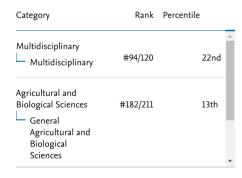


Source details

CiteScore CiteScore rank & trend Scopus content coverage

Improved CiteScore methodology


CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more >

 $0.5 = \frac{110 \text{ Citations to date}}{211 \text{ Documents to date}}$ Last updated on 05 September, 2022 • Updated monthly

CiteScore rank 2021 ①

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site &

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

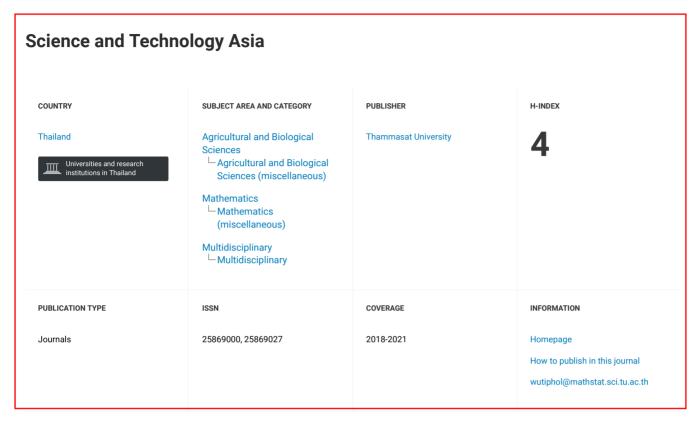
Customer Service

Help

Tutorials

Contact us

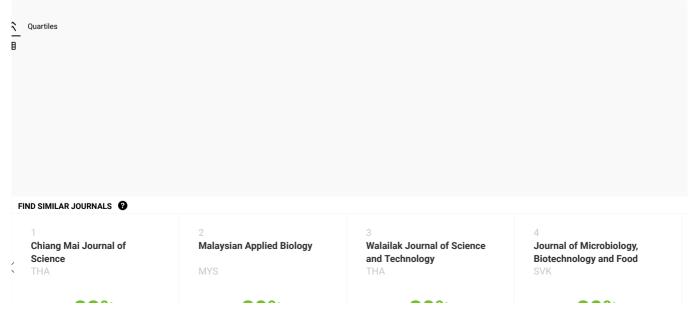
ELSEVIER


Terms and conditions *¬* Privacy policy *¬*

 $\textbf{Copyright} \textcircled{\texttt{C}} \textbf{ Elsevier B.V} \enspace \neg \textbf{ . All rights reserved. Scopus} \textbf{@ is a registered trademark of Elsevier B.V.}$

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \mathbb{Z} .

RELX



SCOPE

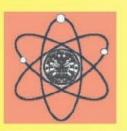
Science & Technology Asia (formerly the International Journal of Science and Technology Thammasat), first published in 1996, is a peer-reviewed, open-access journal containing original research articles, review articles and short communications in areas related to science and technology. Science & Technology Asia is a forum through which scientists and experts in the fields of science and technology share and discuss their quality research. Original research articles, as well as review articles and brief papers in multidisciplinary scientific and technological fields are included in the journal.

Q Join the conversation about this journal

11 July 2022

Dear Asst.Prof.Dr. Saowapa Chumanee

Referring to your submission of the manuscript* entitled "Comparison of Tocopherol Contents in 13 Cold-Pressed Vegetable Oils Extraction from the Mini Screw Press Model T3 by RP-HPLC/FLD" by Sasikarn Panpraneecharoen, Saowapa Chumanee for publication in Science & Technology Asia, we are pleased to inform you that your manuscript has been accepted for publication in Science & Technology Asia Vol.27, No.3, July-September, 2022.


Thank you for your contribution. We look forward to receiving your submission again soon.

Best wishes.

M. S.A.

(Assoc. Prof. Dr. Wutiphol Sintunavarat)

Editor

SCIENCE & TECHNOLOGY ASIA

A Publication of Thammasat University, Thailand

(Formerly Thammasat International Journal of Science and Technology)

ISSN 2586-9000 ISSN 2586-9027

Vol. 27 No.3 July-September

2022

Home / Editorial Team

Editorial Team

Editors-in-Chief

Kesara Na-Bangchang Thammasat University Thailand

Phadungsak Ratanadecho Thammasat University Thailand

Wutiphol Sintunavarat Thammasat University Thailand

Associate Editors

Poom Kumam King Mongkut's University Thailand

of Technology Thonburi

Wararit Panichkitkosolkul Thammasat University Thailand

Editorial Board Members

Andrew Owen University of Liverpool United Kingdom

Ariana Pitea University Politehnica Romania

of Bucharest

Bashir Ahmad King Abdulaziz University Saudi Arabia

Carol Sibley University of Washington United States

of America

Cecilia Maramba-Lazarte UP College of Medicine Philippines

Dhananjay Gopal S.V. National Institute India

of Technology

)/29/22, 4:24 PM	Editorial Team Science & Techn	ology Asia
Franz Pernkopf	Graz University of Technology	Austria
Gao Chen	Chinese Academy of Sciences	China
Hassen Aydi	Imam Abdulrahman Bin Faisal University	Arabia
Hemen Dutta	Gauhati University	India
Janusz Brzdek	Pedagogical University	Poland
Jessada Tariboon	King Mongkut's University of Technology North Bangkok	Thailand
Johann Schinnert	University of Vienna	Austria
Juan Martinez-Moreno	University of Jaen	Spain
Lakshmanan Jeyaseelan	Christian Medical College Vellore	India
Mitsuru Ikeda	Japan Advanced Institute of Science and Technology	Japan
Nguyen Van Dung	Dong Thap University	Vietnam
Paul Haddad	University of Tasmania	Australia
Peerasak Intarapaiboon	Thammasat University	Thailand
Penwisa Pisitsak	Thammasat University	Thailand
Saifon Chaturantabut	Thammasat University	Thailand
Sarute Ummartyotin	Thammasat University	Thailand
Sotiris K. Ntouyas	University of Ioannina	Greece
Suthep Suantai	Chiang Mai University	Thailand
Wai Shiu Fred Wong	National University of Singapore	Singapore
	or omgapore	นโยบายการคุ้มครองข้อมูลส่วนบุคคล

