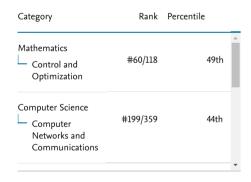
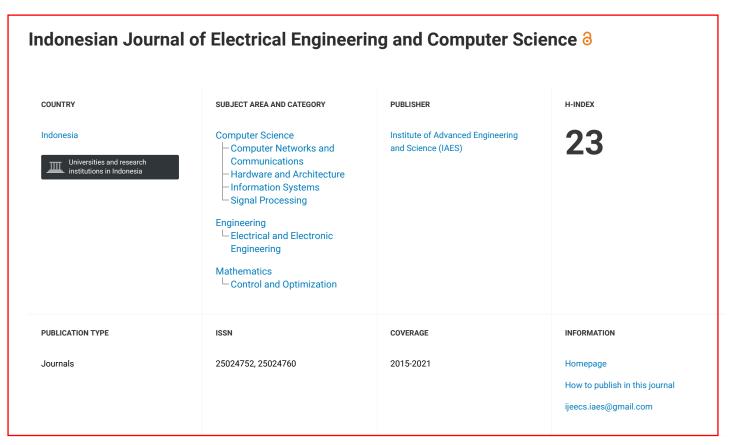

Source details

CiteScore CiteScore rank & trend Scopus content coverage

Improved CiteScore methodology

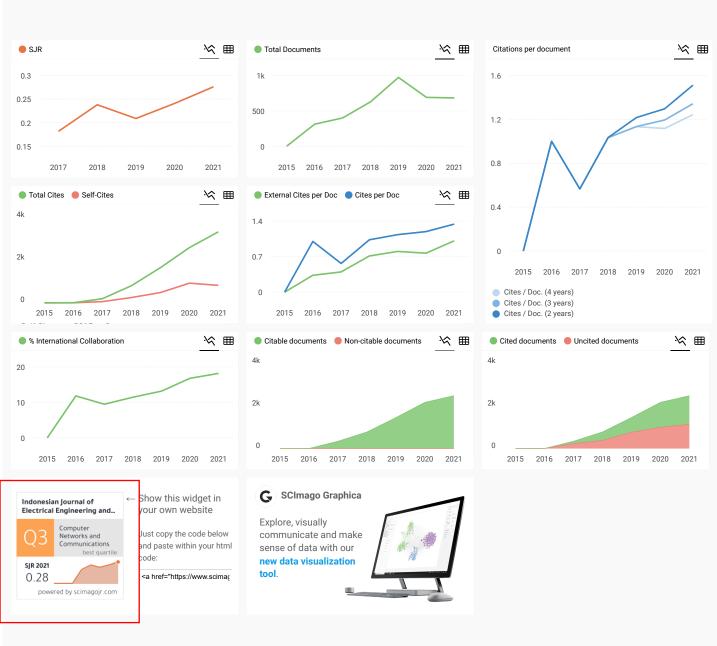

CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more >

CiteScoreTracker 2022 ①


 $2.4 = \frac{6,401 \text{ Citations to date}}{2,668 \text{ Documents to date}}$ Last updated on 06 June, 2022 • Updated monthly

CiteScore rank 2021 ①

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site &


SCOPE

The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]

Q Join the conversation about this journal

similarity similarity similarity similarity similarity

Metrics based on Scopus® data as of April 2022

Dear Elena Corera,

I found the Indonesian Journal of Electrical Engineering and Computer Science journal on https://www.scopus.com/sources.uri website . So please make it clear whether is it scopus indexed or not?

reply

SCImago Team

Dear Varsha,

Thank you very much for your comment.

All the metadata have been provided by Scopus /Elsevier in their last update sent to SCImago, including the Coverage's period data. The SJR for 2020 was released on 17 May 2021. We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day.

16/6/65 12:39 **Editorial Team**

ARCHIVES

Indonesian Journal of Electrical Engineering and Computer Science

НОМЕ ABOUT LOGIN REGISTER SEARCH CURRENT

Home > About the Journal > Editorial Team

Editorial Team

Advisory Editors

Prof. Dr. Patricia Melin, Tijuana Institute of Technology, Mexico Prof. Neil Bergmann, The University of Queensland, Australia Dr. Argyrios Zolotas, Cranfield University, United Kingdom Prof. Daniel Thalmann, Nanyang Technological University, Singapore Prof. Agith Abraham, VSB Technical University of Ostrava, Czech Republic

Editor-in-Chief

Prof. Dr. Seifedine Kadry, Noroff University College, Norway

Editors

Prof. Dr. Leo P. Ligthart, Delft University of Technology, Netherlands
Prof. Dr. Omar Lengerke, Universidad Autónoma de Bucaramanga, Colombia
Assoc. Prof. Dr. Wanguan Liu, Sun Yat-sen University, China
Dr. Arianna Mencattini, University of Rome "Tor Vergata", Italy
Mark S. Hooper, Analog/RF IC Design Engineer (Consultant) at Microsemi, United States

Associate Editors

Prof. Dr. Ahmad Saudi Samosir, Universitas Lampung (UNILA), Indonesia Prof. Dr. Favcal Dieffal, University of Batna, Batna, Algeria Prof. Dr. Nidhal Bouaynaya, Rowan University, United States Prof. Dr. Niik Rumzi Nik Idris, Universiti Teknologi Malaysia, Malaysia Prof. Dr. Luis Paulo Reis, University of Minho, Portugal Prof. Dr. Sanjay Kaul, Fitchburg State University, United States Prof. Dr. Srinivasan Alavandar, CK College of Engineering and Technology, India Prof. Dr. Vijayakumar Varadarajan, The University of New South Wales, Australia Prof. Dr. Vijayakumar Varadarajan, The University of New South Wales, Australia Prof. Anjan Ghosh, Tripura University, India Prof. Anjan Ghosh, Tripura University, India Prof. Ezra Morris Gnanamuthu, University Egypt Prof. Ezra Morris Gnanamuthu, University Tunku Abdul Rahman, Malaysia Prof. Joao Weyl Costa, Universidade Federal do Pará - UFPA, Brazil Prof. Larbi Boubchir, University of Paris 8, France Prof. Mohammed Alghamdi, Al-Baha University, Saudi Arabia Prof. Octavian Postolache, Instituto de Telecomunicações, Lisboa/IT, Portugal Prof. Ranathunga Arachchilage Ruwan Chandra Gopura, University Gmoratuwa, Sri Lanka Assoc. Prof. Ahmed Mabih Zaki Rashed, Menoufia University, Egypt Assoc. Prof. Dr. Lunchakorm Wuttistitkulkij, Chulalongkorn University, Thailand Assoc. Prof. Dr. Mario Versaci, Università degli Studi di Reggio Calabria, Italy Assoc. Prof. Dr. Almet Teke, Cukurova University, Viet Nam Asst. Prof. Dr. Almet Teke, Okurova University, Theiland dr. Sc. Lijijana Seric, University of Split, Croatia Dr. Abadahossein Rezai, Isfahan University of Technology (IUT) branch, Iran Dr. Ahmed Boutejdar, German Research Foundation DFG Braunschweig-Bonn, Germany Dr. Annad Nayyar, Duy Tan University, Viet Nam Dr. Animaddha Chandra, National Institute of Technology, India Prof. Dr. Ahmad Saudi Samosir, Universitas Lampung (UNILA), Indonesia Dr. Ahmed Bouteidar, German Research Foundation DFG Braunschweig-Bonn, Dr. Anand Nayyar, Duy Tan University, Viet Nam Dr. Aniruddha Chandra, National Institute of Technology, India Dr. Arafat Al-Dweik, Khalifa University, United Arab Emirates Dr. Arcangolo Castiglione, Università degli Studi di Salerno, Italy Dr. Chau Yuen, Engineering Product Development Pillar, Singapore Dr. Chinmay Chakraborty, Birla Institute of Technology, India Dr. Faqiang Wang, Jiaotong University, China Dr. Han Yang, University of Electronic Science and Technology of China, China Dr. Harikumar Rajaguru, Bannari Amman Institute of Technology, India Dr. Imran Shafique Ansari, University of Glasgow, United Kingdom Dr. Hair Mail, Oliversity of Electroin Science and Technology, India Dr. Harikumar Rajaguru, Bannari Amman Institute of Technology, India Dr. Imran Shafique Ansari, University of Glasgow, United Kingdom Dr. Jinsong Wu, Universidad de Chile, Chile
Dr. Makram Fakhry, University of Technology, Baghdad, Iraq
Dr. Mohammed Zidan, University of Science and Technology, Egypt
Dr. Mohammed Zidan, Universiti For Science and Technology, Egypt
Dr. Mohammed Zidan, Universiti Putra Malaysia, Malaysia
Dr. Nuno Rodrigues, Instituto Politécnico de Bragança, Portugal
Dr. Nuno Rodrigues, Instituto Politécnico de Bragança, Portugal
Dr. Praveen Malik, Lovely Professional University Jalandhar, India
Dr. Rama Reddy, Kakatiya University, India
Dr. Saharin Md. Ayob, Universiti Teknologi Malaysia, Malaysia
Dr. Sudhanshu Jha, University of Allahabad, India
Dr. Surinder Singh, SLIET Longowal, India
Dr. Tarek Dierafi, Institut National de la Recherche Scientifique, Canada
Dr. Tianhua Xu, Tianjin University (TJU), China
Dr. Wei Wang, Harbin Engineering University of Westminster, United Kingdom
Dr. Wei Wang, Harbin Engineering University, China
Dr. Wei Zhouchao. China University of Geosciences, China
Dr. Yin Liu, Symantec Core Research Lab, United States
Dr. Yousself Errami, Chouaib Doukkali University, Morocco Dr. Youssef Errami, Chouaib Doukkali University, Morocco Dr. Yutthapong Tuppadung, Provincial Electricity Authority (PEA), Thailand

