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Halpern subgradient extragradient algorithm for solving
quasimonotone variational inequality problems

PONGSAKORN YOTKAEW1, HAB1B UR REHMAN 2, BANCHA PANYANAK 3"4 and
NUTTAPOL PAKKARANANG5'*

ABSTRACT. In this paper, we study the numerical solution of the variational inequalities involving quasi-
monotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by
the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solu-
tion. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step
size rule based on operator knowledge rather than its Lipschitz constant or some other line search method.

1
.
 Introduction

Assume that £ is a real Hilbert space and JC be a nonempty closed convex subset of £.
Let C : £ -> £ be an operator. The problem (VIP) for £ on AT is defined as follows [17, 24]:

(VIP) Find x* € K such that (C(x*),y - x*) >0, Vy € JC.

Our main concern here is to study the iterative methods that are used to approximate
the solution of the variational inequality problem (shortly, VIP) involving quasimonotone
operators in any real Hilbert space. In order to prove the strong convergence, it is consid-
ered that the following conditions have been satisfied:

(£1) The solution set of a problem (VIP) is denoted by VI(JC, C) and it is nonempty;
(C2) An operator C : £ -> £ is said to be quasimonotone if

(QM) (C(yi),y2 - yi) > 0 => (C(y2),yi - yi) < 0, Vyi,y2 e JC-,
(£3) An operator C : £ -» £ is said to be Lipschitz continuous if there exists a constant

L > 0 such that

(LC) \\£(yi) ~ £( 2)11 < L\\Vi ~ 021|, Vyi,y2 <E JC-

(£4) An operator C : £ -» £ is said to be sequentially weakly continuous if {£(i„)} con-
verges weakly to C(x) for each sequence {xn} converges weakly to x.

It is well-established that the problem (VIP) is an important problem in the field of non-
linear analysis. It is an important mathematical model that unifies many crucial concepts
in applied mathematics, such as a nonlinear system of equation, optimization conditions
for problems with the optimization problems, the complementarity problems, the net-
work equilibrium problems and finance (see for more details [8, 12,13,15,16, 21, 25]). As

Received: 30.03.2021. In revised form: 09.08.2021. Accepted. 16.09.2021
2010 Mathematics Subject Classification. 47J25, 47H05, 47H10, 90C2, 47J25.
Key words and phrases. Subgradient extragradient method, Variational inequality problem, Strong convergence

theorems, Quasimonotone mapping, Lipschitz continuity.
Corresponding author: Nuttapol Pakkaranang; nuttapol.pak@pcru.ac.th
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a consequence, this concept has various applications in the field of engineering, mathe-
matical programming, network economics, transport analysis, game theory and computer
science.

The regularized and the projection methods are two prominent and general iterative
schemes to approximate a solution to the variational inequalities. It is also noted that the
first approach is most commonly used to solve variational inequalities accompanied by
the class of monotone operators. The regularized subproblem in this method is strongly
monotone and its unique solution exists more conveniently than the initial problem. In
this paper, we look at some well-known projection methods that are well-known for their
ease of numerical computation. The first well-known projection method is the gradi-
ent projection method that is used to solve variational inequalities. Moreover, several
other projection methods have been established including the well-known extragradient
method [18] the subgradient extragradient method [4, 5] and others in [6, 26, 20, 30, 11]
and others in [22, 7, 23,14, 9, 27, 28, 2,1, 10]. The above numerical techniques are used to
examine the variational inequalities involving monotone, strongly monotone, or inverse
monotone. The common feature of these methods is that fixed or variable step size rules
are frequently used in constructing approximation solutions and establishing their con-
vergence, depending on the Lipschitz constant of the involved operator. This can limit
implementations because these parameters may be undefined or difficult to approximate
in some situations.

The aim of this paper is to examine the quasimonotone variational inequalities in infinite-
dimensional Hilbert space and to verify that the iterative sequence proposed by the extra-
gradient algorithm for solving quasimonotone variational inequalities converges strongly
to a solution. The proposed subgradient extragradient algorithm uses both the monotone
and the new non-monotone variable step size rule.

The paper is arranged in the following manner. In Sect. 2, some preliminary results
were presented. Sect. 3 gives two new algorithms and their convergence analysis. Finally,
Sect. 4 gives some numerical results to explain the practical efficiency of the proposed
methods.

2
.
 Preliminaries

For all x„y & £, we have

\\x + y\\2 = ||x||2 + 2(x, y) + \\y\\2.

A metric projection Pjcivi) °f Vi e £ is defined by

Pfc(yl) = argmindly! - y2\\ : y2 G K-}.

