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ON A SEQUENCE OF QUASI-NONEXPANSIVE MAPPINGS IN
A GEODESIC SPACE WITH CURVATURE BOUNDED ABOVE

NAWARAT EKKARNTRONG”, NUTTAPOL PAKKARANANGT, BANCHA PANYANAK!,
AND PONGSAKORN YOTKAEW

This work 15 dedicated to the memory of Professor Wataru Takahashi

ABSTRACT. The purpose of this paper is to present O-convergence and strong
convergence theorems for guasi-nonexpansive sequences in the setting of a geo-
desic space with curvature bounded above by one. The results can be applied
to the image recovery problem for a countable family of closed convex subsets of
such spaces and also applied to the optinuzation problem for convex functions.

1. INTRODUCTION

One of the most important problems in optimization theory is the problemn of
finding a minimizer of a convex function f on a space X into (—»0,00], i.e., find
z € X such that f(z) = mingex f(y). The set of all minimizers of f is denoted by
argminy f. Let X be a positive real number and f a proper lower semicontinuous
convex function of a complete CAT(0) space X iuto (—oc, o). It is known that the
resolvent Jy, of Af given by

(1.1) Jygx = argmin {f(y} + ;.{.,(12(;11,;;)}

for € X is a well-defined nonexpansive mapping of X into itself such that the
set Fix(Jyy) of all fixed points of Jyy coincides with argminy f. In other word,
z = Jysz where A > 0 if and ouly if z € argminy f; see [2,9,23] for more details.
There have been considerably many interesting results of iterative wethods for ap-
proximating minimizers of the fanetion f. One of the most successfl methods is the
proximal point algorithm introduced by Martinet [22] and studied more generally
by Rockafellar [26], which is defined by x; € X aud

Lol = J,\,Afwn,

for n € N, where {\,} is a sequence of positive real nunbers. By using this algo-
rithm, Ba&dk {1 showed that the sequence {2,} is A-convergent to a mininizer of
fif argming f # @ and 37 | A, = oc. Later, Kimura and Kohsaka [14] obtained

2020 Muthematies Subject Classification. 4THOY, 47H10, 52A41, 90C25.

Key words and phrases. CAT(1) space, convex function, fixed point, image recovery, mintnsizer;
quasi-nonexpausive.
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A-convergence and strong convergence theorems for two variant of the proximal
point algorithm.

Ohta and Pélfia [25] showed that the resolvent Jy; given by (1.1) is still well
defined and the proximal point algorithm is A-convergent to a minimizer of [ in
a complete CAT(1) space X such that diam X < 7/2. However, it is known that
the direct application of the techuniques in CAT(0) spaces to CAT(1) spaces does
not work. For example, the resolvent Jy, is not necessary to be nonexpansive in
CAT(1) spaces.

On the other hand, Kimura and Kohsaka {13] introduced another type of resol-
vents of convex functions in an admissible complete CAT(1) space X and showed
that if f is a proper lower semicontinuous convex function of X into (-oc, oc}, then
the resolvent Ry of f given by

(1.2) Ry(a) = argmin { f(y) -+ tan d(y, x) sind(y, x)}
yeX

for € X is a well-defined and single-valued mapping of X into itself such that
Fix(Rys) = argminy f. In this case, Ry is quasi-nonexpansive, ic., d(Ryx, z) <
d(z,z) for all 2 € X and for all z € Fix(R;). They [15] and Espinola atid Nicolae 6]
also obtained a A-convergence theorem for the proximal poiut algorithm in CAT(1)
spaces. Recently, Kimura and Kohsaka [16] obtained the following convergence
theorem for the modified proximal point algorithm in CAT(1) spaces.

Theorem 1.1 ({16, Theorems 5.1 (ii) and 5.2]). Let X be an admissible complete
CAT(1) space, | a proper lower semicontinuous conver function of X wnto (o, o0
with a minimizer, R,y the resolvent of nf for alln) > 0, and {x,,} a sequence defined
by xy,u € X and
Tpal = apt © (1 - u‘n)R.\.,fxn

for n & N, where {an} is a sequence in [0,1] and {A.} is a sequence of positive
real numbers such that lim, o, = 0, Y00 ol = 00, and liminf, A, > 0. If either
{an} € [0,1) or lim, A\, = o, fimn the sequence {:r,‘} converges strongly to the
point Pu, where P denotes the metric projection of X onto argminy f.