Xianghai CAI Kunming Chinese Academy of Sciences China

Yeol-je Cho Gyeongsang National University Korea

Research Administration Division, Office of the Rector Building Thammasat University, Rangsit Campus 99 Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand Email: sciencetechnologyasia@gmail.com

Home / Archives / Vol.27 No.3 (July-September 2022)

Vol.27 No.3 (July-September 2022)

Published: 2022-09-29

Synthesis of Magnetic Nanoparticles under Ambient Temperature from Single Iron Salts and Characterization

Belal Hossain Sikder, Shah Samiur Rashid, Mohd Hasbi Bin Ab. Rahim, Aizi Nor Mazila Binti Ramli, Rashidi Bin Roslan

19-26

Comparison of Tocopherol Contents in 13 Cold-Pressed Vegetable Oils Extracted from the Mini Screw Press Model T3 by RP-HPLC/FLD

Sasikarn Panpraneecharoen, Saowapa Chumanee 27-36

Influences of Operational Parameters on Methylene Blue Degradation in the Suspension Photoreactor Using Aeroxide® P25/TiO2 as a Photocatalyst

Khatcharin Wetchakun, Natda Wetchakun 37-54

นโยบายการคุ้มครองข้อมูลส่วนบุคคล

Reducing Acrylamide in Roasted Coffee Beans by L-Asparaginase Using Ultrasound

Thi Hoan Pham, Thi Hoan Pham, Minh Hao Hoang 55-68

Removal of Copper from spiked Aqueous Solution Using Activated Carbon of Rice Husk

Shahin Azad, Mohd Sukri Hassan, M. Shahinuzzaman, Syaza Azhari 69-84

Oscillation of Full and Partial Ring Pendulum: Physics Laboratory Experiment

Jiraporn Poonyawatpornkul, Kotchakorn Mangmee, Onuma Methakeson 85-94

Flow-Injection Spectrophotometric System for Sequential Determination of Sugar and Orthophosphate in Soft Drinks and Sugarcane Juice

Kamonthip Sereenonchai, Phanatcha Atsawawiphart, Jiraporn Duangjan, Duangjai Nacapricha, Siriwit Buajarern

95-108

An Inertial Projection-Like Method for Solving a Generalized Nash Equilibrium Problem

Premyuda Dechboon, Poom Kumam, Parin Chaipunya 109-120

Dolomite Characteristic from Natural Material and its Application as an Antibacterial

Lydia Rohmawati, Setya Permata Sholicha, Istiqomah, Woro Setyarsih 121-131

The Number of Integers Divisible by a^k Except a^(k+l) b

Yanapat Tongron , Kanyaphak Paikhlaew 132-136

Sliding Window Input on Long Short-Term Memory Networks for Bed Position Classification

Sakada Sao, Virach Sornlertlamvanich

137-151

☑ PDF

Development of a Serological Dilution Microfluidic Chip for Immunoassay Applications

Therdthai Thienthong, Ekachai Juntasaro, Numfon Khemthongcharoen, Witsaroot Sripumkhai, Nongluck Houngkamhang, Pattaraluck Pattamang, Mayuree Chanasakulniyom, Nithi Atthi, Chamras Promptmas, Panapat Uawithya, Wutthinan Jeamsaksiri

152-174

☑ PDF

Influence of MAP Recovered from Swine Wastewater as a Fertilizer Source on the Growth and Nutrition of Maize Plant

Hiep Nguyen Trung, Nhut Huynh Tan, Tam Tran Thi Minh, Han Le Truong Ngoc, Lien Nguyen Thi Kim, Nhi Nguyen Thi Tuyet, Van Phan Thi Thuy, Tuyet Ngo Nguyen Xuan, Phan Nguyen Thi Hong 175-185

☑ PDF

3D Numerical Analysis of Focused Microwave Ablation for the Treatment of Patients with Localized Liver Cancer embedded with a Vertical and Horizontal Blood Vessel

Wutipong Preechaphonkul, Phadungsak Rattanadecho 186-203

☑ PDF

A New Discretization Technique for Enhancing Discrete Particle Swarm Optimization's Performance

Choosak Pornsing, Noppakun Sangkhiew, Pheera Sakonwittayanon, Peerapop Jomtong, Shunichi Ohmori 204-215

□ PDF

Comparative Analysis and Validation of Selected Explicit Equation Models for Determination of Darcy Friction Factor to Estimate Major Head Loss for a Pressurized Flow System

Aanandsundar Arumugam, Haben Kibrom, Medhanie Gebreamlak, Merhawit Teame, Michael Mengstu 216-235

∠ PDF

Microwave Extraction of Oligosaccharides from Grey Oyster Mushroom by Microwave Facilitated Hydrolysis

Somruthai Phothiphiphit, Wanwipa Siriwatwechakul, Siwarutt Boonyarattanakalin 236-246

Developing Internet of Things (IoT) Device for Saving Children from Being Left in a Car

