

Author search

Sources

Create account

Sign in

1

①

(i)

×

Source details

🗼 Journal of Physics: Conference Series 🧍

Scopus coverage years: from 2005 to 2021

ISSN: 1742-6588 E-ISSN: 1742-6596

Subject area: (Physics and Astronomy: General Physics and Astronomy)

Source type: Conference Proceeding

View all documents >

Set document alert

☐ Save to source list Source Homepage

SJR 2020

0.7

0.210

CiteScore 2020

SNIP 2020

0.464

CiteScore

CiteScore rank & trend

Scopus content coverage

Improved CiteScore methodology

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more >

CiteScore 2020

52,411 Citations 2017 - 2020

72,842 Documents 2017 - 2020

Calculated on 05 May, 2021

CiteScoreTracker 2021 ①

68,176 Citations to date

93,461 Documents to date

Last updated on 05 January, 2022 • Updated monthly

CiteScore rank 2020 ①

Category Rank Percentile Physics and Astronomy #191/233 18th General Physics and Astronomy

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site &

About Scopus

Language

Customer Service

What is Scopus Content coverage

Scopus blog

Scopus API Privacy matters

日本語に切り替える 切换到简体中文 切換到繁體中文 Русский язык

Help

Contact us

ELSEVIER

Terms and conditions > Privacy policy >

Copyright © Elsevier B.V. a. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

& RELX

also developed by scimago:

COLINTRY

Scimago Journal & Country Rank

Enter Journal Title, ISSN or Publisher Name

Home

Journal Rankings

Country Rankings

Viz Tools

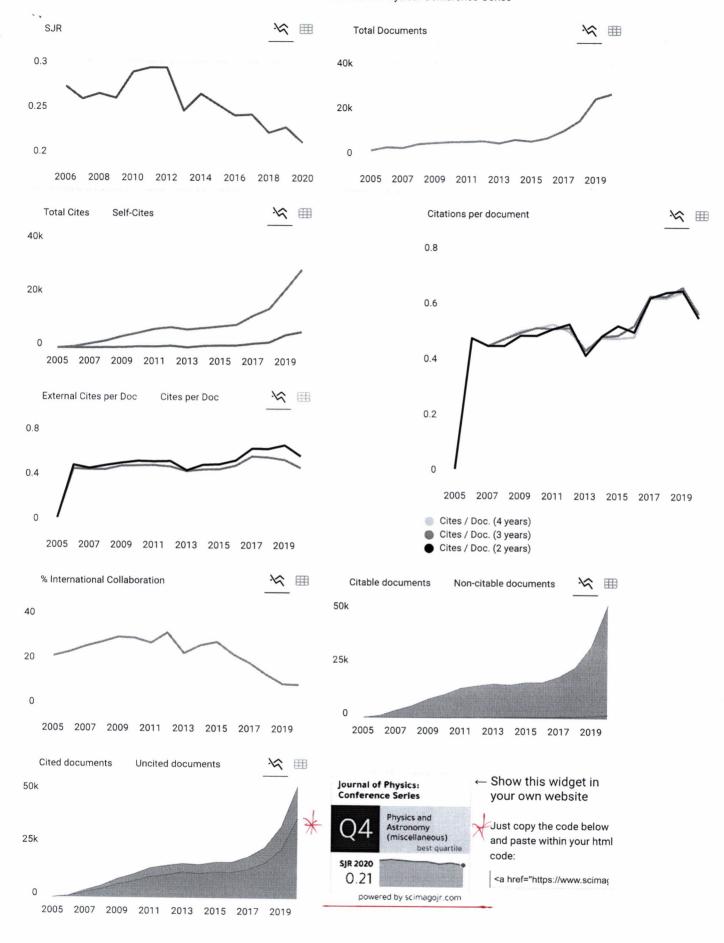
Help

About Us

★ Journal of Physics: Conference Series 3 ★

COUNTRY	CATEGORY	PUBLISHER	H-INDEX
United Kingdom Universities and research institutions in United Kingdom	Physics and Astronomy Physics and Astronomy (miscellaneous)	IOP Publishing Ltd.	85
PUBLICATION TYPE	issn *	COVERAGE	INFORMATION
Conferences and Proceedings	17426588, 17426596	2005-2020	Homepage
•			How to publish in this journal
			jpcs@ioppublishing.org

SCOPE


The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and cost-effective proceedings publication service.