Editorial Board Members

Assoc. Prof. Murad Abusubaih, Palestine Polytechnic University, Palestinian Territory, Occupied Prof. Abdelmadjid Recioui, Universitry of Boumerdes, Algeria Prof. Ahmed El Qualkadi, Abdelmalek Essaadi University, Morocco Prof. Akhil jabbar Meerja, Jawaharlal Nehru Technological University, India Prof. Arthur Swart, Central University of Technology, South Africa Prof. Felix J. Garcia Clemente, University of Murcia, Spain Prof. Mohamed Habaebi, International Islamic University Malaysia Prof. Priya Ranjan, SRM University, Amaravathi, India Prof. Sattar B. Sadkhan, Babylon University, Iraq Prof. Wajeb Gharibi, University of Missouri-Kansas City, United States

USER Username Password Remember me CITATION ANALYSIS

- Dimensions
- Google Scholar Scimagojr Scinapse Scopus

QUICK LINKS

- Author Guideline Editorial Boards Online Paper Submission
- Publication Fee
- Abstracting and
- Indexing Publication Ethics
- Visitor Statistics Contact Us

JOURNAL CONTENT

- By Issue
 By Author
 By Title

INFORMATION

- For Readers
- For Authors For Librarians

ijeecs.iaescore.com/index.php/IJEECS/about/editorialTeam

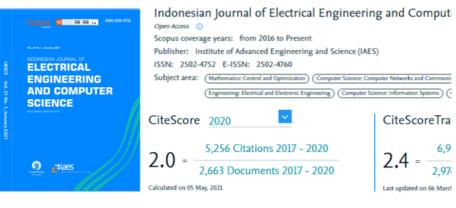
16/6/65 12:39 Editorial Team

Dr. Arun Sharma, Delhi Technological University, India
Dr. Dimitri Papadimitriou, University of Antwerp, Belgium
Dr. Duy Huynh, Ho Chi Minh City University of Technology, Viet Nam
Dr. Hamed Mojallali, University of Guilan, Iran, Islamic Republic of
Dr. Hasan Ali Khattak, COMSATS University Islamabad, Pakistan
Dr. Jérome Le Masson, CREC Saint Cyr, France
Dr. Jitendra Mohan, Jaypee Institute of Information Technology, India
Dr. Jose Soler, Technical University of Denmark, Denmark
Dr. Kamal Kant Sharma, Chandigarh University, India
Dr. Kamil Dimililer, Near East University/Yakin Doğu Üniversitesi, Turkey
Dr. Ke-Lin Du, Concordia University, Canada
Dr. K.K. Thyagharajan, RMK College of Engineering and Technology, India
Dr. Maria Chiara Caschera, Consiglio Nazionale delle Ricerche, Italy
Dr. Milica Petkovic, University of Novi Sad, Serbia
Dr. Maria Chiara Caschera, Consiglio Nazionale delle Ricerche, Italy
Dr. Maria A Ayu, Sampoerna University, Indonesia
Dr. Mohammad Yazdani-Asrami, Babol Noshirvani University of Technology, Iran
Dr. Moha Syakirin Ramli, Universiti Malaysia Pahang, Malaysia
Dr. Moritza Noor, Universiti Teknologi Malaysia, Malaysia
Dr. Norliza Noor, Universiti Teknologi Malaysia, Malaysia
Dr. Pratap Sahu, Foxconn, Taiwan
Dr. Philipp Fechteler, Fraunhofer HHI, Germany
Dr. Ratna Kalos Zakiah Sahbudin, Universiti Putra Malaysia, Malaysia
Dr. Saniaya Kharel, Manchester Metropolitan University, United Kingdom
Prof.Dr. Sai Kiran Oruganti, Jiangxi Universiti Putra Malaysia, Malaysia
Dr. Saniaya Kumar Panda, Veer Surendra Sai University of Technology, India
Dr. Saniaya Kumar Panda, Veer Surendra Sai University, Tunan
Dr. Tannoy Maltra, KIIT University, India
Dr. Saniaya Kumar Panda, Orentral Queensland University, Tran
Dr. Tanmoy Maltra, KIIT University, India
Dr. Tanmoy Maltra, KIIT University, India
Dr. Tianhua Xu, Tianjin University, India
Dr. Tianhua Xu, Tianjin University, India
Dr. Yigasha Vasoottiviseth, Mahidol University, India
Dr. Yasaka Vissottiviseth, Mahidol University, India
Dr. Yasaka Vissotti

This work is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License</u>

Stat Illia | Counter.com | IJEECS visitor statistics

НОМЕ ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES


Home > Vol 27, No 1

Indonesian Journal of Electrical Engineering and Computer Science

Indonesian Journal of Electrical Engineering and Computer Science (p-ISSN: 2502-4752, e-ISSN: 2502-A760) is a monthly peer reviewed International Journal in English, indexed by Scopus (CiteScore 2021: 2.4, SNIP 2021: 0.513, SJR 2021: 0.276, Scimagojr Q3 on Electrical and Electronic Engineering, Q3 on Computer Networks and Communications, Q3 on Hardware and Architecture, Q3 on Signal Processing, and Q3 on Control and Optimization), E1 (INSPEC, IET), Google Scholar Metrics, ProQuest, EBSCO, BASE, Microsoft Academic, Scinapse, SHERPA/RoMEO etc. The aim of this journal is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), and Electronics Engineering. Click <in here> to find citation counts for this journal in the Google Scholar

IJEECS uses a rolling submission process, allowing authors to submit at any time during the year without time

Submit your paper now through $\underline{\text{Online submission}}$ ONLY.