Vorrawat Assawakanchana, Nattadon Pannucharoenwong, Snunkhaem Echaroj, Phadungsak Rattanadecho, Boy Xayavong, Wachirathorn Janchomphu, Kammal Kumar Pawa, Tanita Suepa 247-259

A Preliminary Study on the Effects of Vitexin on the Promotion of Hair Growth in Mice

Rueangrit Siriphanit, Jitlada Meephansan, Pinyadapat Areerob, Werayut Yingmema, Raksawan Deenonpoe, Hok Bing Thio

260-267

Research Administration Division, Office of the Rector Building Thammasat University, Rangsit Campus 99 Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand Email: sciencetechnologyasia@gmail.com

Science & Technology Asia

Vol.27 No.3 July - September 2022

Page: [27-36]

Original research article

Comparison of Tocopherol Contents in 13 Cold-Pressed Vegetable Oils Extracted from the Mini Screw Press Model T3 by RP-HPLC/FLD

Sasikarn Panpraneecharoen, Saowapa Chumanee*

Division of Chemistry, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

> Received 13 July 2020; Received in revised form 21 July 2021 Accepted 11 July 2022; Available online 29 September 2022

ABSTRACT

Optimization and validation of reversed-phase high-performance chromatography with fluorescence detection (RP-HPLC/FLD) for the determination of tocopherols $(\delta, \beta+\gamma, \text{ and } \alpha)$ were studied. In a simple sample preparation, oils were diluted in ethanol without saponification and injected directly onto Zorbax Eclipse plus C18. Acetonitrile and methanol (70:30) mixture was used as a mobile phase with a flow rate of 1 mL/min. Fluorescence detection was operated at 296 nm of excitation wavelength and 330 nm of emission wavelength. Tocopherols were separated at 30 °C in less than 15 min after injection. The method showed to be good linear ($r^2 > 0.999$). Mean recoveries were 97.6-100.7%, with intra- and inter-day RSD less than 3.79 and 4.11%, respectively. The detection limits and quantification limits of the method were 0.08-0.21 and 0.23-0.71 µg/mL. The technique had been applied to analyze tocopherols in thirteen cold-pressed vegetable oils extracted using a mini screw press, which were virgin oils. The results showed statistically significant differences (P < 0.5) between the kinds of oil sample. The total tocopherols content ranges from 3.62 mg/kg in Japanese pumpkin oil to 1890.71 mg/kg in sacha inchi oil.

Keywords: Cold-pressed oil; HPLC; Screw press; Tocopherols; Vegetable oil

1. Introduction

Cold-pressed vegetable oils that are not heat-treated or chemically extracted are 100% natural products (virgin oils) with characteristics of intense taste, color, and unique aroma [1, 2]. There are two types of cold oil extraction machines: hydraulic press and screw press. Compared to a hydraulic press, the advantages of a screw press are its slight yield, and its continuous

mode of operation [3]. The cold press oil production technique is a simple and environmentally friendly method without using chemicals, resulting in nutritious and safe products for human health [4]. Vegetable oils produced this way are good sources of tocopherols, carotenoids and polyphenols, chlorophylls, and antioxidants [5-7]. Tocopherols (Ts) are a fat-soluble E. compound vitamin composed of four isomers (α -tocopherol, β tocopherol, γ -tocopherol, and δ -tocopherol). structure of tocopherols has a chromanol ring and a saturated phytyl tail, and different isoforms at 5- or 7- position of the chromanol ring with either an H or a CH₃ group as shown in Fig. 1. Tocopherols are potent antioxidants [8, 9], prevent rancidity [10], have the capability to reduce the risk of cancer [11], and reduce inflammatory angiogenesis [12]. Vitamin E has also led to the development of numerous new formulations in cosmetics and skin care products [13]. The principal dietary sources of tocopherols are vegetable oils such as corn, soybean, sesame, and cottonseed. γ-T is the most abundant form of tocopherol in the US diet, being three to five times more abundant than α -T and δ -T, whereas β -T is present only in minute amounts [14]. Tocopherol isomer has the most antioxidant activity, which is α -T [15-17].

High-performance liquid chromategramphy (HPLC) techniques commonly have been used for the determination of tocopherols, which can employ either normal-phase (NP) or reversed-phase (RP) column, with fluorescent and ultraviolet detector [18-21]. The fluorescent detector is preferred over the ultraviolet detector in analyzing tocopherols in samples because of its specificity and sensitivity [22]. NP-HPLC provides separation ofall tocopherols, while RP-HPLC cannot separate the β -T and γ -T, which are coeluted. Nevertheless, the RP-HPLC has advantages over NP-HPLC, because of fast equilibration, reproducibility of retention time, low volatility of solvents, good selectivity, and reduction of the use of hazardous solvents [23-25]. Several methods for sample preparation have been studied for the determination of tocopherol content in samples, such as direct solvent [26-28], pressurized liquid extraction extraction [29, 30], QuEChERS extraction ultrasound-assisted saponification [32], and matrix solid-phase dispersion [33]. certain advantages There were disadvantages to each of the extraction methods. So, the choice of an extraction method for the release of tocopherols depends on the physical and chemical characteristics of the sample and also on the available resources and instruments [34].

$$\begin{array}{c} R_1 \\ HO \\ \hline \\ R_2 \\ \hline \\ CH_3 \\ \hline \\ \alpha\text{-}T\text{:}\ R_1\text{=}\ CH_3 \\ \\ \alpha\text{-}T\text{:}\ R_1\text{=}\ CH_3 \\ \\ \beta\text{-}T\text{:}\ R_1\text{=}\ CH_3, R_2\text{=}\ CH_3 \\ \\ \beta\text{-}T\text{:}\ R_1\text{=}\ H \\ \\ \gamma\text{-}T\text{:}\ R_1\text{=}\ H \\ \\ R_2\text{-}\ CH_3 \\ \\ \delta\text{-}T\text{:}\ R_1\text{=}\ H, R_2\text{-}\ H \end{array}$$

Fig. 1. The structure of tocopherols.