O Join the conversation about this journal

?

Quartiles

B

G SCImago Graphica

Table of contents

Volume 2145

2022

◆ Previous issue

Next issue >

Siam Physics Congress 2021 (SPC 2021) 24-25 May 2021

Accepted papers received: 30 November 2021

Published online: 07 January 2022

<u>__</u>*

Open all abstracts

Preface

OPEN ACCESS

011001

Preface

+ Open abstract

View article

OPEN ACCESS

011002

Peer review declaration

+ Open abstract

View article

PDF

Astronomy, Astrophysics and Cosmology

OPEN ACCESS

012001

An investigation of Aharonov-Bohm effect towards the potential use for the gravitational wave detection

C Deesamer, N Wanwieng, P Chainakun and A Watcharangkool

+ Open abstract

View article

PDF

OPEN ACCESS

012002

Galaxy evolution in different environments along redshift within the local universe z < 0.8

Ponlawat Yoifoi and Wichean Kriwattanawong

+ Open abstract

OPEN ACCESS

012003

Fitting electron spectrum from AMS-02 by pulsar electrons

Khitapiten Bastsandeian, Brandtin Kingri Cuncility and American Weelnaksen of cookies. To find out more, see our Privacy and Cookies policy.

Nanoscale Physics and Nanotechnology

OPEN ACCESS 012038 Synthesis of the platinum particle with the pH variation for the particle size control P Thongnopkun and W Kitprapot View article PDF + Open abstract **OPEN ACCESS** 012039 Fabrication of encapsulated graphene-based heterostructure using molybdenum as edgecontacts Illias Klanurak, Kenji Watanabe, Takashi Taniguchi, Sojiphong Chatraphorn and Thiti Taychatanapat View article PDF + Open abstract **OPEN ACCESS** 012040 Angle-dependent spectrum measurement of polystyrene opal-like structure described by Bragg-Snell diffraction and perturbed photonic band structure N Sitpathom, T Muangnapoh, P Kumnorkaew, S Suwanna, A Sinsarp and T Osotchan View article PDF + Open abstract **Energy Materials and Physics OPEN ACCESS** 012041 Efficiency of supercapacitor with CaTiO₃-filled polysulfone separators S Suwanwong, C Yuenyao and A Hutem View article PDF + Open abstract **OPEN ACCESS** 012042 Energy conversion of electrostrictive poly(vinylidene fluoride-cohexafluoropropylene)/Graphene composites R Ruadroew, P Thainiramit and C Putson View article PDF + Open abstract **OPEN ACCESS** 012043 Ferroelectric properties and breakdown strength of layer-by-layer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and polyurethane (PU) for energy storage application C Chooseng, S Chaipo and C Putson **PDF** View article + Open abstract **OPEN ACCESS** 012044 Preparation and electrostrictive properties of polyurethane filled with polypyrrole-carbon This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, black for the energy harvesting application see our Privacy and Cookies policy.

` 'IOPscience

PAPER · OPEN ACCESS

Efficiency of supercapacitor with CaTiO3-filled polysulfone separators

S Suwanwong¹, C Yuenyao¹ and A Hutem¹

Published under licence by IOP Publishing Ltd

Journal of Physics: Conference Series, Volume 2145, Siam Physics Congress 2021 (SPC 2021) 24-25 May 2021