Motivated by the previous works, we present A-convergence and strong conver-
gence theorems for quasi-nonexpansive sequences in the setting of an adwmissible
complete CAT(1) space which extend some results of [19,20]. Then we give some
their applications to optimization problems for convex functions which extend The-
orem 1.1 and some results of [1,6, 14-16]. Moreover, the results can be applied to
the image recovery problem for a countable family of closed convex subsets of an
admissible complete CAT(1) space.

2. PRELIMINARIES
Let X be a geodesic space. A geadesic triangle £(u, v, w) consists of three points

w, v, w € X «md fdl thP iumges of ecmh geodea'u part joining twa of them For a trian-

ison trmugle Afw, T, w) in ‘che umt sphere S“ in R‘ that is, each correspondmg edge
has the same length as that of original triangle. If for any p, g € A(u, v, w) and their
corresponding comparison points p,§ € O(#, 7, ), the inequality d(p, g) < dg2 (P, §)
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holds, then we call X a CAT(1) space. See [3-5,7,10,11] for more details on CAT(1)
spaces.

Let (X, d) be a CAT(1) space. Given a point ¢t € [0, 1] and two points v, w € X
such that d{v, w) < 7, we use the notation tv @ (1 — t)w for a unique point « in the
unique geodesic segment [v, w] such that

dlu, v} = (1 - t)d{v,w) and diu,w) = td(v, w).
A subset € of X is called conver if tv & (1 — )w € C for all v,w & C such that
d{v,w) < w. Recall that a CAT(1) space is admussible if d{v,w) < /2 for all
v,w € X and the diameter of X is denoted by diam X.
The following lemmas are essentially needed for our main results.

Lemma 2.1 ([17, Corollary 2.2]). Let t € [0,1] and u,v,w be three points in a
CAT(1) space (X, d) such that d(u,v) + d(v,w) + d{u,u) < 2n. Then

cosd{tv © (1 ~ t)w, u) sind(v, w)

> cos d{v, u) sin{td{v, w)) + cos d(w, w) sin{(1 — t)d{v, w)).

Let € be a closed convex subset of a complete CAT(1) space (X, d) such that
d(v,C) == mf,cc d(v,w) < 7/2 for all v € X, Then the metric projection P from
X onto € is well defined. that is, for each v € X, there exists the unique point
Pev € O satisfying

d{v, Pov) = inf_d{v,w).
wed

Lemma 2.2 ([28, Proposition 2.3]). Let X be an admissible complete CAT(1) space,
C' a nonempty closed convex subset of X, x € X and z € C. Then z = Fox if and
only if cosd(x, y) < cosd(z, z) cosd(y, z) for all y € C.

Recall that & bounded sequence {w,} in a metric space X is A-convergent to
x € X [12,21] if {z € X : lmsupy d(z, 2, ) = infyex imsup, d(y, x4,)} = {x} for
all mlbscqncuws {2y, } of {zn}. In this case, the element « is called the A-limat of
{rn}. It is known that if {x,} is a spherically bounded sequence in a CAT(1) space
X, that is,

inf lmsupd(r, x,) < 7/2,
EX  pesoo

then {z,} has a A-convergent subsequence; see [5, Corollary 4.4,

Lemma 2.3. Let X be an admissible complete CAT(1) space, C' a nonempty closed
conver subset of X, and {2,} be a sequence in X. Suppose that {x,} s a Fejér
sequence with respect to C, that s,

d(Zpgy, ¥) < d(xp,y) for alln ¢ N and for alt y ¢ C.
Then {FPowy} 1s o Cauchy sequence. Moreover, of {x,} is &-convergent to x €
and { Powy} is strongly convergent to z, then x = z
Proof. Let y € C and n,k € N. By the assumption, we have d(z,, Forn) <
d{an, y) < d{ey, y) < 7/2. It follows from Lewmima 2.2 that
cos d(rn ik, Ponir) 2 cosd(znik, Potnir) cosd(Potn, Porni)
2 cosd(Znak, Potn)