The aim of this work was the comparison of tocopherol contents in cold-pressed vegetable thirteen oils extracted from the mini screw press model T3. Moreover, we optimized a quick and simple method for routine analysis of δ -T, $(\beta + \gamma)$ -T, and α -T in vegetable oils by RP-HPLC with fluorescence detection, avoiding saponification step and using environmentally friendly solvent. The coldpressed vegetable oil samples were diluted in ethanol and sonicated. An aliquot of the samples was injected directly into a C18 column.

2. Materials and Methods

2.1 Reagents and standard preparation

The analytical standards of tocopherols (α -T, β -T, γ -T, and δ -T) were purchased from Sigma-Aldrich (St.Louis,

MO, USA) and stored at -20 °C until use. Acetonitrile was purchased from J.T. Baker (Deventer, The Netherlands). Methanol and ethanol were obtained from Carlo Erba (Milan, Italy), all of HPLC grade. Purified water was produced from the arium® pro ultrapure water system (18.2 M Ω cm, Sartorius, Germany).

The standard stock solutions of α -T, β -T, δ - T (1 mg/mL), and γ -T (0.1 mg/mL) were prepared in ethanol and stored at -20 °C protected from light. The working standard solutions were made by dissolving the stock solutions in ethanol at appropriate concentration before use and all solutions stored at 4 °C.

2.2 Cold-pressed vegetable oils and sample preparation

Thirteen samples of cold-pressed vegetable oils in this study obtained from Nature health and innovation Co., Ltd. (Saraburi, Thailand) include sacha inchi volubilis). chaulmoogra (Plukenetia (Hydnocarpus anthelminthicus). chilli pepper (Capsicum annuum). hemp (Cannabis sativa), almond (Prunus dulcis), avocado (Persea americana). neem (Azadirachta indica), moringa (Moringa oleifera), flaxseed (Linum usitatissimum), sesame (Sesamum indicum), black cumin (Nigella sativa), Japanese pumpkin (Cucurbita moschata), and coconut (Cocos nucifera). All samples belong to customers were took seeds for cold-pressed oil extraction by Mini Screw Press Model T3 that was produced by Thai people for small and medium enterprises (SME). The mini screw press consists of a press system and oil pan which were manufactured from stainless steel (food grade) and has a dimension (L×W×H) of 650×280×410 mm, the motor of 200 w, the ratio of 1:50, power of 220 V, and weight of 17 kg (Fig. 2). The screw rotated at a constant speed of 30 rpm. Sample seeds, about 0.5-2 kg, were poured into the hopper and the screw pressed the grain in the pressing chest, then extracted oil dripped on the pan into the container. The extracted crude was stored in a container to settle for 24 hr. The crude oil was filtered through oil filter paper to separate other fine particles in the oil and then kept at room temperature.

Fig. 2. The mini screw press (Model T3) for cold-pressed vegetable oils.

The sample preparation for determining tocopherol content in coldpressed vegetable oils was performed according to Tahoun and Sheata [21] with slight modifications. A 0.1 g oil sample was dissolved in 10 mL of ethanol in a brown flask with a screw cap to avoid excessive exposure to light and air. The sample solution was sonicated in an ultrasonic bath for 5 min, filtered through a 0.22 µm PTFE filter membrane, and then the filtrate injected into the HPLC system.

2.3 Instrument

Chromatography was performed using Agilent 1260 Infinity HPLC system (Agilent Technology, USA) consisting of quaternary pump VL (G1311C), degasser (G1322A), autosampler (G1329B), thermostatted column compartment (G1316A), fluorescence detector (G1321C) and software OpenLab CDS ChemStation Edition C.01.07 for system control and data collection.

2.4 Chromatographic condition

The chromatographic separation of tocopherols was achieved by RP-HPLC using a ZORBAX Eclipse Plus C18 (4.6×150 mm, 3.5 μm; Agilent Technology) with guard column ZORBAX Eclipse Plus C18 (4.6×5 mm, $1.8 \mu m$). The mobile phase was a mixture of acetonitrile and methanol (70:30, v/v) under isocratic elution at a flow rate of 1 mL/min with a total runtime of 17 minutes. The injection volume was 10 µL and the column temperature was regulated at 30 °C. The mobile phase was filtered through a 0.45 PTFE membrane filter before use. The fluorescence detector was set at excitation wavelength 296 nm and emission wavelength 330 nm.

2.5 System suitability tests

System suitability testing (SST) ensures that the complete testing system (including instrument, reagents, columns, and analysts) is suitable for the intended application [35]. SST was carried out by injecting standard working solutions of tocopherols, each at concentrations of 1 μ g/mL in six replicates. Parameters evaluated include retention time, peak area, number of theoretical plates, retention factor, resolution factor, and tailing factor

2.6 Method validation

The HPLC-FLD method for the determination of tocopherols was validated according to the AOAC (2012) guideline [36]. The following validation characteristics were evaluated: linearity, the limit of detection (LOD), the limit of quantification (LOQ), accuracy, and precision.