Citation S Suwanwong et al 2021 J. Phys.: Conf. Ser. 2145 012041

sanit.suw@pcru.ac.th

¹ Physics Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

https://doi.org/10.1088/1742-6596/2145/1/012041

Buy this article in print

Journal RSS

Sign up for new issue notifications

Create citation alert

Abstract

Supercapacitors are one of the energy storages designed to serve the increasing demand for electricity nowadays. They are durable and can charge electricity faster and keep electric charge longer. In this study, electrodes for supercapacitors were made from aluminum foils coated with carbon nanotube film and separated by electrolyte solution and a separator. A separator could prevent short circuit but allow ions to pass through, and consequently increased storage layers of electric charge. The separators used in this study were made from polysulfone containing CaTiO₃ 0.5, 1.0 and 2.0 wt% with perovskite properties, high dielectric constant, electrical resistivity and energy density. After that, they were built in coin-cell form. It was found from the study that the addition of 2.0 wt% CaTiO₃, the largest proportion of all samples, provided a maximum specific energy at 4.03 mWh/g and a maximum specific capacitance at 4.64 F/g. accounting for 2.17-time higher than that of polysulfone without CaTiO₃. The functional group analysis of PSF and CaTiO₃ separators showed that the increasing of CaTiO₃ in the PSF separators, the 2958 cm⁻¹ in C-H stretch peaks reduced, and consequently specific energy and specific capacitance were higher. Thus, supercapacitors with CaTiO₃-filled polysulfone separators are suitable for improving efficiency of supercapacitors in energy storage from electrical supply.

Export citation and abstract

BibTeX

RIS

• Previous article in issue

Next article in issue >

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

You may also like

JOURNAL ARTICLES

Unraveling the Charge-Storage Mechanism in High-Performance Zinc-Ion Hybrid Supercapacitors

A Study of Mediators As Ion Providers in Supercapactors

(Invited) Design Principles of High Voltage Asymmetric Supercapacitors Based on Electrode Energetics

The Effect of Different Gel Electrolytes on Graphene Based Solid-State Supercapacitors (oral)

Effect of Electrolyte Composition on the Performance of Coal Char-Derived Carbon Supercapacitors

A Rocking-Chair-Type Magnesium Hybrid Supercapacitor

PDF

Help

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

PAPER • OPEN ACCESS

Efficiency of supercapacitor with CaTiO₃-filled polysulfone separators

To cite this article: S Suwanwong et al 2021 J. Phys.: Conf. Ser. 2145 012041

View the article online for updates and enhancements.

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Journal of Physics: Conference Series

2145 (2022) 012041

doi:10.1088/1742-6596/2145/1/012041

Efficiency of supercapacitor with CaTiO₃-filled polysulfone separators

S Suwanwong*, C Yuenyao and A Hutem

Physics Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

*Corresponding author E-mail: sanit.suw@pcru.ac.th

Abstract. Supercapacitors are one of the energy storages designed to serve the increasing demand for electricity nowadays. They are durable and can charge electricity faster and keep electric charge longer. In this study, electrodes for supercapacitors were made from aluminum foils coated with carbon nanotube film and separated by electrolyte solution and a separator. A separator could prevent short circuit but allow ions to pass through, and consequently increased storage layers of electric charge. The separators used in this study were made from polysulfone containing CaTiO₃ 0.5, 1.0 and 2.0 wt% with perovskite properties, high dielectric constant, electrical resistivity and energy density. After that, they were built in coin-cell form. It was found from the study that the addition of 2.0 wt% CaTiO₃, the largest proportion of all samples, provided a maximum specific energy at 4.03 mWh/g and a maximum specific capacitance at 4.64 F/g. accounting for 2.17-time higher than that of polysulfone without CaTiO₃. The functional group analysis of PSF and CaTiO₃ separators showed that the increasing of CaTiO₃ in the PSF separators, the 2958 cm⁻¹ in C-H stretch peaks reduced, and consequently specific energy and specific capacitance were higher. Thus, supercapacitors with CaTiO3-filled polysulfone separators are suitable for improving efficiency of supercapacitors in energy storage from electrical supply.