Lemma 2.1. [3] For all yi,y2 £ £ and f € R. Then

(i) \\{yi + (1 - 0?/2||2 = (\\yi\\2 + (1 - OWvAl'2 - (1 - f)\\yi - </2||a-
(ii) \\yi +V2\\2 < 11 1 II2 + 2(y2,yi + y2)

Lemma 2.2. [29] Let {pn} c [0. +00) be a sequence such that

Pn+1 < (1 - qn)Pn + Qn n j V n E N.

Moreover, two sequences {qn} C (0,1) and {rn} c R satisfying the following conditions:
+00

lim qn = 0, y qn = +oo and limsuprn < 0.
Z-\ n- +00
n=1

Then, limn_,.+oc pn = 0.
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Lemma 2.3. [19] Let {pn} be a sequence and there exists a subsequence {n*} of{n} such that

Pm < Pnt+1, VieN.

Then, there exists a nondecreasing sequence rrik C N such that rrik -> +oo as k -» +oc, and
satisfying the following inequality for k e N:

Pmk S
'

 Pmk+1 andpk < Pmk + 1-

Indeed, rrik = max{j < k : pj < Pj+i}-

3
.
 Main results

In this section, we propose an initial method to solve quasimonotone variational in-
equalities in real Hilbert spaces and prove a strong convergence result for the proposed
method. The first method involves the monotonic self-adaptive step rule to make the
method independent of the Lipschitz constant. The first method is written as follows:

Algorithm 1 (Monotonic Explicit Halpern-Type Subgradient Extragradient Method)

Step 0: Let x\ e /C, p\ > 0, p £ (0,1) and {7n} C (0,1) meet the following conditions:
+00

lim = 0 and > 7„ = +00.
n-y+00 Z-'

71= 1

Step 1: Compute yn = Pic(xn - pnC{xn)). If xn = yn, STOP. Otherwise, go to Step 2.
Step 2: Compute = PSn

(xn - pnC{yn)) where

£n - {z £ £ . (xn pn£(;rn) yn, z yn)  0}.

Step 3: Compute xn+i = -ynxi + (1 - jn)zn.
Step 4: Compute

(3.1) ,„+1 = (mi" } '' iC(Xn) - C(y')'2n - y') > °'
otherwise.

Set n .- n + 1 and go back to Step 1.

Lemma 3.4. A sequence {pn} generated by (3.1) is monotonically decreasing and convergent.

Proof. Due to the Lipschitz continuity of a mapping £ there exists a fixed number L > 0.
Suppose that (£(x„) - C{yn), zn - yn) > 0 such that

A dl re Vn || W n Vn\\ )  2/i||xn - yn|||| n Vn II
2{C{xn) - C(yn),zn-yn) 

~

 2\\£(xn) - C(yn)\\\\zn - yn\\

 2) > 
~ yrtllll n ~~ j/n||  P

_

2Z/||xn yn || \\zn yn || L

We can easily determine that the sequence {pn } is bounded and monotonically decreasing.
Hence, sequence {/?„} is convergent to some p > 0. 

Lemma 3.5. Let £:£-*£ be an operator satisfies the conditions (£l)-(£4). For x* e

VI(JC, C)  0, we have

T
*l|2 < ll-r - T* II2- L1Pn

I I %JU yi a/ I
l \ i| ||2 (i PPti \ || |
_ ) ll®« Vn || (1 ) H n Vn \

Pn+1f \ Pn+l'
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Proof. Now consider that

II zn - x*\\2 = \\P£n [xri - pnC{yn)\ - x*\\2
= Pn iVn)] ~l~ fen PnJ~-{yn)\ fen Pn iVn)] % ||

= || fen Pn (j/n)] % || "I" H- fn fen Pn£(Vn)\ ~~ fen Pn ilJn)] ||
(3.3) + 2(Pfn [xn pn£(yn)] fen ~ Pn £(?/«.)]) fen Pn£(

.

yn)\ X

By using x* G VI(JC, C) C JC C £n, we get
2

11 n Pn£-iyn)\ fen Pn- (Z/n)]||
~l~ [®n Pn-£(?/n)] [- n Pn (?/n)]) [ n Pn -(?/n)]  )

(3-4) = (jxn - Pn£{yn)\ P£nfen Pn£(Vn)\i % En fen Pn (j/n)]) S; 0-

Thus, above expression implies that

fen Pn (2/n)] [ n Pn (2/n)]) [- n Pn- (yn)] **" }

(3.5) < -||P£T„[xn - P„£(yn)] - [xn - pnC(yn)\||
2

.

From expressions (3.3) and (3.5), we obtain

ll n  II - \\%n Pn iVn) *  || ~~ 11  Pn£{jjn)\ [* n Pn (Z/n)]||
(3.6) < ||xn - x*||2 - \\xn - 2n||2 + 2pn(C(yn),x* - zn).