2.6.1 Linearity and range

The linearity was constructed for each tocopherol in the range of 0.1-10 $\mu g/mL$. The concentration of each standard solution was prepared at level of 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, and 10.0 $\mu g/mL$. The calibration curves were plotted as the concentration of α -T, $(\beta+\gamma)$ -T, and δ -T

versus the peak area at each level for three days. The coefficient of determination (r²), slope, and intercept value were determined and the statistic was evaluated.

2.6.2 Limits of detection and limit of quantification

The limits of detection (LOD) and limits of quantification (LOQ) of α -T, (β + γ)-T, and δ -T were calculated by the following equation according to an AOAC (2012) guideline [36]: LOD = 3.3 σ /S and LOQ = 10 σ /S, respectively, where, σ is the standard deviation of the response and S is the slope of the linear regression equations.

2.6.3 Precision and accuracy

The intra- and inter-day precision and accuracy were assessed by recovery and relative standard deviation (RSD) values, respectively. The precision and accuracy were studied by spiking of α -T, (β + γ)-T, and δ -T with 3 levels concentrations into avocado oil sample at 0.5, 1.0 and 2.0 $\mu g/mL$.

2.7 Tocopherols quantification

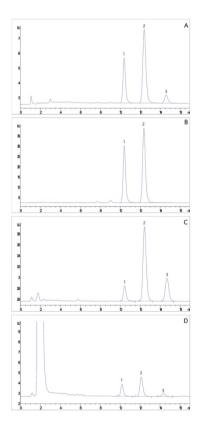
The α -T, $(\beta+\gamma)$ -T, and δ -T contents in cold-pressed vegetable oils were identified using the retention time parameter. The tocopherols concentration in theses samples (each sample injected in three times injection volume 10 μ L) were estimated by measuring average peak area and were quantified by the use of linear regression from the calibration curve. Results were given in milligrams of each tocopherol per kilogram of oil (mg/kg), calculation as follows:

&'(')*+,'-./
$$\frac{!"}{0"} \neq \frac{\#\%\%}{1}$$

where C = tocopherol concentration in sample, determined for calibration curve, mg/L,

V = volume of sample solution, L, W = weight of oil sample, kg.

2.8 Statistical analysis


All samples were analyzed in triplicate and results expressed as mean \pm standard deviation (SD). Data sets were evaluated using one-way analysis of variance (ANOVA). A Duncan's multiple range test was used to determine significant difference. The level of significance was set at p<0.05. Statistical analysis was performed by using a SPSS package (SPSS 22.0 for windows, IBM Singapore Pte Ltd).

3. Results and Discussion

3.1 Optimization of tocopherol separation

The chromatographic conditions for tocopherols in this work was evaluated using RP-column. An isocratic elution program was used to achieve the separation. The mobile phase consisted of acetonitrile and methanol (70: 30, v/v). Typically, the RP-HPLC columns were unable to separate the β -T and γ -T isomers, so they appeared the same peak. Other authors found similar results with different protocols for sample preparation and HPLC separation of tocopherols [32, 33, 37, 38]. Moreover, RP-HPLC was preferred over normal-phase systems due to the reproducibility of equilibration and retention time, fast robustness of reversed-phase columns over other stationary phases [19].!Irakli et al., 2012 found that the column PerfectSil Target ODS 3, 3 µm, 250×4.6 mm could be partially separated but the separation required a long retention time [25]. The chromatographic separation of tocopherols in standard solution is shown in Fig. 3(A). The total run time was less than 16 min. The retention times of δ -T, $(\beta+\gamma)$ -T, and α -T were about 10.44, 12.45, and 14.56 min, respectively. Table 1 shows the values of system suitability parameters of tocopherols at a concentration of 1 mg/mL. Retention time (R_t) and peak area were very reproducible, with the RSD (%) being below 1%. In the case of theoretical plates (N), they were above 2000 for all tocopherols, which leads to the conclusion

that the chromatographic column was efficient enough. Retention factor (k). selectivity factor (α) , and resolution factor (R_s) were above 2, indicating good separation of tocopherols. In the case of peak asymmetry, the good Gaussian shape of the peaks could be macroscopically from chromatogram. the Additionally, the tailing factor was below 2 for all retained peaks ranging from 1.16 for α -T to 1.23 for δ -T, indicating good peak symmetry. The results were acceptance criteria according to AOAC (2012)guideline [36].

Fig. 3. Chromatogram of the (A) tocopherols standard solution at 1 μ g/mL, (B) sacha inchi oil, (C) moringa oil, and (D) chili pepper oil; 1: δ -T (10.44 min.); 2: (β + γ)-T (12.45 min.); 3: α -T (14.56 min.).

Table 1. Term of system suitability test was carried out by injection solution of each

tocopherol at concentration of 1 µg/mL.

Tocopherol	R_t	%RSD	Peak area	%RSD	Theoretical	Retention	Selectivity	Resolution	Tailin
	(<u>+</u> SD)		(<u>+</u> SD)		plates	factor	Factor	factor	g
					(N)	(k)	(a)	(R_s)	factor
δ-Τ	10.44 <u>+</u> 0.07	0.68	56.30 <u>+</u> 0.96	0.73	23016	8.40			1.23
$(\beta+\gamma)$ -T	12.45 <u>+</u> 0.10	0.77	119.61 <u>+</u> 0.95	0.79	16272	10.22	1.22	6.06	1.18
α-T	14.56 <u>+</u> 0.07	0.48	14.32 <u>+</u> 0.96	0.82	19851	12.12	1.19	2.62	1.16

3.2 Method validation

The linear correlation was found between the peak areas and concentration of δ -T, $(\beta+\gamma)$ -T, and α -T. The results for linear regression equations and of determination coefficient (r^2) summarized in Table 2. The coefficient of determination values (r²>0.9999) shows that regression analysis has had a good linearity. The limits of detection (LOD) and limits of quantification (LOO) values were found to be 0.08 and 0.23 μ g/mL for δ -T, 0.09 and $0.28 \mu g/mL$ for $(\beta+\gamma)-T$, and 0.21 and 0.71ug/mL for α-T, respectively. The data in Table 2 shows that the method was sensitive enough to detect concentrations for the analyzed compound cold-pressed in vegetable oil samples.