The criteria for acceptance of manuscripts are the quality of work. This will concretely be reflected in the following aspects: novelty & practical impact; technical soundness; appropriateness and adequacy of: literature review, background discussion & analysis of issues; and presentation (overall organization, English & readability). For a contribution to be acceptable for publication, these points should be at least in the middle level

Authors should submit only papers that have been carefully proofread and polished to avoid having to re-work the Authors should submit only papers that have been carefully proprietad and polished to avoid having to re-work the manuscript later in the review process. Authors should present their work honestly without fabrication, falsification, plagiarism or inappropriate data manipulation. Manuscripts are accepted with the understanding that they are original or extended versions of previously published papers in conferences and/or journals and that, if the work received an official sponsorship, it has been duly released for open publication. Before submission please make sure that your paper is prepared using the journal paper template. It is available as word and latex version, kindly please download the Journal template (MS Word) or LATEX version. This will ensure fast processing and publication. Any papers not fulfilling the requirements based on the guideline to authors will not be processed.

Reasons to publish (Authors benefits) for publication their paper in this journal:

- 1. Open access: all research articles published in this journal are open access and immediately accessible online to the entire global research community. Our open access policy ensures high visibility and maximum exposure for your work-anyone with online access can read your article.

 2. **High citation**: This journal has high citation, so you are easy for increasing your H-index. Please click <in
- to find citation counts for this journal
- 3. Rapid publication: Online submission, electronic peer review and production make the process of publishing
- 4. Quality, reputation and high standard of peer review: This journal has a high standard of peer review.
- Each editor and reviewer conducts the evaluation of manuscripts objectively and fairly.

 5. Included in all major bibliographic databases: All articles published in this journal are included in many bibliographic databases so that your work can be found easily and cited by researchers around the world.

Please do not hesitate to contact us if you require any further information at email: ijeecs.iaes@gmail.com,

Announcements

Does not accept any papers suggestion from conference organizers

Dear Sir/Madam,

Due to huge regular papers submission, we apologize that our journal does not accept any papers suggestion from other conference organizers.

Your attention and cooperation is very highly appreciated.

Best Regards, IJEECS Editorial Office Posted: 2020-06-01

More Announcements

- Dimensions
- Google Scholar Scimagojr Scinapse

QUICK LINKS

- Author Guideline Editorial Boards Online Paper Submission
- Publication Fee
- Abstracting and
- Indexing Publication Ethics
- Visitor Statistics Contact Us

Browse

- By Issue By Author By Title

INFORMATION

- For Readers
- For Authors For Librarians

Vol 27, No 1: July 2022

Each paper requires minor changes for it to be accepted. Editors will go through the revisions and gives a final approval. However, it is good to remember that "this status decision" does not guarantee acceptance. The paper will be accepted only if the editors are satisfied with the changes made.

Table of Contents

Economic-emission load dispatch for power system operation using enhanced sunflower	PDF
<u>optimization</u> Hazwani Mohd Rosli, Syahirah Abd Halim, Lilik Jamilatul Awalin, Seri Mastura Mustaza	
Comparison of electric motors used in electric vehicle propulsion system Khalid S. Mohammad, Aqeel S. Jaber	PDF
<u>Intelligent water flow monitoring system based on internet of things for residential pipeline</u> Siti Sufiah Abd Wahid, Shakira Azeehan Azli, Mohd Sufian Ramli, Khairul Kamarudin Hasan	PDF
A 1 V -21 dBm threshold voltage compensated rectifier for radio frequency energy harvesting Seyed Arash Zareianjahromi, Noor Ain Kamsani, Fakhrul Zaman Bin Rokhani, Roslina Bt Mohd Sidek, Shaiful Jahari Bin Hashim	<u>PDF</u>
<u>IoT-based communal garbage monitoring system for smart cities</u> Nur Latif Azyze Mohd Shaari Azyze, Ida Syafiza Md Isa, Thomas See Chin	PDF
Configuration of an IoT microhydraulic power generation system for education Zaira Pineda-Rico, Pedro Cruz Alcantar, Ulises Pineda-Rico, Francisco Javier Martinez-Lopez	PDF
Instrumentation system for data acquisition and monitoring of hydroponic farming using ESP32 via Google Firebase Prisma Megantoro, Rizki Putra Prastio, Hafidz Faqih Aldi Kusuma, Abdul Abror, Pandi Vigneshwaran, Dimas Febriyan Priambodo, Diaz Samsun Alif	PDF
Modelling and proportional-integral-derivative controller design for position analysis of the 3- degree of freedom Nur Syahirah Eshah Budin, Khairuddin Osman	PDF
Modeling and simulation of electro-hydraulic telescopic elevator system controlled by programmable logic controller Istabraq Hassan Abed Al-Had, Farag Mahel Mohammed, Jamal AK. Mohammed	PDF
<u>Design and modeling of solar water pumping system in Diyala region</u> Mohammed Hasan Ali, Raghad Ali Mejeed	PDF
Using a new type of formula conjugate on the gradient methods Basim A. Hassan, Ranen M. Sulaiman	PDF
Olive trees cases classification based on deep convolutional neural network from unmanned aerial vehicle imagery. Noor Abdulhafed Sehree, Abdulsattar Mohammed Khidhir	PDF
Blending of three-dimensional geometric model shapes Seng-Beng Ng, Kok-Why Ng, Rahmita Wirza O.K. Rahmat, Yih-Jian Yoong	PDF
<u>Thai digit handwriting image classification with convolution neuron networks</u> Kheamparit Khunratchasana, Tassanan Treenuntharath	PDF
Field programmable gate arrays implementation of different standard deviation estimation techniques Serwan Ali Bamerni, Ahmed Kh. Al-Sulaifanie	PDF
Short-term uncleaned signal to noise threshold ratio based end-to-end time domain speech enhancement in digital hearing aids Padmaja Nimmagadda, Kondru Ayyappa Swamy, Samuda Prathima, Sushma Chintha, Zachariah Callottu Alex	
Quadratic Vector Support Machine Algorithm, applied to Prediction of University Student Satisfaction Omar Chamorro-Atalaya, Guillermo Morales-Romero, Yeferzon Meza-Chaupis, Elizabeth Auqui-Ramos, Jesús Ramos-Cruz, César León-Velarde, Irma Aybar-Bellido	
Masked face with facial expression recognition based on deep learning Nawal Younis Abdullah, Ahmed Mamoon Fadhil Alkababji	
Performance analysis of the application of convolutional neural networks architectures in the agricultural diagnosis Sara Belattar, Otman Abdoun, El khatir Haimoudi	
Classification of specialities in textual medical reports based on natural language processing and feature selection Hasnain Abdul-Jawad Almuhana, Hawraa Hassan Abbas	