2 Cos d(wns Perry )
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As a consequence, we have d{z,, Potnak) € d(en, Pory) < d{ey, 9) < /2 and
1 .
cos d{xq, Foay)
€08 d(Tnsky Povnsk)

It then follows that o = Hm, d{z,, Poas) exists which is less than #/2. Morcover,
we have

cosd{Poen, Porpie) 2

2 d{.PCTns Poxy 'rk)
L4 4

-

2sin

= 1 ~ vcos d{ Poty, Podnsk)
cos d{y,, Peray)
cosd{Tnyp Poxair)
cos d{x,, Pox,)

& 1w

< T
COs &
cos v~ cos dxy, Pory)
COs o ’

By clementary trigonometry, it is not hard to sce that { Pox,} is a Cauchy sequence.
Now, let z be the lunit point of {FPra.} and 2 € € be the A-limit point of

2 S To. o] RPN

< hmsup(d(x,, Poza) + d(Poan. 2))

PL Ky

< N sup d(a,, 2).
T

By the unigneness of an agymptotic center of {u,}, we obtain that « = z and the
proof i finished. ]
Proposition 2.4 ({20, Proposition 3.1}). Let {z,} be a spherically bounded se-
quence of a complete CAT(1) space X. Suppose that L, d{z,,2) exists for all
z € wal{zn}), where wa({xn}) is the set of all A-limit points of {z.}. Then {x,}
A-converges to an element of wa({zn}).
Lemma 2.5 ([8, Proposition 2.3]}. Let X be a complete CAT(1) space, p € X, and
{an} be a sequence in X such that lonsup, d(xn, p) < 7/2. If {an} is H-convergent
to w € X, then
d(x,p) < liminf d(an, p).

Lemma 2.6 ({19, Lenuna 3.1}). Let X be an admissible CAT(1) space, u,v,w € X
and t € [0,1]. Then

s d{tv @ (1~ thw
s A8 )

; - dlw,u) ( cos d(v, u)
Y e RYD RIS et o 1 :
o S ? smd(v, w) tan gd(v, w) + cosd(v,w) /)’

2

where

sin((1 ~ Nd(v,w))

11— e ; LR

y sin d(“‘ u?} ef ' _7.{ i
t otherunse.
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Lemma 2.7 ({13, Lemnna 2.3]). Let u, v, w be three points in o CAT(1) space (X, d)
such thet div,u) < /2 and d{w,u) < x/2, and let t € [0,1}. Then

cosd(tv @ (1 ~ thw,u) > teosd(v,u) + (1 — t) cos d{w, u).
Moreover, we have d(tv @ (1 — t)w, u) < max{d(v,u), d{w, u)} [29, Lemma 3.4].
Lemma 2.8 ({27]). Let {an}, {cn} be sequences of nonnegative real numbers, {b,}

be a sequence of real numbers, and {0} be a sequence in [0, 1] such that 3777 ; a, =
o and 3 €, < 6. Suppose that

@it (1 =~ o )an + apby, + ¢ for alln € N,
If im supy by, < 0 for every subsequence {a;., } of {a,} satisfying

liminf(am, 41~ @my) 20,
e 2x o)

then lim,, a, = 0.

3. CONVERGENCE TIIEOREMS

Thronghonut the rest of this paper, we do assume that X is an admissible complete
CAT(1) space. A sequence {7,,} of mappings on X is said to:

e satisfy Condition (B) [24] if every A-imit of A-convergent subsequence of
{z.} belongs to M, Fix(T,) wheuever {z,} is a sequence in X such that
i, dimy, Tian) =0,

¢ he strongly quasi-nonexpanswe if {7} is a sequence of quasi-nonexpausive map-
pings and liin, d(y, Taay) = 0 whenever p € (o2, Fix(75,) and {x,} is a sequence
of X such that sup, .y d(x,, p) < 7/2 and lim, cosd(zn, p)/ cos d(Trzn,p) = 1.

Note that every nonexpansive mapping T on X is A-demiclosed, that is, the
constant sequence {T'} satisfies Condition (B). We also know that the metric pro-
jection Pe from X onto a closed convex subset (' of X is quasi-nonexpansive and A~
demiclosed. Moreover, the constant sequence {Fe:} is strongly quasi-nonexpansive;
see [19].