Table 2. Analytical characteristics of the method.

standards	Regression	\mathbf{r}^2	LOD	LOQ
standards	equations	1	$(\mu g/mL)$	$(\mu g/mL)$
σ-Т	y = 53.55x + 2.16	1.0000	0.08	0.23
$(\beta+\gamma)$ -T	y=56.28x+6.71	0.9999	0.09	0.28
α-T	y=11.94x+1.88	0.9996	0.21	0.71

The intra- and inter-day precision and accuracy results spiked standard into avocado oil sample were evaluated at three different concentrations at 0.5, 1.0 and 2.0 $\mu g/mL$ for α -T, $(\beta+\gamma)$ -T, and δ -T with three replicate injections per day and dose three days. The results are presented in Table 3. Excellent repeatability and satisfactory inter-day precision were noticed with RSD values lower than 3.79 and 4.11%, respectively, while mean recoveries were between 97.7 and 100.7% for the selected levels.

Table 3. The precision and accuracy data in spiked avocado oil sample (n=3).

Tocopherol	Sample blank	Added	Found	Recovery	Mean	RSD(%)	
	$(\mu g/mL)$	$(\mu g/mL)$	$(\mu g/mL)$	(%)	Recovery (%)	Intraday	Interday
δ-Т	0.1377 <u>+</u> 0.0028	0.50	0.6276 <u>+</u> 0.0107	98.0	97.7	0.82	2.19
		1.00	1.1105 <u>+</u> 0.0300	97.3		3.79	3.09
		2.00	2.0961 ±0.0379	97.9		0.91	1.94!
$(\beta + \gamma)$ -T	0.0990 <u>+</u> 0.0026	0.50	0.5871 <u>+</u> 0.0205	97.6	97.6	3.09	4.11
,		1.00	1.0861 <u>+</u> 0.0160	98.7		1.01	1.62
		2.00	2.0299 ± 0.0270	96.5		1.40	1.40
α-Τ	nd!	0.50	0.5009 ± 0.0182	100.2	100.7	3.55	3.63
		1.00	1.0460 <u>+</u> 0.0280	104.6		3.65	2.77
		2.00	1.9438 <u>+</u> 0.0265	97.2		1.02	1.36

Note: nd: not detected

3.3 Quantification of tocopherols in coldpressed vegetable oils

The optimized method was applied to the determination of tocopherols in thirteen cold-pressed vegetable oils extracted from the mini screw press model T3. There were no interferences for the separation of tocopherol in the sample. Peak identification was performed by comparing the retention times with those of the standards. Representative chromatograms were obtained from the sample were illustrated in Fig. 4 (B-D). Sacha inchi oil, moringa oil and chili pepper oil chromatograms were selected as an example. Table 4 shows that the content of individual and total

tocopherols in thirteen cold-pressed vegetable oils are significant (p<0.05). The total tocopherols content ranges from 3.62 mg/kg in Japanese pumpkin oil to 1890.71 mg/kg in sacha inchi oil. No tocopherols

were detected in coconut oil. According to the previous publication, the coconut oils' α -T and δ -T were not detected, and $(\beta+\gamma)$ -T was valued below at 0.04 mg/kg [39].

Table 4. Tocopherol content for thirteen cold-pressed vegetable oils (mg/kg).

Oils	δ-Τ	(β+γ)-Τ	<i>α</i> -Τ	Total tocopherol
Sacha inchi (Plukenetia volubilis)	781.50 <u>+</u> 2.35 ^a	1109.21 <u>+</u> 5.92 ^a	nd	1890.71 <u>+</u> 7.93 ^a
Chaulmoogra!(Hydnocarpus anthelminthicus)	100.41 <u>+</u> 2.02 ^b	48.53 ± 2.00^{f}	nd	148.94 <u>+</u> 3.91°
Chilli Pepper (Capsicum annuum)	33.97 <u>+</u> 1.41°	54.06 <u>+</u> 1.91°	46.77 <u>+</u> 4.95°	134.80 <u>+</u> 7.35 ^f
Hemp (Cannabis sativa)	25.21 <u>+</u> 2.01 ^d	487.50 <u>+</u> 2.83 ^b	nd	512.71 <u>+</u> 4.78 ^b
Almond (Prunus dulcis)	24.59 <u>+</u> 0.01 ^d	39.17 <u>+</u> 0.05 ^g	197.74 ± 8.08^{a}	261.49 <u>+</u> 7.98 ^d
Avocado (Persea americana)	12.60 <u>+</u> 0.26 ^e	12.63 <u>+</u> 0.67 ⁱ	nd	25.23 <u>+</u> 0.79 ^j
Neem (Azadirachta indica)!	$6.76 \pm 0.65^{\rm f}$	27.73 ± 1.78^{h}	29.75 <u>+</u> 2.62 ^d	64.25 <u>+</u> 5.03 ^h
Moringa (Moringa oleifera)	5.42 ± 0.21^{fg}	39.45 ± 0.83^{g}	67.15 <u>+</u> 1.58 ^b	112.03 <u>+</u> 2.47 ^g
Flaxseed (Linum usitatissimum)	4.14 ± 0.34^{g}	243.79 ± 0.87^{d}	21.46 <u>+</u> 0.74 ^e	269.38 ± 1.22^{d}
Sesame (Sesamum indicum)	nd	456.81 <u>+</u> 8.47°	nd	456.81 <u>+</u> 8.47°
Black cumin (Nigella sativa)	nd	40.78 ± 0.61^{g}	nd	40.78 ± 0.61^{i}
Japanese Pumpkin (Cucurbita moschata)	nd	3.62 <u>+</u> 0.09 ^j	nd	3.62 ± 0.09^{k}
Coconut (Cocos nucifera)	nd	nd	nd	nd