	recognition system using random forest and histograms of oriented gradients techniques ohammed Hasan Mutar, Essam Hammodi Ahmed, Majid Razaq Mohamed Alsemawi, Hatem day Hanoosh, Ali Hashem Abbas
	nantics based english-arabic machine translation evaluation ajdi Beseiso, Samiksha Tripathi, Bashar Al-Shboul, Renad Aljadid
	age anomalies detection using transfer learning of resnet-50 convolutional neural network aid Taher Omer, Amel Hussein Abbas
	vs Classification Using Light Gradient Boosted Machine Algorithm uhammad Hatta Rahmatul Kholiq, Wiranto Wiranto, Sari Widya Sihwi
	l-to-end multiple modals deep learning system for hand posture recognition uong-Giang Doan, Ngoc-Trung Nguyen
:el	formance Evaluation of Unmanned Aerial Vehicle Communication by Increasing Antennas of ular Base Stations ajesh Kapoor, Aasheesh Shukla, Vishal Goyal
Н	totype for wireless remote control of underwater robotic development uthaifa Ahmad Al-Issa, Wesam Fouad Swedan, Duha Ahmad Al-Shyyab, Ruwa Ma'mon tobosh, Ayeh Okleh Altarabsheh
	ernet of things based wireless sensor network: a review nayma Wail Nourildean, Mustafa Dhia Hassib, Yousra Abd Mohammed
1u	o Cross Coupled Low Order Kalman and Madgwicks Filter for Estimation of MC-DS-CDMA tipath Fading Channels ader Abdullah Kadhim, Ali jawad Alrubaie, Ameer Al-khaykan
	ovel energy efficient routing scheme for wireless sensor networks eeresh Hiremath, Gopal Bidkar
	<u>lier tolerant adaptive sampling rate approach for wireless sensor node</u> unil Kumar Selvaraj, Venkatramana Bhat Pundikai
	uctral efficiency and performance improvement of coherent optical transmission system uthanna Ali Kadhim, Ali Yousif Fattah, Atheer Alaa Sabri
	<u>llysis Study of Quality Factor and Bit Error Rate at Wavelength Change</u> adhela T. Mahmood, Alaa H. Ali, Alaa H. Ali Haeder
va١	ualband Bandpass filter with Tunable Bandwidths for Automotive Radar and 5G Millimeter- ve Applications nierno Amadou Mouctar Balde, Franklin Manene, Moukanda Franck Mbango
Ε	nsmission performance in compressed medical images using turbo code arbi Abderraouf, Mohamed Rida Lahcene, Sid Ahmed Zegnoun, Mohammed Sofiane endelhoum, Abderrazak Ali Tadjeddine, Fayssal Menezla
115	
et	ion of Cuckoo Search and Hill Climbing techniques based optimal forwarder selection and ect the Intrusion ai Madhuri, Jitendranath Mungara
S nh	ect the Intrusion
Sinh ibo A	ect the Intrusion ai Madhuri, Jitendranath Mungara Nancement of Single-Mode Optical Fiber Quality Factor –Bit Error Rate by using Uniform Bragg Grating
inh ibi A	ect the Intrusion al Madhuri, Jitendranath Mungara lancement of Single-Mode Optical Fiber Quality Factor -Bit Error Rate by using Uniform er Bragg Grating aa Husein Ali, Raed Khalid Ibrahim Efficient Authentication and Key-Distribution Protocol for Wireless Multimedia Sensor work
nlet B ight S	ect the Intrusion al Madhuri, Jitendranath Mungara lancement of Single-Mode Optical Fiber Quality Factor -Bit Error Rate by using Uniform er Bragg Grating land Husein Ali, Raed Khalid Ibrahim Efficient Authentication and Key-Distribution Protocol for Wireless Multimedia Sensor work asavaraj Patil, Sangappa Ramachandra Biradar ht Fidelity Performance via hybrid Free Space Optic/Fiber Optic communication under lospheric disturbance

<u>Digital platform based on geomarketing as an improvement in micro and small enterprises</u> Teófilo Crisóstomo-Berrocal, Fernando Sierra-Liñan, Cabanillas Carbonell-Michael <u>Hybrid multi criteria decision methods for optimal cloud selection in mobile cloud computing</u> Sindhu Kurup, Hassan Sadashiva Guruprasad An enhanced hybridized approach for group recommendation via reliable ratings Rachna Behl, Indu Kashyap <u>High performance time series models using auto autoregressive integrated moving average</u> Redha A. Redha, Suhad A. Yousif Review on the Parameter Settings in Harmony Search Algorithm Applied to Combinatorial <u> Bilal Ahmed, Hazlina Hamdan, Abdullah Muhammed, Nor Azura Husin</u> <u>Chat network study and design using HTML and PHP web programming</u> Angham Khalid Hussein Blockchain associated machine learning and IoT based hypoglycemia detection system with auto-injection feature Rahnuma Mahzabin, Fahim Hossain Sifat, Sadia Anjum, Al-Akhir Nayan, Muhammad Golam <u>Hybrid Model for Software Development: an Integral Comparison of DevOps Automation Tools</u>
Poonam Narang, Pooja Mittal <u>Cost-effective resource and task scheduling in fog nodes</u>
Ali Hussein Shamman, Hussein Ali Alasadi, Hussein Ali Ameen, Zaid Ibrahim Rasol, Hassan Muwafaq Gheni Secure and Efficient Routing Protocol for Low-Power and Lossy Networks for IoT Networks Soukayna Riffi Boualam, Mariya Ouaissa, Mariyam Ouaissa, Abdellatif Ezzouhairi <u>Prediction of student satisfaction on mobile-learning by using fast learning network</u> Laman Radi Sultan, Salwa Khalid Abdulateef, Bushra Abdullah Shtyat <u>Hybrid metaheuristic to solve job sequencing problem</u> Gustavo Erick Anaya-Fuentes, Héctor Rivera-Gómez, Oscar Montaño-Arango, José Ramón Corona-Armenta, Enrique Martínez-Muñoz Augmentation of Contextual Knowledge based on Domain Dominant Words for IoT Applications Interoperability Prakash Shanmurthy, Poongodi Thangamuthu, Balamurugan Balusamy, Seifedine Kadry Converting 2D DICOM MRI brain tumorsimages to 3D structure using machine learning and <u>depth map estimation technique</u> Mohamed Riyazudeen, Mohamed Sathik <u>Improving SpellChecking: an Effective Ad-Hoc Probabilistic Lexical Measure for General Typos</u> Hicham Gueddah, Mohamed Nejja, Said Iazzi, Abdellah Yousfi, Si Lhoussain Aouragh Neuromorphic Solutions: Digital implementation of bio-inspired spiking neural network for electrocardiogram classification Dze Rynn Chen, Yan Chiew Wong A New Direction Search of Hybrid Quasi-Newton Evar Lutfalla Sadraddin, Ivan Subhi Latif Comparative Study among COAP, MQTT, XMPP IoT Protocols abdal motalib msbah alshrif <u>Improving the Efficiency of Machine Learning Models for Predicting Blood Glucose Levels of Service Participants in Sub-district Health Promoting Hospital</u>
Kriengsak Yothapakdee, Sarawoot Charoenkhum, Tanunchai Boonnuk A Semi-Automated Hybrid Approach to Identify Radicalization on Social Digital Platform Vandna Batra, Suresh Kumar Open network structure and smart network to sharing cybersecurity within the 5G network Aseel K. Ahmed, Abbas Akram Khorsheed

This work is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License</u>.

Stat IIIIIII Counter.com

Thai digit handwriting image classification with convolution neuron networks

Kheamparit Khunratchasana, Tassanan Treenuntharath

Department of Computer Science, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun, Thailand

Article Info

Article history:

Received Oct 31, 2021 Revised Apr 21, 2022 Accepted May 19, 2022

Keywords:

Convolution neural networks Deep learning Handwriting Image classification Thai digit

ABSTRACT

This paper aims to determine the efficiency in classifying and recognizing Thai digit handwritten using convolutional neural networks (CNN). We created a new dataset called the Thai digit dataset. The performance test was divided into two parts: the first part determines the exact number of epochs, and the second part examines the occurrence of overfits in the model with Keras library's EarlyStoping() function, processed through Cloud Computing with Google Colaboratory, and used a Python programming language. The main parameters for the model were a dropout of 0.75, minibatch size of 128, the learning rate of 0.0001, and using an Adam optimizer. This study found the model's predictive accuracy was 96.88 and the loss was 0.1075. The results showed that using CNN in image classification and recognition. It has a high level of prediction efficiency. However, the parameters in the model must be adjusted accordingly.

This is an open access article under the <u>CC BY-SA</u> license.