We first prove the following A-convergence theorew.

Theorem 3.1. Let {1} be a sequence of quasi-nenespansive mappings of X into
itself such that F = (27, Fix(T,) # @. Define a sequence {z,} in X byz; € X
ond

Tt = Tary forneN
If {Ts} s a strongly quasi-nonexpansive sequence satisfying Candition (B), then the
sequence {x,} s D-convergent to an element z of (102, Fix(T,,). Moreover, { Ppx,}
s strongly convergent to

Proof. Note that F is closed and convex. Let p € F, For each n € N, we have
d(zni1,p) = d(T%n, p) < d{z,, p).
This fmplies that sup, oy d(2a, p) < 7/2, lim, d{zy,, p) exists and

r}!{%“{d(*{:m p)— d(r 'Tnl'm}’)) =0
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Consequently, we obtain

li et =ik
n—o cos d(Ty2n, p)

Using the strong quasi-nonexpansiveness of {7),} gives
4 |
Bin d(zn, Tazn) = 0.
Y- P OO

It then follows from the condition (B) of {T,,} that wa({z,}) C F. As a consequence
of Lemma 2 .4 that {z,.} A-converges to an element = € F. Note that {x, } is a Fejér
sequence with respect to F. Hence we can conclude from Lemma 2.3 that {Ppx,}
is strongly convergent to «, and the proof is finished. 0

The following result is supplement to Theorem 3.8 of [20].
Theorem 3.2. Let {T,} be a sequence of quast-nonezpansive mappings of X inte
wself such that F = (", Fix(T,,) # @. Dcfine a sequence {x,} in X by z; € X
and
Tyl = Qpln @ (1 < ‘-"n)Tnxn forn € N,

where {o,} 18 sequences n {a, b C {0,1). If {T,.} satisfies Condition (B), then the
sequence {x,} is H-convergent to an element p € F. Moreover, {Ppx,} is strongly
convergent to p.

Proof. As an immediately consequence of Theorem 3.1 and the following lemma,
we obtain the result. 2

Lemma 3.3. Let {T,,} be a sequence of quasi-nonezpansive mappings of X into
itself such that F = (Vo Fix(T,) # @. Define a sequence {S,} of mappings on X
by
Spim and @ (L~ o )T, forneN

where {o,} € la,b) € {0,1). Then the following statements hold.

(i) {Sn} is a strongly quasi-nonerpansive sequence.

(i) If {T.} satisfies Condition (B), then so does {S,}.
Proof. (i) For each n € N, it is not hard to see that Fix(5,) = Fix(T,). Let x ¢ X
and p € Fix(5,). By Lemmma 2.7, we have

that is, S, is quasi-nonexpansive. Let {x,} be a sequence in X and p ¢ F
such that sup, yd(z.,p) < n/2 and lim, cosd(zn, p)/ cosd(Spza,p) = 1. Put
{ = limsup, d(r,, Tnz,). Note that sup, . pd(Snzy, p) < 7/2. Then there exists
a subsequence {ng} of {n} such that L d(xn,, Tn, 2n, ) = t, hg d(Sy, 20, p) =
limg d(xn, . p) = s < 7/2 and ling oy, = o € (0,1). It follows from Lemma 2.1 and
the quasi-nonexpansiveness of 7),, that

€08 d(Sy, Ty, p)sind(2n, , T, 2ny)

2 cosd(xa, , p){sin(on,d{@n, , Tn, 0, ) + 8in{(1 — o Jd(@n, T 20, )
for all k € N. Letting k -+ o¢ yields

cos ssint > cos s(sinod + sin(1l — a)t).
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As a consequence, we obtain that 1 = . Hence, we have

?‘lgxg"d(r,‘,.sn,r,,) o nlu)x;k and(zy, Tazn) = 0.

Therefore, {S,} is strongly quasi-nonexpansive.