1. Introduction

The constantly increasing demand for electric energy in the present world results in the need for energy storage such as batteries, capacitors and supercapacitors. The problems are that batteries require long charging time while providing short cycle time and capacitors, though can be fast charged, have low storage capacity and discharge quickly. Thus, supercapacitors with durability, faster electric charge and longer electric storage are developed. Since electrodes for supercapacitors were made from aluminum foils coated with carbon film [1,2], and separated by an electrolyte solution and a separator to prevent short circuit but allow ions to pass through, storage layers of electric charge increase when dielectric material is added to separator sheets. The added material possesses perovskite properties including catalyst, sensor and high dielectric constant. Calcium titanate (CaTiO₃) is a high-dielectric-constant substance with high electrical resistivity and high energy density [3]. Because of its wide space between the particles, CaTiO₃ allows greater amount of energy to be stored, which is called internal-barrier-layer-capacitor model. It is suitable for inventing ceramic capacitors and polymer capacitors [4] by using polysulfone-based polymers as a polymer sheet [5,6] which has low dielectric constant and porosity [7].

In this study, the researcher was interested in developing supercapacitors using CaTiO₃-filled polysulfone separators by analyzing functional groups in the separators using FT-IT techniques and

(1)

Journal of Physics: Conference Series

2145 (2022) 012041

doi:10.1088/1742-6596/2145/1/012041

oxidation numbers of Ca, Ti and O ion using XPS technique in order to increase the efficiency of supercapacitors in energy storage from electricity sources such as wind turbines and solar cells.

2. Materials and methods

In this section, the preparation of electrodes, electrolyte solution, CaTiO₃ and separators is elaborated. To prepare nano-carbon electrodes, LA 133 (Linyi Gelon LIB Co., Ltd.) was dissolved in Di water and mixed well. Then, nano-carbon was added to the LA 133 adhesive solution and stirred at 60°C for 3 hours. After that, it was poured into a 5 x 10 cm aluminum foil sheets, scrapped longitudinally and at 120°C for 30 minutes to obtain films on an aluminum sheets used as electrodes. Electrolyte solution was made of the mixture of Tetraethylammonium tetrafluoroborate with solution density at 1 M and Acetonitrile. CaTiO₃ was prepared by ball milling 1 mol calcium oxide powder with 1 mol titanate dioxide power for 6 hours and sintering at 1,000°C for 8 hours. CaTiO₃ crystal structure, then, was investigated using X-ray diffraction (XRD) (Bruker, model D2 PHASER) in the range of 10 - 80°. For separators, 15 wt% Polysulfone (PSF) was dissolved in Dimethylacetamide (DMAc) and stirred well at 60°C for 4 hours. Then, the solution was poured onto glass, scrapped using doctor blade and immersed in DI water to allow the PSF separators to have phrase transformation before they took out from the glass. The separators with 15 wt% PSF solution were filled with CaTiO₃ at 0.5, 1.0 and 2.0 wt%, respectively. Through the steps above, 4 separators were obtained. The surfaces of the separators were examined through scanned images of electrodes using Field Emission Scanning Electron Microscope (FE-SEM) (Carl Zeiss, model AURIGA), and functional group analysis was used to analyze the CaTiO₃ - filled separators using FT-IR spectrometer (PerkinElmer, model Spectrum Two). After that the oxidation state of Ca, Ti and O ion of CaTiO₃-filled separators was investigated using X-rays Photoelectron spectroscopy (XPS) technique from BL3.2a beamline at the Synchrotron Light Research Institute (SLRI), Thailand. To assemble supercapacitor, nano-carbon electrodes on aluminum foil and the separators were cut into circles with 1.6 cm and 1.8 cm diameters, respectively (see figure 1), then coin-cell were made with a hydraulic press. Their efficiency was measured with the Battery Testers System (NEWARE, model BTS 3000) by charging and discharging 10 mA current under electric potential difference (V) of 2.5 V in order to analyze specific energy (W) and calculate specific capacitance (C) as shown in equation (1).