Note: Value are express as means \pm SD (n=3) in mg/Kg. Value in the same column with the same superscript letter are not significantly different (Duncan, p> 0.05). ND: not detected.

The mean δ -T of cold-pressed vegetable oils in descending order was sacha inchi > chaulmoogra > chilli pepper > hemp ≥ almond > avocado > neem ≥ moringa ≥ flaxseed and was not detected in sesame, black cumin, Japanese pumpkin, The mean $(\beta+\gamma)$ -T in and coconut. descending order was sacha inchi > hemp > sesame > flaxseed > chilli pepper > chaulmoogra > black cumin ≥ moringa ≥ almond > neem > avocado > Japanese pumpkin. The results of mean α -T were found in 5 cold-pressed vegetable oils and the amounts in descending order were almond > chilli pepper > moringa > neem > flaxseed. In this study, the highest δ -T and $(\beta+\gamma)$ -T levels were found in sacha inchi as 781.50 and 1109.21 mg/kg, respectively. In contrast, α-T was not detected in sacha inchi similarly in previous literature [40]. It was

found that the amount of α -T in almond oil was the highest, equal to 197.74 mg/kg. However, comparing the quantity tocopherols in each vegetable oil with previous research differences would depend on the raw materials' countries of origin, different cultivars, and geographical and growing conditions [41].

4. Conclusion

Tocopherols are important phytochemical compounds with antioxidant activity and potential benefits for human health. This study presents a simple, fast, accurate, and precise method for the determination of tocopherols in thirteen cold-pressed vegetable oil extracted with mini screw press model T3 using RP-HPLC with fluorescence detection. The method proposed can be useful for the routine

analysis of δ -T, (β + γ)-T, and α -T in coldpressed vegetable oils, and the results show that the lowest and highest of the total tocopherols were Japanese pumpkin oil and sacha inchi oil, respectively.

Acknowledgements

Phetchabun Rajabhat University (Grant PCRU_2562_KN025), and Science Center laboratory, Faculty of Science and Technology, Phetchabun Rajabhat University provided partial support of this research. The authors acknowledge Nature health and innovation co.,Ltd. for cold-pressed vegetable oils and Miss Thanyalak Waiyawut and Mr. Jirapan Ketsuwan for assistance in this research

References

- [1] Matthäus B, Spener F. What we know and what we should know about virgin oils a general introduction. Eur J Lipid Sci Technol 2008;110:597-601.
- [2] Veličkovska SK, Brühl L, Mitrev S, et al. Quality evaluation of cold-pressed edible oils from Macedonia. Eur J Lipid Sci Technol 2015;117:2023-35.
- [3] Ionesu M, Vladut V, Ungureanu N, et al. Methods for oil obtaining from oleaginous materials. Ann Univ Craiova-Agric Montanology Cadastre Ser 2017;46:411-7.
- [4] Çakaloğlu B, Özyurt VH, Ötleş S. Cold press in oil extraction. A review. Холодне Пресування У Виробництві Олії Огляд 2018;7(4):640-54.
- [5] Wroniak M, Krygier K, Kaczmarczyk M. Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Pol J Food Nutr Sci 2008;58(1):85-9.
- [6] Muangrat R, Veeraphong P, Chantee N. Screw press extraction of sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. J Food Process Preserv 2018;42:1-10.

- [7] Al Juhaimi F, Özcan MM, Ghafoor K, et al. Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J Food Sci Technol 2018;55(8):3163-73.
- [8] Jiang Q. Natural forms of vitamin E: metabolism, antioxidant and antiinflammatory activities and the role in disease prevention and therapy. Free Radic Biol Med 2014;72:76-90.
- [9] Lee GY, Han SN. The role of vitamin E in immunity. Nutrients 2018;10:1614. DOI: 10.3390/nu10111614.
- [10] Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007;43:4-15.
- [11] Das Gupta S, Suh N. Tocopherols in cancer: an update. Mol Nutr Food Res 2016;60(6):1354-63.
- [12] Wells SR, Jennings MH, Rome C, et al. α-, γ- and δ-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells. J Nutr Biochem 2010;21:589-97.
- [13] Thiele JJ, Hsieh SN, Ekanayake-Mudiyanselage S. Vitamin E: critical review of its current use in cosmetic and clinical dermatology. Dermatol Surg 2005;31:805-13.
- [14] Jiang Q, Christen S, Shifenaga MK, et al. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001;74:714-22.
- [15] Gimeno E, Castellote AI, Lamuela-Raventós RM, et al. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. J Chromatogr A 2000;881:251-4.
- [16] Cerretani L, Lerma-García MJ, Herrero-Martínez JM, et al. Determination of tocopherols and tocotrienols in vegetable