(i1) Assume that {7} satisfies Condition (B). Let {2,} be a sequence in X and
x € X such that lim, d{x,, Sp2,) = 0 and suppose that {z,} is A-convergent to x.
Since {an} C [a,b] C (0, 1), we have liun, d(xy, Tnzn) = imp(d(2n, Spy)/on) = 0.
It follows from Condition (B} of {7.} that x € F and this completes the proof. O

We next prove the following strong convergence theorem.
¥ g 4 b4

Theorem 3.4. Let T, be a sequence of quusi-nonezpansive mappings of X into
itself such that F .= (0L, Fix(T,,) # @. Define a sequence {zn} in X by x1,u € X
and

Tngt = Fpan & (1 = 8n) (0qu® (1 — ap)Thz,) forneN,

where {a,} and {f,} are sequences in [0, 1] such that lim, o = 0, Y0 0, =
oc, and Hmsup, B, < 1. Suppose that {T,} satisfies Condition (B), and either
liminf, 3, > 0 or {7,} is strongly quasi-nonexpansive. If either diam X < 7 /2 or
Yo ol = o, then the sequence {x,} converges strongly to the poinl p = Ppu,

Proof. Note that F is closed and convex. For each n € N, yp, := 0, u @ (1 — 00 ) Ty,
and p = Ppu, It follows from Lemma 2.6 and the guasi-nonexpansiveness of 7j,
that

2 5in? f{(}{%j’l < (1~ 7,)2 sin? EI(_%LL’)
I cos d(u, p) )
L sind(u, Tyay) tan Spd(u, Tha,) + cosd{u, Thzn) /'
where .
£ sm((l:— c.'kn)d(vu,Tna:N)) Fot Tk,
Yo 1= sind{u, Thzp)
Oy otherwise.

Using this together with Lemma 2.7, we have the following estimate:
2sin? HEn1,P)

< Bn2sin’ iﬁr—:‘;—-’lﬂ + (1~ Bp)2sin? f{(%zu »)

< (1= (1~ fu)ra)zsin? HE2)

“ (:Oﬁd(uﬁp)
+ {1~ Ba)wm (1 sin d{ ) |

u, Tnzn ) tan Grd(u, Taan) + cosd(u, Than)
This implies that

Gnsy S (1 {1 - Bn)rn)an + (1 ~ :‘?n)’?'nbn
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for all n € N, where
2 s

cosd{u, p)
sind(u, T, 2,,) tan G d{u, Thxn) + cosd{u, Tzy)

Since either diamm X < 7/2 or 3729 . a2 = o0, we obtain 37 {1 — 3n)¥n = 0.
3 o el

o
To apply Lemma 2.8, it suffices to show that limsup, by, < 0 for every subse-
quenice {am, } of {a,} satisfying

li:‘i?:f(amk‘*l S (lm,k) 2 0.

Let {a,,, } be a subsequence of {a,} such that

Han inf (@, 41 = Gy ) = 0.
G

-

Using this together with Lemuna 2.7, we have
0 < Him inf (amy 41— am,)
o hl:g i)zf (cos d(@my, p) ~ cos d(zm,, . P))
< ﬁ,ﬂ, icgf (cosd(xm,, p) — (Bmy €08 d{Zmy, P) + (1 = B, ) €08 d(¥m, . 0)))
= laninf(1 — B, ) (cos d(zm,, p) — cosd(ym,, P))
i liég;’mf (1~ B, ) (cos d{zy, ; p) ~ cOBA(Tin, 2y s P))
< limsup(l - 8y, ) (cosd(rpm,,p) ~ cosd(Tm, i, 1))
<o

It follows from limsup,, 3, < 1 that

lim (F'OS d(Iﬁlk ¥ ]J) =~ £O8 d(kammk 1 p)) o 0~
ki :

By Lemma 2.7, we have d(T, 2, p) € d(2n,p) < max{d(xy,p),d(u,p)} < n/2 for
all n € N. Cousequently, we obtlain

lim cosd(xm,, p}/ cosd{Tn, Tm, ., p) = 1.
k--3oc :
If {7} is strongly quasi-nonexpansive, then
lim d{xm, , Ty 2wy ) = 0.
ks

On the other hand, assume that limiuf,, 3, > 0. Passing to a suitable subsequence
still denoted by {m}, we assume that