110

Corresponding Author:

Kheamparit Khunratchasana

Department of Computer Science, Faculty of Science and Technology, Phetchabun Rajabhat University

Phetchabun, Thailand

Email: kparit1.khu@pcru.ac.th

1. INTRODUCTION

In the information age, there is a lot of information that exists in the digital world and it was created by human hands and then imported into the computer such as handwritten text images, human handwritten text. When imported to a computer it can make machines distinguish who's handwriting. Handwriting is a movement directed from the brain, possibly unknowingly occurring at the time of writing [1]. Recognition of human handwriting it is increasingly important in the digital age because it is used in activities such as banking, mail sorting tasks. In the past, it was believed that machines could not process complex tasks. But at present, machines can process complex tasks more easily and with high accuracy [2]. In recent times, different systems have been developed or classified. It is intended to be used in various fields that require high efficiency in classifying or memorizing [3]. Research on human writing or handwriting recognition is challenging because each person has different writing styles, even in the same letter [4]. The human brain allows humans to interpret any different handwritten letters and numbers through the neural network within the brain. This allows us to learn complex new things. There is a wide variety of research that applies the neural network to simulate the human brain for reading handwriting in easier ways [5]. Handwriting recognition is an issue that is still being studied. Handwriting is easy to remember because there are many different things, such as different font styles and the writing styles of each person. Handwriting identity identification is very useful. Examples of applying to banking applications, such as handwriting recognition to confirm receipt of money or when paying [6]. A systemcapable of recognizing and classifying handwritten objects helps prevent complex problems [5]. This has resulted in the development of applications and algorithms that can better examine and analyze the semantics of handwritten images [3]. There are many

algorithms used for searching, comparing, classifying, and recognizing image data. A popular algorithm for image classification is the machine learning algorithm and deep learning [7]. Deep learning is a subset of machine learning. The architecture of deep learning has several layers stacked inside and nonlinear processing deep learning can make decisions about new information by learning from a given dataset, through the neural network. Deep learning is efficient in processing large image data with high accuracy, so it is often used for image classification, image and video processing, speech recognition, text prediction, handwriting, and more [8]–[13]. One of the popular deep learning techniques for categorizing images is convolutional neural networks.

In this paper, the purpose of developing a model for classifying Thai digit handwritten using convolutional neural networks. Thai digits were invented for use during the reign of King Ramkhamhaeng the Great. Which has been 738 years. The origin of Thai digits comes from the Devanagari script of India, as well as Arabic digits. It is currently used in Thailand's government offices. Examples of Arabic digits versus Thai digits as shown in Figure 1.

Arabic digit	0	1	2	3	4	5	6	7	8	9
Thai digit	0	0	leo	ണ	«	æ	ь	ബ	ಚ	જ

Figure 1. Arabic digits vs Thai digits

2. RESEARCH METHOD

2.1. Convolutional neural network (CNN)

CNN is one of the most popular deep learning methods used for recognizing and classifying images and belongs to the supervised learning category [14], [15]. CNN is a feed forward neural network inspired by biology [16], [17]. A CNN consists of neurons or filters with weights and biases that are used to train the model to extract image properties. A CNN consists of two parts; feature extraction and classification [18]. The basic architecture of CNN is shown in Figure 2. It consists of the input layer, convolution layer, pooling layer, and fully connected layer. In the convolution layer and pooling layer, there can be more than one and send the data to the fully connected layer [14], [19].

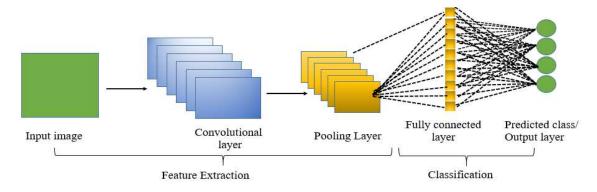


Figure 2. The basic architecture of convolutional neural network [13]

An example of a convolutional is shown in Figure 3. Let's start by multiplying the input with a feature detector or filter or a kernel that's smaller than the input let's multiply element-wise. When you're done multiplying, move the kernel all the way to the right [12]. Then add all the results together and get the result in the feature map field. Then repeat all input data. You must specify the sliding windows to extract the feature.

An example of max pooling is shown in Figure 4. The max pooling process reduces the number of output parameters that the network must learn [20]. The size of the filter must be determined and then find the maximum value in the area where the filter is defined.

From Figure 3 convolutional operation, there's a 4x4 input image and a feature detector 3x3. The first 3x3 input metric is multiplied element-wise by the feature detector. Then add the results for each value and put it in the first box of the feature map. In the figure, it's equal to 2. From Figure 4 is to find the Max Pooling, set the pooling size equal to 2x2, and put the largest value in the pooled feature map.

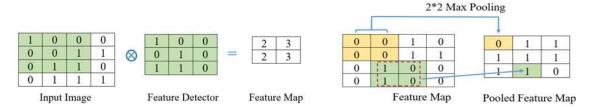


Figure 3. Convolutinal operation

Figure 4. Max pooling

2.2. Model evaluation

In the model evaluation phase, the confusion matrix was used to verify the accuracy of the prediction and other minor discrepancies. Confusion matrix is used to show the performance of a trained model. The values obtained from the confusion matrix are accuracy, precision, recall, and F1-score. The confusion matrix is a table that describes the ability to predict actual vs. machine learning predictions. It describes the number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), it has the following meanings: TP is what the program predicts is "true" and is "true", TN is what the program predicts is "not true" and has a value "not true", FP is what the program predicts is "true" but is "false", FN is what the program predicts is "not true" but is "true". The formula for calculating values, accuracy, precision, recall, and F1-score shown in the (1)-(4) [21], [22].

$$Accuracy = \frac{(TP+TN)}{(TP+FP+FN+TN)} \tag{1}$$

$$Precision = \frac{TP}{(TP+FP)} \tag{2}$$

$$Recall = \frac{TP}{(TP + FN)} \tag{3}$$

$$F1 Score = \frac{2*(Recall*Precision)}{(Recall*Precision)}$$
(4)

2.3. Data preparation

In this operation, it started by collecting handwritten Thai digits from a sample of 200 people, comprising students, citizens, and personnel from the public and private sectors, and writing Thai digits on the given form as shown in Figure 5. After that, scan the image from the form as a pdf file and crop the image into a single digit as a 28x28 pixels, as shown in Figure 6. By randomly selecting from a total of 14,950 images, it's called the Thai digit dataset. By randomly selecting images from a sample of 14,950 images called the Thai digit dataset. The Thai digit dataset is divided into 10 classes, which are digits on the class has 1495 images. After that, the data is divided into two parts: the training dataset of 1,046 images and the testing dataset of 449 images, which is equal to the ratio of 70:30.

Figure 5. Thai digit handwritten form

Figure 6. Example of thai digit dataset

2.4. Model creation

The CNN model is based on the Python programming language and the Keras library. Cloud computing with Google Colaboratory is a cloud service based on Jupyter Notebooks used for machine learning education and research. Runtime is configured for deep learning and access to powerful GPU for free [23]. The structure of the CNN model in this section, generated with the Keras context, is shown in Table 1.

Table 1	. Summary	z of (CNN	model	structure

Layer (type)	Output shape	Param #
Input	(None, 28, 28, 3)	1568
conv2d (Conv2D)	(None, 25, 25, 32)	1568
max_pooling2d (MaxPooling2D)	(None, 12, 12, 32)	0
dropout (Dropout)	(None, 12, 12, 32)	0
conv2d_1 (Conv2D)	(None, 9, 9, 64)	32832
max_pooling2d_1 (MaxPooling2D)	(None, 4, 4, 64)	0
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 1024)	1049600
dense_1 (Dense)	(None, 10)	10250

From Table 1, the structure of the model consists of an Input layer, two layers of convolutional (Conv2D) and pooling (MaxPooling2D) and a dropout in the middle. Dropout is a regularization technique for deep learning [24] and uses the activation function as rectified linear unit (ReLU). After that, multidimensional data is transformed into vectors with flatten layer and fully connected in dense layer, which is a hidden layer in a neural network. In the last dens layer, we use activation function as Softmax because our output is multi-class. It can be written as a schematic showing the structure of the model as shown in Figure 5.

In Figure 7 model structure Thai digit classification of CNN, input image (RGB color) size 28x28x3 to convolutional will get output shape or feature map size 25x25x32, and when doing the max pooling process, it'll get an output shape is 12x12x32 which is halved from the convolutional process. After this layer, a dropout was applied with a probability of 75%. After that, it goes through the convolutional and max pooling processes again. It'll get output to shape sizes 9x9x64 and 4x4x64, respectively, and convert multidimensional data to one dimension in a flatten layer. Finally, set a dense layer with 10 classes of output.