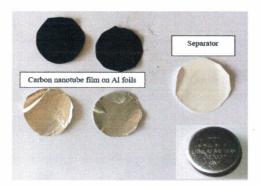
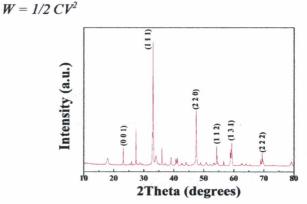
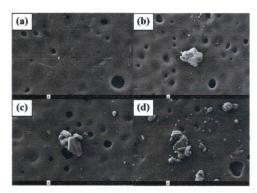



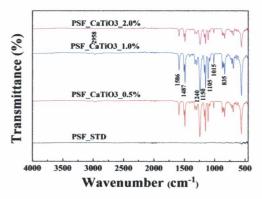
Figure 1. Nano-carbon electrodes and coin-cell separators of supercapacitors.

Figure 2. Crystal structure of CaTiO₃ from XRD technique.

3. Results and discussion


Calcium oxide and titanium dioxide in a 1:1 mole ratio was mixed and sintered at 1,000°C for 8 hours to generate CaTiO₃, then its crystal structure was examined using XRD technique as shown in figure 2. After measuring the diffraction angle 2-theta range of 10-80°, it was found that the crystal structure corresponds to CaTiO₃ (ICSD code: 031864) with planes 001, 110, 220, 112, 131 and 222. The examination of polysulfone (PSF) surface in DMAc solution as shown in figure 3(a) and polysulfone

2145 (2022) 012041


doi:10.1088/1742-6596/2145/1/012041

containing CaTiO₃ 0.5, 1.0 and 2.0 wt% as shown in figure 3(b)–(d) revealed that the increasing amount of CaTiO₃ in PSF separators results in the replacement of CaTiO₃ particles in the porosity.

The functional group analysis of PSF and CaTiO₃ separators using FT-IR spectrometer as shown in figure 4 was conducted. The results revealed no interesting peak in the PSF separators. However, for CaTiO₃-filled PSF separators, the peak at 2958 cm⁻¹ in C-H stretch, at 1589 and 1487 cm⁻¹ in C-C stretch, at 1240, 1150, 1105 and 1015 cm⁻¹ in C-N stretch and at 835 cm⁻¹ in C-H stretch were observed. Additionally, the greater amount of CaTiO₃ made all of the aforementioned peaks weaker. The analysis of XPS spectra of 2wt% CaTiO₃-filled separators as in figure 5 showed that the oxidation numbers of Ca ions were Ca2s, Ca3s Ca2p and Ca3p; those of Ti ions were Ti2p and Ti3p and those of O ions were O1s and O2s.

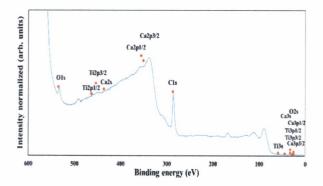


Figure 3. FE-SEM image of separators of (a) PSF (b) PSF with 0.5% CaTiO₃, (c) PSF with 1.0% CaTiO₃ and (d) PSF with 2.0% CaTiO₃.

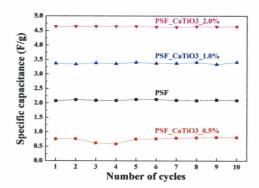


Figure 4. FT-IR spectra of CaTiO₃-filled PSF separators.

The efficiency of supercapacitor using CaTiO₃- filled PSF separators in the weight percentage of 0.5, 1.0 and 2.0 wt% to analyze specific energy (as shown in figure 5) and specific capacitance (as shown in figure 6) using Battery Testers system, brand NEWARE model BTS 3000 (as shown in table 1) was examined. The results showed that supercapacitors with PSF separators held specific energy at 1.85 mWh/g and specific capacitance at 2.13 F/g. Supercapacitors with CaTiO₃-filled separators in the weight percentage of 2.0% (PSF_CaTiO3_2.0%) generated specific energy and specific capacitance at 4.03 mWh/g and 4.64 F/g, respectively. Supercapacitors with CaTiO₃-filled separators in the weight percentage of 1.0% (PSF_CaTiO3_1.0%) generated 2.96 mWh/g of specific energy and 3.41 F/g of specific capacitance, respectively. The specific energy and specific capacitance produced by CaTiO₃-filled separators in the weight percentage of 0.5% (PSF_CaTiO3_0.5%) were the least as they were marked at 0.70 mWh/g and 0.81 F/g, respectively.