A= hm d{Xm,, T o, ) and g := lan 3, € (0,1).
Frrged g K-voo
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Note that lmg d(ym,, Tin,tm,) = 0 and limg cosd{em, ,p)/ cosd(zm,,,,p) = L.
Therefore, by Lemuma 2.1, we obtain

sind = lim sind(zp,,, Ty Tm, )
krmo '

Cos d('-ty"* 41 p)
e T e van
ke oS (T, p)

sin d(il:ynk 2 Y )

3 ) cos d 5 L
2 khixt}o (Su‘ /‘37?1"' d(wmh 3 yrnk) + ““"'('"y’?lbwupz 8111(1 Mg )d(wmk y Y ))

cos d(Zm, 1)
= sin BA + sin(l — g)A.
By elementary trigonometry, we have A = 0, that is,

. Y A
kl«‘-‘:; d(»’rmk 5 ’Im;,mm,,) = 0.

Let {zx} be a A-convergent subsequence of {x,,, } such that
lim d(zg, 1) = lim d{z,, u).
ks o kv
Define a sequence {wy,} in X by
T Wyny = L, for all k & N,
Wy =P otherwise.

Obviously, lim, d{wy,, Thw,) = 0. It {ollows from Condition {B) of {7,,} that the
A-limit z of {2} belongs to F. By Lexmna 2.5, the definitions of the A-limit, and
p = Ppu, we obtain

b inf d(Tn, 2y, 1) = hminf d(x,,,  u) = Hin dzg, w) 2 d(z,u) > dp,u).
koo kesnc k-2
Therefore, we have

limsup by,
k=00

= limsup { 1 ~ £, )
gy ' « e Qo , A
e sind(u, Tin, Zm, ) tan —52 d(u, Tin, Tn, ) + cosd{u, T 2m,)

cos d(u, p) )

cos d(u. 7‘1'";, Ty }

= lin sup (1 -

]

< 0.

As a result, Lemma 2.8 guarantees the strong convergence of {x,} to p, and this
completes the proof. £l

Corollary 3.5. Let {T),} be a sequence of quasi-nonexpansive mappings of X into
wself such that F := (o, Fix(T,) # @. Define a sequence {x,} in X by zq,u € X
and
Tl = Bndn @ (1 ~ Bn) (0nu @ (1 —an)Taz,) forneN,

where {an} and {3,} are sequences in [0, 1] such that limy, o, = 0, Yoo, o = 0,
and 0 < limiuf, 3, < limsup, 3, < 1. Suppose, in addition, that {T,} satisfies
Condition (B). If either dian X < #/2 or 30, o2 = oo, then the sequence {x,}
converges strongly to the point Fru.
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As an immediately consequence of Theorem 3.4, we obtain the following result
which extends Theorem 3.2 of [19].

Corollary 3.6. Let {T,.} be a sequence of quasi-nonexpansiwe mappings of X wnto
itself such that F = (. Fix(T,,) # @. Define a sequence {x,} in X by xy,u € X
and
Tnsl = U P (L~ )T, forne N,

where {,} s @ sequence in [0, 1] such that lim, a, = 0 and 3007, ay = 0o. Suppose,
in addition, that {I},} is a strongly quasi nannpansivr sequence satisfying Condition
(B). If either diam X < n/2 or 3. 10‘ = oo, then the sequence {x,} converges
strongly to the point Pgu.

4, APPLICATIONS

4.1. Application to the optimization problem. Recall that a function f: X —
(-0, 00] is proper if D(f) = {v € X : f(v) € R} # @. It is said to be conver if
flov @ (1 — a)w) < aof(v) + (1 — a)f(w) for all v,w € X, € [0,1]. It is also
said to be lower semicontinuous (N-lower semicontinuous, respectively) if f(v) <
liminf, f(vn) whenever {v,} ¢ X such that {v,} is strongly convergent to v € D(f)
({vn} 18 A-convergent to v € D([), respectively).

We know that if f is a proper, convex and lower semi-continuous function, then
it is A-lower semicontinuous (see [14]). Moreover, for each A > 0, the set F(Ryy)
of fixed points of the resolvent Ry; coincides with the set argininy f of minimizers
of f.