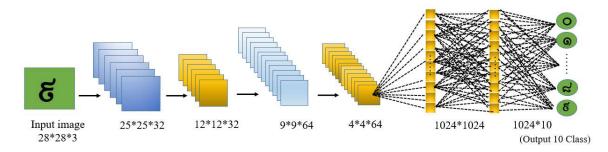


Figure 7. Model structure thai digit classification of CNN

2.5. Model training

Model Training is a process that teaches the machine to learn from the data prepared from the data preparation phase. The training of the model is divided into two parts to find the efficiency of the model. Considering the highest accuracy and the lowest loss, set the values for each part as follows:

- a) Part 1 determines the exact number of epochs to train the model, without checking for overfitting in the model. The epoch values for the model training were 100, 200, 300, ..., 1000 and the dropout equal 0.75; the mini-batch size equal 128; the learning rate equal 0.0001, and using an Adam optimizer, this is an algorithm for optimizing model training, resulting in reducing training and validation loss [25], [26]. The results for each epoch are shown in Figure 8.
- b) Part 2 sets the maximum number of epochs equal to 1000 and monitors the model overfit, allowing the training process to stop before the maximum epoch value when the validation data loss value is greater than or equal to the previous loss minimum [27]. This technique keeps the model from overfitting by using callbacks from Keras EarlyStoping() function. Train the model three times. Each time it assigns a

value to the patience variables of 10, 20, and 30, and other variables defined same as Part 1. The model training results are shown in Table 2 and Figure 9.

3. RESULTS AND DISCUSSION

The results of the model training with a Thai digit handwritten dataset using CNN, the objective is to find the best performance of the model. The results of the model training are divided into two parts.

- a) Part 1 the results of the model performance evaluation. The accuracy and loss in the prediction of each epoch appear as shown in Figure 8.
 - From Figure 8(a) and (b), the model performance evaluation results. The predictive accuracy increased until the epoch was 400 with an accuracy equal to 96.93. After that, the accuracy began to drop significantly and it has a maximum accuracy of epoch 900, which has an accuracy equal to 96.97%. Considering the model's Loss, the Loss dropped to an epoch of 400. After that, there is an increasing trend. In conclusion, an epoch of 400 is best for training a model with a fixed number of epochs because it has high accuracy and low loss. If the epoch increases, the more time it takes to train the model.
- b) Part 2 sets the maximum epoch equal to 1,000 and checks the model overfit with Keras library's EarlyStoping() function. The highest accuracy and the lowest loss, where patience is 30; accuracy is 96.88, and loss is 0.1075. It has fewer epochs compared to the patience of 20, which has more accuracy and loss. The results are shown in Table 2 and the accuracy and loss can compared as shown in Figure 9(a) and (b).

From the results of the experiment in Part 2, the predictive efficiency of the model was the best. When the patience parameter was set to 30, the time spent training and testing the model was 45 minutes, with the highest accuracy equal to 96.88 and the least loss equal to 0.1075. This is consistent with research by [21] using a convolutional neural network (CNN) to classify brain tumor images. Using magnetic resonance imaging (MRI), the model's efficacy was 96.1% accurate, and [28] research was conducted on gender classification using custom convolutional neural networks architecture. Provides a classification accuracy of not less than 96%, and [29]–[33] found that the accuracy was between 90%-98%.

The details of the confusion matrix are shown in Figure 10. Classification errors are caused by the similarity of the shapes and the characteristics of writing Thai Digit. The results of the evaluation of precision, recall, and F1-score for each class are shown in Table 3.

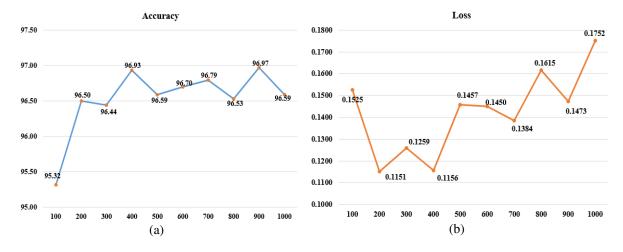


Figure 8. Result of model evaluation (a) accuracy and (b) loss

Table 2. Results of model training

Patience	Epoch	Time (min)	Accuracy	Loss
10	156	30	96.46	0.1172
20	224	49	96.39	0.1235
30	209	45	96.88	0.1075

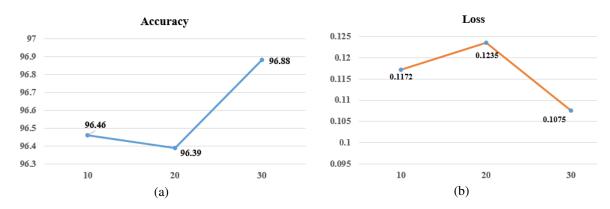


Figure 9. Performance of model with earlystoping function (a) accuracy and (b) loss

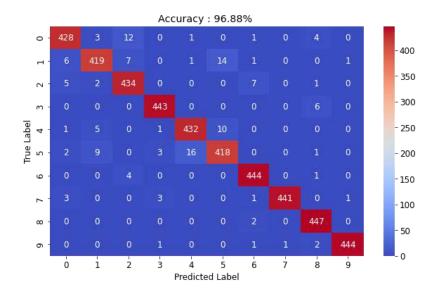


Figure 10. Best confusion metrix of model training

Table 3. Best Results of precision, recall, and F1-score

Class	Precision	Recall	F1-Score
o (0)	94%	98%	96%
a (1)	96%	93%	95%
© (2)	98%	93%	96%
៣ (3)	99%	100%	99%
 (4)	96%	95%	95%
ه (5)	94%	94%	94%
b (6)	96%	99%	97%
വ (7)	99%	97%	98%
ھ (8)	98%	99%	98%
್ (9)	100%	99%	99%

4. CONCLUSION

We have created a new Thai digit dataset. Starting from creating a form for writing Thai digits, then crop into single digits and randomly select all 14,950 images, size 28x28 pixels, divided into 10 classes (0-9); each class has 1495 images. After that, the data were divided into 1046 training sets and 449 test sets, representing a ratio of 70:30. The process of training and testing the best performing model. We assign values to the following parameters: dropout equal 0.75, the mini-batch size equal 128, the learning rate equal 0.0001, using an Adam optimizer, and checking the model overfit with Keras library's EarlyStoping() function, and set patience parameter was set to 30. After setting the values, it shows an accuracy of 96.88 and

a loss of 0.1075, which is the best. Therefore, it can be concluded that in creating a model to classify images of Thai digit handwritten with Convolution Neural Network, the prediction accuracy is high and the loss is low, which is similar to other researchers. For future work, it is advisable to experiment with modifying additional parameters to suit the desired task in order to increase the predictive performance of the model to be more accurate.

ACKNOWLEDGEMENTS

This research was accomplished with great assistance from many students, staff, and faculty who provided assistance in handwriting in order to provide information for processing. Thank you Research and Development Institute Phetchabun Rajabhat University that has funded this research.