Figure 5. XPS spectra of supercapacitors with 2 wt% CaTiO₃-filled polysulfone separators.

Figure 6. Specific capacitance of supercapacitors with CaTiO₃-filled polysulfone separators.

Journal of Physics: Conference Series

2145 (2022) 012041

doi:10.1088/1742-6596/2145/1/012041

Table 1. Maximum specific energy and specific capacitance of supercapacitors with CaTiO₃-filled polysulfone separators.

Comple	Specific energy	Specific capacitance
Sample	(mWh/g)	(F/g)
PSF	1.85	2.13
PSF CaTiO3 0.5%	0.70	0.81
PSF CaTiO3 1.0%	2.96	3.41
PSF CaTiO3 2.0%	4.03	4.64

It was found from the study that the mixture of CaO and TiO₂ in a 1:1 mole ratio with sintering at 1,000°C for 8 hours to generate CaTiO₃ caused phase transformation of crystal structure. This corresponds to the crystal structure of CaTiO₃. The analysis of FE-SEM images of PSF separators from XRD technique revealed that the greater amount of CaTiO₃ replaced porosity in separators which lowered porosity and consequently increased storage layers of electric charge.

The functional group analysis of PSF and CaTiO₃ separators showed that the increasing of CaTiO₃ in the PSF separators, the 2958 cm⁻¹ in C-H stretch peaks reduced, and consequently specific energy and specific capacitance were higher. The analysis of XPS spectra of CaTiO₃-filled separators revealed the presence of Ca, Ti and O ion. It can be seen when the amount of CaTiO₃ in PSF separators increases, the amount of Ca, Ti and O increases accordingly, and this is in line with the decrease of C-H stretch peaks (2958 cm⁻¹) making energy storage more effective. Thus, supercapacitors with 2.0 wt% CaTiO₃ provided a maximum specific energy at 4.03 mWh/g and a maximum specific capacitance at 4.64 F/g accounting for 2.17-time higher than that of PSF separators without CaTiO₃, and followed by the addition of 1.0% CaTiO₃ while the addition of 0.5% CaTiO₃ could produce the least.

4. Conclusion

The addition of CaTiO₃ in PSF separators can increase storage layers of electric charge. Supercapacitors filled with 2.0% CaTiO₃ provided 2.17-time higher than the polysulfone without CaTiO₃. Thus, supercapacitors with CaTiO₃-filled polysulfone separators are suitable for improving efficiency of supercapacitors in energy storage from electrical supply and electronic devices.

Acknowledgements

This study was supported by Physics Division, Science Center, Faculty of Science and Technology, and Research and Development Institute, Phetchabun Rajabhat University which received funding from Thailand Science Research and Innovation (TSRI) under Thailand research strategy and innovation plan in the fiscal year 2020.

References

- [1] Deng M, Yang B and Hu Y 2005 J. Mater. Sci. 40 5021–23
- [2] Xiong W et al 2011 J. Power Sources 196 10461-64
- [3] Zhou H Y, Liu X Q, Zhu X L and Chen X M 2017 J. Am. Ceram. Soc. 101(5) 1999–2008
- [4] Hu Y, Zhang Y, Liu H and Zhou D 2011 Ceram. Int. 37(5) 1609–13
- [5] Chittrakarn T, Tirawanichakul Y, Sirijarukul S and Yuenyao C 2016 Surf. Coat. Tech. 296 157–63
- [6] Ruangdit S, Chittrakarn T, Anuchit S, Tirawanichakul Y and Yuenyao C 2017 *Malaysian J. Anal. Sci.* 21(2) 372–80
- [7] Zheng X, Pu Z, Hu L, Tian Y, Xia J, Cheng J and Zhong J 2019 J. Mater. Sci. Mater. Electron. 30, 18168–76