Lemma 4.1 ([15, Lemma 3.1}). Let A > 0 and f : X — (—oc, ] be a proper
conver and lower semi-continuous function, and Ryy be the resolvent of Af. Then

cosd(Rypx, z)cosd(Rypx, 2) > cosd(x, z)
holds for all r € X and z € argminy f.

Lemma 4.2 ({16, Lemma 3.1 (i)]). Let f: X — (—oc, o] be a proper, conver and
lower semi-continuous funchion such that argminyg f # @, and {\,} a sequence of
positive real numbers. If imiuf, A, > 0, that {Ry, s} satisfies Condition (B).

Remark 4.3 (see also [16, Lemma 3.2]). Let f: X -3 (-0, 0¢] be a proper, convex
and lower semi-continuouns function such that argminy f # @, and {A,} a sequence
of positive real mnmbers. By Lemma 4.1, we have that R, s is quasi-nonexpansive
for all n € N. Let {2} be a sequence in X and p € (o Fix(Ry, ) = argminy f
such that sup, ey d(2n, p) < /2 and

_cosd(xn,p) o
n-330 COS d(ﬁ;"[ nn,p) .
It follows Lewma 4.1 that
Cos d(An . p)
hu IR s o) 2 Himo- et 2
1 H)b(( Anf T Jf:) tcc C(Nd(R)t"fJn,ﬂ)
Consequently, we obtain

S d(Ry, jn, 2a) = 0.

Henee {Ry, s} is a strongly quasi-nonexpansive sequence.
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As a result of Theorerm 3.1, we obtain a O-convergence theorem for the proximal
point algorithm.

Theorem 4.4. Let [+ X - (~00, 00| be @ proper, conver and lower semi-continuous
function such that argming [ # @, and {A,} a sequence of positive real numbers,
Define a sequence {z,} in X by xy € X and

Eusi = B, 20 forneN

If imind,, A, > 0, then the sequence {x,} s /s-convergent an element z of argminy f.
Moreover, { Pux,} s strongly convergent to z, where P denotes the metric projection
of X onto argininy f.

As a consequence of Theorem 3.4, we also obtain a strong convergence theorem
which improves Theorems 5.1 (ii) and 5.2 of [16] (see Theorem 1.1).

Theorem 4.5. Let f : X - (~oc, 20| be a proper, conver and lower semi-continuous
function such that argmin [ # @, end {A\,} a sequence of posttive real numbers, De-
fine a sequence {xn} n X by r1,u € X and

Tuil = 00U ® (1 —an) Ry son  forn €N,

where {o, } ts @ sequence in [0, 1] such that limy, on, = 0 and 3777 ay, = o0, Suppose,
in addition, that either diam X < x/2 or 3.7, o2 = oc. If iminf, A, > 0, then
the sequence {x,} converges strongly to the point Pu, where P denotes the metric
prajection of X onto argminy f.

4.2, Application to the image recovery problem. We know that the image
recovery problem in a Hilbert space can be formulated as to find the nearest point in
the intersection of a family of closed convex subsets. In this section, we generate an
iterative sequence converging to the nearest point in the intersection of a countable
family of closed convex subsets of a complete CAT(1) space from a given point by
using the metric projection of each subsets.

In the following lemina, we show how to generate a conntable family of the metric
projections satisfying Condition (B).

Lemma 4.6. Let {C.} be a countable family of closed conver subsets of X such
that (Voo Cn # @, and P, be the metric projection from X onto Cy, for alln € N.
Define a sequence {Sn} of mappings on X by

Sy = Pey;

» 1 1.

Sy 1= 5 Fe, ® 5Fcy;

T W4 A

S3:= 5Pey ® 5 (:z-p y © -ip(fa) ;

(%!
-
i

1 Y 21 1 171 1
o P e o Py @ ome Fiii @ § S P ek .
5 Fe @ 5 (21’(,;02 ( @3 (21’(,,...; 21,6'") ))

Then the sequence {S,.} ts a sequence of quasi-nonerpansive mappings and satisfies