REFERENCES

- [1] K. Chaudhari and A. Thakkar, "Survey on handwriting-based personality trait identification," *Expert Systems with Applications*, vol. 124, pp. 282–308, 2019, doi: 10.1016/j.eswa.2019.01.028.
- [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," *Advances in neural information processing systems*, vol. 25, pp. 1097–1105, 2012.
- [3] N. Sharma, V. Jain, and A. Mishra, "An analysis of convolutional neural networks for image classification," *Procedia computer science*, vol. 132, pp. 377–384, 2018, doi: 10.1016/j.procs.2018.05.198.
- [4] U. Dwivedi, P. Rajput, M. K. Sharma, and G. Noida, "Cursive handwriting recognition system using feature extraction and artificial neural network," *Int. Res. J. Eng. Technol*, vol. 4, no. 03, pp. 2202–2206, 2017.
- [5] S. Aqab and M. U. Tariq, "Handwriting recognition using artificial intelligence neural network and image processing," International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 137–146, 2020, doi: 10.14569/IJACSA.2020.0110719.
- [6] O. Sudana, I. W. Gunaya, and I. K. G. D. Putra, "Handwriting identification using deep convolutional neural network method," TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 18, no. 4, pp. 1934–1941, 2020, doi: 10.12928/telkomnika.v18i4.14864.
- [7] P. Wang, E. Fan, and P. Wang, "Comparative analysis of image classification algorithms based on traditional machine learning and deep learning," *Pattern Recognition Letters*, vol. 141, pp. 61–67, 2021, doi: 10.1016/j.patrec.2020.07.042.
- [8] S. Giri and B. Joshi, "Transfer learning based image visualization using cnn," *International Journal of Artificial Intellegence and Application*, vol. 10, no. 4, pp. 47–55, 2019, doi: 10.5121/ijaia.2019.10404.
- [9] S. T. Krishna and H. K. Kalluri, "Deep learning and transfer learning approaches for image classification," *International Journal of Recent Technology and Engineering (IJRTE)*, vol. 7, no. 5S4, pp. 427–432, 2019.
- [10] B. Abhishek, K. Krishi, M. Meghana, M. Daaniyaal, and H. S. Anupama, "Hand gesture recognition using machine learning algorithms," Computer Science and Information Technologies, vol. 1, no. 3, pp. 116–120, 2020, doi: 10.11591/csit.v1i3.p116-120.
- [11] A. I. Sapitri, S. Nurmaini, M. Sukemi, M. N. Rachmatullah, and A. Darmawahyuni, "Segmentation atrioventricular septal defect by using convolutional neural networks based on U-NET architecture," *IAES International Journal of Artificial Intelligence*, vol. 10, no. 3, p. 553, 2021, doi: 10.11591/ijai.v10.i3.pp553-562.
- [12] E. C. Djamal, W. I. Furi, and F. Nugraha, "Detection of EEG signal post-stroke using FFT and convolutional neural network," in 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2019, pp. 18–23, doi: 10.23919/EECSI48112.2019.8977126.
- [13] V. H. Phung and E. J. Rhee, "A deep learning approach for classification of cloud image patches on small datasets," *Journal of information and communication convergence engineering*, vol. 16, no. 3, pp. 173–178, 2018.
- [14] H. Prasetyo and B. A. P. Akardihas, "Batik image retrieval using convolutional neural network," *TELKOMNIKA* (*Telecommunication, Computing, Electronics and Control*), vol. 17, no. 6, pp. 3010–3018, 2019, doi: 10.12928/telkomnika.v17i6.12701.
- [15] A. S. Permana, E. C. Djamal, F. Nugraha, and F. Kasyidi, "Hand movement identification using single-stream spatial convolutional neural networks," in 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), 2020, pp. 172–176, doi: 10.23919/EECSI50503.2020.9251896.
- [16] A. T. Radhi, W. H. Zayer, and A. M. Dakhil, "Classification and direction discrimination of faults in transmission lines using 1d convolutional neural networks," *Int. Journal of Power Electronics and Drive Systems*, vol. 12, no. 3, pp. 1928–1939, 2021, doi: 10.11591/ijpeds.v12.i3.pp1928-1939.
- [17] S. Adnan, M. AI Achhab, B. E. Elmohajir, and A. Zbakh, "Neural network dealing with Arabic language," *International Journal of Informatics and Communication Technology (IJ-ICT)*, vol. 9, no. 2, pp. 73–82, 2020, doi: 10.11591/ijict.v9i2.pp73-82.
- [18] M. Syarief and W. Setiawan, "Convolutional neural network for maize leaf disease image classification," *TELKOMNIKA* (*Telecommunication, Computing, Electronics and Control*), vol. 18, no. 3, pp. 1376–1381, 2020, doi: 10.12928/telkomnika.v18i3.14840.
- [19] P. Chandana, G. S. P. Ghantasala, J. R. V. Jeny, K. Sekaran, Y. Nam, and S. Kadry, "An effective identification of crop diseases using faster region based convolutional neural network and expert systems," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 10, no. 6, pp. 6531-6540, 2020, doi: 10.11591/ijece.v10i6.pp6531-6540.
- [20] S. B. Jadhav, "Convolutional neural networks for leaf image-based plant disease classification," *IAES International Journal of Artificial Intelligence*, vol. 8, no. 4, pp. 328-341, 2019, doi: 10.11591/jjai.v8.i4.pp328-341.
- [21] T. A. Sadoon and M. H. Ali, "Deep learning model for glioma, meningioma and pituitary classification," *International Journal of Advances in Applied Sciences (IJAAS)*, vol. 10, no. 1, pp. 88–98, 2021, doi: 10.11591/ijaas.v10.i1.pp88-98.
- [22] B. Bhatkalkar, A. Joshi, S. Prabhu, and S. Bhandary, "Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks.," *International Journal of Electrical & Computer Engineering (2088-8708)*, vol. 10, no. 1, 2020, doi: 10.11591/ijece.v10i1.pp816-827.

П

- [23] T. Carneiro, R. V. M. Da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C. De Albuquerque, and P. P. R. Filho, "Performance analysis of google colaboratory as a tool for accelerating deep learning applications," *IEEE Access*, vol. 6, pp. 61677–61685, 2018, doi: 10.1109/ACCESS.2018.2874767.
- [24] H. Wu and X. Gu, "Towards dropout training for convolutional neural networks," *Neural Networks*, vol. 71, pp. 1–10, 2015, doi: 10.1016/j.neunet.2015.07.007.
- [25] K. Wróbel, M. Karwatowski, M. Wielgosz, M. Pietroń, and K. Wiatr, "Compressing sentiment analysis CNN models for efficient hardware processing," *Computer Science*, vol. 21, 2020, doi: 10.7494/csci.2020.21.1.3375.
- [26] T. Dozat, "Incorporating nesterov momentum into adam," ICLR 2016 workshop submission, 2016.
- [27] M. M. Badža and M. Č. Barjaktarović, "Classification of brain tumors from MRI images using a convolutional neural network," Applied Sciences, vol. 10, no. 6, p. 1999, 2020, doi: 10.3390/app10061999.
- [28] F. H. K. Zaman, "Gender classification using custom convolutional neural networks architecture," International Journal of Electrical & Computer Engineering (IJECE), vol. 10, no. 6, pp. 5758-5771, 2020, doi: 10.11591/ijece.v10i6.pp5758-5771.
- [29] S. Z. M. Zaki, M. A. Zulkifley, M. M. Stofa, N. A. M. Kamari, and N. A. Mohamed, "Classification of tomato leaf diseases using MobileNet v2," *IAES International Journal of Artificial Intelligence (IJAI)*, vol. 9, no. 2, pp. 290-296, 2020, doi: 10.11591/ijai.v9.i2.pp290-296.
- [30] R. Poojary, R. Raina, and A. K. Mondal, "Effect of data-augmentation on fine-tuned CNN model performance," IAES International Journal of Artificial Intelligence, vol. 10, no. 1, p. 84, 2021, doi: 10.11591/ijai.v10.i1.pp84-92.
- [31] A. R. Luaibi, T. M. Salman, and A. H. Miry, "Detection of citrus leaf diseases using a deep learning technique," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 11, no. 2, pp. 1719-1727, 2021, doi: 10.11591/ijece.v11i2.pp1719-1727.
- [32] I. B. K. Sudiatmika and F. Rahman, "Image forgery detection using error level analysis and deep learning," *TELKOMNIKA* (*Telecommunication, Computing, Electronics and Control*), vol. 17, no. 2, pp. 653–659, 2019, doi: 10.12928/telkomnika.v17i2.8976.
- [33] H. Kim, S. Lee, and H. Jung, "Human activity recognition by using convolutional neural network," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 9, no. 6, pp. 5270-5276, 2019, doi: 10.11591/ijece.v9i6.pp5270-5276.

BIOGRAPHIES OF AUTHORS

Tassanan Treenantarat Definition Preceived a bachelor's degree of Computer Science from King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand. Master's degree Science Education computer field from Phetchaburi Teachers College, Phetchaburi, Thailand. She has been working as a lecturer for more than 20 years in the field of Computer Science in the Faculty of Sciences and Technology, Phetchabun Rajabhat University, Thailand. Currently, Her research interest is artificial intelligence, ontology and machine learning. She can be contacted at email: tassanan.t@pcru.ac.th.