- oils by nanoliquid chromatography with ultraviolet—visible detection using a silica monolithic column. J Agric Food Chem 2010:58:757-61.
- [17] Sunarić S, Lalić J, Spasić A. Simultaneous determination of alphatocopherol and alpha-tocopheryl acetate in dairy products, plant milks and health supplements by using SPE and HPLC method. Food Anal Methods 2017;10:3886-901.
- Jedlicka A. Klimes J. Determination of [18] water-and fat-soluble vitamins different matrices using highperformance chromatography. liquid Chem Pap-SLOVAK Acad 2005;59(3):202-22.
- [19] Bele C, Matea CT, Raducu C, et al. Tocopherol content in vegetable oils using a rapid HPLC fluorescence detection method. Not Bot Horti Agrobot Cluj-Napoca 2013;41(1):93-6.
- [20] Bakre SM, Gadmale DK, Toche RB, et al. Rapid determination of alpha tocopherol in olive oil adulterated with sunflower oil by reversed phase high-performance liquid chromatography. J Food Sci Technol 2015;52(5):3093-8.
- [21] Tahoun I, Shehata A. Development and validation of simple reversed phase method for separation and quantification of tocopherols in edible oils. Egypt J Chem 2018;61(3):461-8.
- [22] Lu D, Yang Y, Li YX, Sun C. Analysis of tocopherols and tocotrienols in pharmaceuticals and foods: A critical review. Current Pharmaceutical Analysis 2015;11:66-78.
- [23] Cert A, Moreda W, Pérez-Camino MC. Chromatographic analysis of minor constituents in vegetable oils. J Chromatogr A 2000;881:131-48.
- [24] Irakli MN, Samanidou VF, Papadoyannis IN. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols

- and carotenoids in cereals after solidphase extraction. J Sep Sci 2011;34:1375-82.
- [25] Irakli MN, Samanidou VF, Papadoyannis IN. Optimization and validation of the reversed-phase high-performance liquid chromatography with fluorescence detection method for the separation of tocopherol and tocotrienol isomers in cereals, employing a novel sorbent material. J Agric Food Chem 2012;60:2076-82.
- [26] Gliszczyńska-Świgło A, Sikorska E. Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J Chromatogr A 2004;1048:195-8.
- [27] Chen H, Angiuli M, Ferrari C, et al. Tocopherol speciation as first screening for the assessment of extra virgin olive oil quality by reversed-phase high-performance liquid chromatography/fluorescence detector. Food Chem 2011;125:1423-9.
- [28] Khan S, Lisa SA, Obaid M, et al. Tocopherol content of vegetable oils/fats and their oxidative deterioration during storage. World J Pharm Pharm Sci 2015;4(4):1537-48.
- [29] Delgado-Zamarreño MM, Bustamante-Rangel M, Sánchez-Pérez A, et al. Pressurized liquid extraction prior to liquid chromatography with electrochemical detection for the analysis of vitamin E isomers in seeds and nuts. J Chromatogr A 2004;1056:249-52.
- [30] Bustamante-Rangel M, Delgado-Zamarreño MM, Sánchez-Pérez A, et al. Determination of tocopherols and tocotrienols in cereals by pressurized liquid extraction-liquid chromatographymass spectrometry. Anal Chim Acta 2007;587:216-21.
- [31] Delgado-Zamarreño MM, Fernández-Prieto C, Bustamante-Rangel M, et al.

- Determination of tocopherols and sitosterols in seeds and nuts by QuEChERS-liquid chromatography. Food Chem 2016:192:825-30.
- [32] Yang Y, Lu D, Yin S, et al. A convenient ultrasound-assisted saponification for the simultaneous determination of vitamin E isomers in vegetable oil by HPLC with fluorescence detection. J Sep Sci 2018;41:1829-38.
- [33] Tsochatzis ED, Tzimou-Tsitouridou R. Validated RP-HPLC Method for Simultaneous Determination ofTocopherols and Tocotrienols in Whole Grain Barley Using Matrix Solid-Phase Food Dispersion. Anal Methods 2015;8:392-400.
- [34] Saini RK, Keum Y-S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res Int 2016;82:59-70.
- [35] Musmade KP, Trilok M, Dengale SJ, et al. Development and Validation of Liquid Chromatographic Method for Estimation of Naringin in Nanoformulation. J Pharm; 2014. DOI: /10.1155/2014/864901.

- http://www.eoma.aoac.org/app_k.pdf (accessed 14 June 2020).
- [37] Gliszczynska-Swiglo A, Sikorska E, Khmelinskii I, et al. Tocopherol content in edible plant oils. Pol J Food Nutr Sci 2007;57(4):157-61.
- [38] Tsochatzis ED, Bladenopoulos K, Papageorgiou M. Determination of tocopherol and tocotrienol content of Greek barley varieties under conventional and organic cultivation techniques using validated reverse phase high-performance liquid chromatography method. J Sci Food Agric 2012;92:1732-9.
- [39] Mansor TST, Che Man YB, Shuhaimi M, et al. Physicochemical properties of virgin coconut oil extracted from different processing methods. Int Food Res J 2012;19(3):837-45.
- [40] Liu Q, Xu YK, Zhang P, et al. Chemical composition and oxidative evolution of Sacha Inchi (Plukentia volubilis L.) oil from Xishuangbanna (China). Grasas Aceites 2014;65(1):1-9.
- [41] Celenk VU, Gumus ZP, Argon ZU, et al. Analysis of chemical compositions of 15 different cold-pressed oils produced in Turkey: A case study of tocopherol and fatty acid analysis. J Turk Chem Soc Sect Chem 2017; 5(1): 1-18.

[36] AOAC (Association of Official Analytical Chemistry). Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals, 2012,