 — lull)u - (5 - [v])o|
= [15(u — v) = f[ull(u ~ v) = (Ju] - [jo])o]
< 5llu = ol| + Julllu — o] + ] - [lo]|o]
< 5llu— o] +3flu - o] + 3Jlu— v
< 11fju —v||.

(4.2)

Hence I' is L-Lipschitz continuous with L = 11. For any u,v € ¥ and let (T(u),v —
u) > 0, such that

(5 = |lull){u,v —u) > 0.
Since ||u|| < 3 and it implies that

(u,v —u) > 0.
Consider that

(L), v =u) = (5 = [|v]|)(v, v — u)

~ vl {v,0 = w) = (5 = o]l {u,v - w)

> (
> 2|lu—v|*>0. (4.3)
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Hence a mapping I' is quasimonotone on A. Let u = (%,0,0,-n,O, +--) and v =
(3,0,0,---,0,---) such that

3
5
(C(u) =T (v),u—v) = (5 — 3> < 0.
Let us consider the following projection formula:

U if ||ul| <3,

Pa(u) =
a(u) 3—”, otherwise.
[[ull

Table 1 shows numerical results. The control conditions are taken in the following
way:

(i) Algorithm 1:

L0 1
—L, n—(n+2)7

(ii) Algorithm 2:

1
Op = 5(1 - Q9n>7 Dn = “un-l-l - un”a

1

— 022, x=044, O, =——
& X (n+2)

1
an = 5(1- Un)y  Dn = [[tuns1 — unll;

(iii) Algorithm 3:

100 1
= 0.22 = 0.44, n = T2, =
1 0 ) X ' (TL n 1)2

1
Qn = 5(1 —Un), Dn=|unt1 — ual.

5. Future Work

It could be interesting to look at the same algorithms and study their convergence
in the context of uniformly convex Banach space.

6. Conclusion

To provide a numerical solution to quasi-monotone variational inequality problems
in real Hilbert space, we developed several modified extragradient-type methods.
Despite the fact that each sequence is produced by a different step size rule, all
sequences produced by the proposed method are strongly convergent to the solution.
The computational results are developed to illustrate the mathematical efficiency
of our methods. These numerical studies have shown that the variable step size has
an effect on the efficiency of the iterative sequence in this respect.
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