- http://ijra.iaescore.com
- http://journal.portalgaruda.org/index.php/eecsi

Please avoid to cite the previous published papers in the same journal (IJEECS, http://ijeecs.iaescore.com) to reduce journal self-citation.

7. Paragraph

.....

A paragraph is a sentence or group of sentences that support one main idea. Many authors have presented paragraphs in very long terms. Author should use simple sentences which are grammatically correct, but too many can make your writing less interesting.

Every paragraph in a paper should be:

- Unified: All of the sentences in a single paragraph should be related to a single controlling idea (often expressed in the topic sentence of the paragraph).
- Clear: The sentences should all refer to the central idea of the paper.
- Coherent: The sentences should be arranged in a logical manner and should follow a definite plan for development.
- Well-developed: Every idea discussed in the paragraph should be adequately explained and supported through evidence and details that work together to explain the paragraph's controlling idea.

-- Kindly forward this email to other interested parties!! --

OUR FREE OF CHARGE JOURNALS:

http://ijaas.iaescore.com http://ijape.iaescore.com http://ijra.iaescore.com http://ijict.iaescore.com

http://iaesprime.com/index.php/csit

Indonesian Journal of Electrical Engineering and Computer Science http://ijeecs.iaescore.com

Author Subject: Thai Digit Handwriting Image Classification with Convolution Neuron Networks

DELETE

02-04 The following message is being delivered on behalf of Indonesian Journal of Electrical Engineering and Computer 04:11 Science.

AM

Dear IJEECS Editor.

We have now updated the articles as instructed. The content is updated and referenced in the table below, and the manuscript has been submitted electronically. I hope we will receive good news from the journal.

Best Regards.

Asst. Prof. Kheamparit Khunratchasana

Indonesian Journal of Electrical Engineering and Computer Science http://ijeecs.iaescore.com

Editor Subject: [IJEECS] Editor Decision "Thai Digit Handwriting Image Classification with Convolution Neuron 2022- Networks"

DELETE

02-10

2022-

07:12 The following message is being delivered on behalf of Indonesian Journal of Electrical Engineering and Computer AM Science.

- -- Paper ID# 26466
- -- Please adhere to every detail of the guide of authors http://iaescore.com/gfa/ijeecs.docx.
- -- The minimum number of references is 25 references (for original research)
- -- and 50 references (for review/survey paper), primarily to recent journal articles.
- -- Please attach your similarity report checking that the result is below 25% using software such as iThenticate or Turnitin.

Dear Prof/Dr/Mr/Mrs: Kheamparit Khunratchasana,

It is my great pleasure to inform you that your paper entitled "Thai Digit Handwriting Image Classification with Convolution Neuron Networks" is ACCEPTED and will be PUBLISHED on the Indonesian Journal of Electrical Engineering and Computer Science, a Scopus indexed journal (CiteScore 2018: 0.97, SNIP 2018: 0.724, SJR 2018: 0.238, Q3 on Electrical and Electronic Engineering, Q3 on Computer Networks and Communications, Q3 on Hardware and Architecture, Q3 on Signal Processing, and Q3 on Control and Optimization). Congratulations!

Your paper will be scheduled after your final paper, similarity report and payment evidence reached us !!! Please submit your final paper (in MS Word file format, or LaTeX source files) along with your similarity report and your payment evidence within 6 weeks to email: IJEECS.iaes@gmail.com. The similarity rate should be checked by using software such as iThenticate or Turnitin (that the result is less than 25%). If the similarity index is more than 25%, your paper will be rescheduled for publication until the similarity is less than 25%.

URGENT!! Pay attention to the following instructions carefully! YOU MUST DO!!

- 1). PLEASE ADHERE STRICTLY THE GUIDE OF AUTHORS http://iaescore.com/qfa/ijeecs.docx (Use this file as your paper template!!) and pay attention to the checklist for preparing your FINAL paper for publication: http://ijeecs.iaescore.com/index.php/IJEECS/about/editorialPolicies#custom-3
- 2). It is mandatory to present your final paper according to "IMRADC style" format, i.e.:
- 1. INTRODUCTION
- 2. The Proposed Method/Algorithm/Procedure specifically designed (optional)
- 3. METHOD
- 4. RESULTS AND DISCUSSION
- 5. CONCLUSION

See http://iaescore.com/gfa/ijeecs.docx

- 3). Add biographies of authors as our template (include links to the 4 authors' profiles, do not delete any icons in the template).
- --> Provide links for all authors to the 4 icons (Scholar, Scopus, Publons and ORCID). It is mandatory!! See http://iaescore.com/gfa/ijeecs.docx
- 4). Prepare all tables as our template (NOT as figure)
- 5). Use different PATTERNS for presenting different results in your figures/graphics (instead of different colors). It is mandatory!! See http://iaescore.com/gfa/ijeecs.docx
- 6). Please ensure that all references have been cited in your text. Use a tool such as EndNote, Mendeley, or Zotero for reference management and formatting, and choose IEEE style. Each citation should be written in the order of appearance in the text in square brackets. For example, the first citation [1], the second citation [2], and the third and fourth citations [3], [4]. When citing multiple sources at once, the preferred method is to list each number separately, in its own brackets, using a comma or dash between numbers, as such: [1], [3], [5]. It is not necessary to mention an author's name, pages used, or date of publication in the in-text citation. Instead, refer to the source with a number in a square bracket, e.g. [9], that will then correspond to the full citation in your reference list. Examples of in-text citations:

This theory was first put forward in 1970 [9]. Zadeh [10] has argued that ...

Several recent studies [7], [9], [11]-[15] have suggested that....

- ... end of the line for my research [16].
- 7). Please present all references as complete as possible and use IEEE style (include information of DOIs, volume, number, pages, etc). If it is available, DOI information is mandatory!! See http://iaescore.com/gfa/ijeecs.docx

Please prepare your final paper by doing your best to avoid any delay for publication !!!

We really appreciate your total commitment to supporting this journal.

Best Regards, T. Sutikno Editor, IJEECS ijeecs.iaes@gmail.com email: IJEECS.iaes@gmail.com http://ijeecs.iaescore.com

Please also pay an attention to double check your final camera ready paper:

- (1) Introduction section: explain the context of the study and state the precise objective. Introduction section should be presented in 3-6 paragraphs. An Introduction should cover the following three (3) parts:
- Background: Authors have to make clear what the context is. Ideally, authors should give an idea of the state-ofthe art of the field the report is about.
- The Problem: If there was no problem, there would be no reason for writing a manuscript, and definitely no reason for reading it. So, please tell readers why they should proceed reading. Experience shows that for this part a few lines are often sufficient.
- The Proposed Solution: Now and only now! authors may outline the contribution of the manuscript. Here authors have to make sure readers point out what are the novel aspects of authors' work. Authors should place the paper in proper context by citing relevant papers. At least 10 references (recent journal articles) are referenced to support this section.
- (2) Conclusion section: Summarize sentences the primary outcomes of the study in a paragraph. Are the claims in this section supported by the results, do they seem reasonable? Have the authors indicated how the results relate to expectations and to earlier research? Does the article support or contradict previous theories? Does the conclusion explain how the research has moved the body of scientific knowledge forward?
- (3) About Figures & Tables in your manuscript:
- Because tables and figures supplement the text, all tables and figures should be REFERRED in the text. Authors MUST EXPLAIN what the reader should look for when using the table or figure. Focus only on the important points the reader should draw from them, and leave the details for the reader to examine on her own.
- Tables are to be presented with a single horizontal line under: the table caption, the column headings and at the end of the table. All tables are produced by creating tables in MS Word. Captured tables are NOT allowed.
- All figures MUST in high quality images
- (4) Please ensure the maximum page of your final paper is 8-pages for normal publication fee, but still allow up to 12 pages (required to pay an extra fee after 8 pages, USD50 per page).