Condition (B).
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To prove Lemma 4.6, we need the following lenuna.
Lemma 4.7 ([18]). Let S and T' be quasi-nonexpansive mappings on X such that
Pix(8)NFix(T) # &. Then, for eacht € (0,1), Fix((S® (1 - )7") = Fix(S)NFix(T")
and the mapping 1.5 @ (1 — )T 1s quasi-noncrpansive.
Proof of Lemvma 4.6. Note that the metric projection P, is quasi-nonexpansive
and A-demiclosed for all n ¢ N. By Lemma 4.7, we have that S8, is qnaai—
nonexpansive for all n € N such that ;2 ; Fix(8,,) = 1 Fix(Pe. ) = (X5, Ca #
@. Let {x,} is a sequence in X and p € (2, O, such that limsup,, d{zy,, p) < wf2
and

lim d{ay, Spzn) = 0.
[ 45

Let z be the A-limit of {x,}. For each & € N, put U, ,Ekb) 1= Py and

1 171 1 1/1 1
k. P BOC (S » 20 gy s ] by - N i R
Un = 5F0 @3 (21)‘**‘“ ®3 ( 93 (2})’-’""“ 2 2}”’") ))

for all n > k. Note that UF is quiasi-nonexpansive for all k¥ ¢ N and n > k. Then
we have the following estimates:

cosd(Spuen, p)sind (P'(vl Ll V )
= cosd ( Po,z, ® U“)fmp) sind (R ‘r,.,Ln 5 )
d (PC) Ly (]7{12)3%)
2
([C 1 ¥, (—’v(ag)xn)
2

.4 (t 08 d{P¢, v, p) + cos d(U 2)"“”)) g

> (cos d{zy, p) + cosd(z,, p)) sin

d (PC! Ty ng) 1-'7;)
2

= 2 cos d(@y, p) sin
for all n € N. This iimplies that
. i,
i d (P(’:l 'X‘YH Vn ":ﬂ) > Cos d(zn’ p)
T0S
2 ~ cos d{SyTn, p)

for all n € N. Since lim,, d(x,, Sp2,) = 0 and limsup,, d(z,,p) < x/2,

n-420 COS d(;"nﬂnyp)

d (Fern Vi) d

: htw V" an ; COS d{ Ly, p
lim cos lin — n:P)
b 00 2

Consequently, we obtain
"lex;m dixn, Poin) € lim (d(z:n, Snuzn) + d(Sntn, Po,24))
o (d(.Ln Spn) + d(v(%,,,PC x ))

n-mc

= (.
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It follows from Condition (B) of {Fr } that 2 € Fix(Pg, ). We also have
lim d(2n, V) < T (dlwa, Spzn) + d(Snn, ViP20) )
LR 2w v bR 2 o3

IA

%
i

lim (d(zn,S,,w,.) + %d(Pa,.cmV'fZM:,,))

=
=0,
Continuing this procedure gives « ¢ o2, Fix(Fg, ), that is, {9, } satisfies Condition
(B). 0

Using Lemuna 4.6 together with Theorem 3.1, we obtain the following result.

Theorem 4.8. Let {Cn} be a countable family of closed convex subsets of X such
that (Voo Cy # @, and {Sn} be as in Lemma {.6. Define a sequence {x,} m X by
xy € X and

Tptl = Wy @ (1 — o) S0y forn e N,

where {tx,} is a sequence in [a,b] C (0,1). Then the sequence {uy} is O-convergent
to an element z of (oo ; Cn. Moreover, {Px,} is strongly convergent to z, where P
denotes the metric projection of X onto [\, Cp.

As a consequence of Theorem 3.4 and Lemma 4.6, we obtain a strong convergence
theorem for image recovery problem for a conntable family of closed convex subsets
of the space.

Theorem 4.9. Let {C,} be a countable family of closed convex subsets of X such
that (Nooy Cy # @, and {Sp} be as in Lemma 4.6. Define a sequence {x,,} in X by
ri,u € X and

Tnv1 = Butn @ (1=~ Bn) (0nu @ (1~ an)Sazn)  forn €N,

where {an} and {B,} are sequences in [0, 1] such that lim, o, = 0, 300, an = 00,
and {8n} C la,b] C (0,1). If cither M < 7/2 or 3_o° a2 = o, then the sequence
{#n} converges strongly to Pp= ¢, u.
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