Since x* is the solution of problem (VIP), we have

(£(x*), y - x*) > 0, for all y G JC.

Due to the mapping £ on JC, we obtain

(C(y),y- x*) > 0, for all y G JC.

By substituting y = yn G JC, we get

{£(yn),yn ~ x*) > 0.

Thus, we have

(3* 0 ( i Jn) .> % n) % 2/n) Vn  Vn %n)

Combining expressions (3.6) and (3.7), we obtain

\\ n & || - \\%n  || || n %n || ~t~ 2pn £(yn), yn Zri)
- || n  || ||* n Vn ~t~ Vn n|| "I" Pn { (j/n)? 2/n

0*®)  ||* n  II || n Vn \| || Vn %n II Pn ijjn) Vnt - n

Note that zn = P
n

[xn - pn£(2/n)] and by the definition of pn+i, we have

pTi
C
,{lJn) Vn-) %n ?/n)

2 Xn pn/2(xr 2/n.j 2/n) ~i~ 2pn £(xn) £(t/n)5 -2-n Vn}
< _ _2pn+1(£(xn) - £(yn),2n - 2/n>

Pn+l

(3.9) < - -||:rn - yn||2 + - -\\zn - yn||2.
Pn+l Pn+l
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Combining expressions (3.8) and (3.9), we obtain

\\Zn-X*f

 || %n X || || n VnW || Un ~n|| [/ ll 'n 2mH A'll n 2/rt 11 ]
Pn+l

(3.10) < ||a:n -x*\\2 - (l - -)\\xn - yn||2 - (l - - -\\\zn - yn||2.
 Pn+  Pti+

Lemma 3.6. Let £ : £ -  £ be an operator satisfying the conditions (£l)-(£4). If there exists a
subsequence {xnk} weakly convergent to x and linifc- oc \\xnk - yUk || = 0. Then, x is the solution

of the problem (VIP).

Proof. Since {xnk} weakly convergent to x and due to lim oo - ynk || = 0, sequence
{ynk} also weakly convergent to x. Next, we need to prove that x e VI(IC, C). Indeed, we
have

Vnk = Pic[Xnk - pnkC(xnk)\
that is equivalent to

(3.11) (xnk - pnkC{:r„J -ynk,y-ynk) < 0, \/y e >C.

The inequality mentioned above implies that

(3-12) (xnk ~ ynk,y ~ynk) < Pnk(£(xnk),y-ynk), VyG/C.
Thus, we obtain

(3.13) - {xnk - ynk,y - ynk) + (C(xnk),y.nk - xnk) < {C(xnk),y -xnk), VyeL
Pnk

Since min { jr, Pi} < p < Pi and {xnfc} is a bounded sequence. By the use of lim oo ||a:nfc 
-

Unk II = 0 and k -> oo in expression (3.13), we obtain

(3.14) lira inf(£(xnfc), y - xnk) > 0, Vy G /C.
k->oo

Moreover, we have

{£(ynh),y- Vnk)

(3.15) (C.(ynk ) £-{Xnk \y Xnk) ~\~ (£{xnk) i V Xnk) + ( (2/rifc)) Xnk Vnk) 

Since limfe-  ||xnfc - ynk || = 0 and C is L-Lipschitz continuity on £ implies that

(3.16) lim \\C(xnk) - C(ynk)\\ = 0,
AC->OC

which together with expressions (3.15) and (3.16), we obtain

(3.17) lim mf(C(ynk), y - ynk) > 0, Vy G /C
K- OO

To prove further, let us take a positive sequence {e } that is convergent to zero and de-
creasing. For each {e } we denote by rrik the smallest positive integer such that

(3.18) (C(xni),y - xni) + efc > 0, Vi > mk

where the existence of rrik follows from expression (3.17). Since {e } is decreasing and it
is easy to see that the sequence rrik is increasing.
Case I: If there is a subsequence {xnmfe } of { nmfc } such that C{xUrnk ) = 0 (Vj). Let
j -> oo, we obtain

(3.19) {C(x),y ~ x) = lim {C{xn ),y-x) = 0.
J - OO Kj

Thus, ie/C and imply that x G VI(JC, £).
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Case II: If there exists No £ N such that for all nmk > No, C{xn.
mk

)  0. Consider that

*3-2Q) *- - mtjr'*"-*£
Due to the above definition, we obtain

(3-21) (C{xnmk),Tnmk) = 1, Vnm(t > N0.
Moreover, expressions (3.18) and (3.21) for all nmk > N0, we have

(3.22) V + £k~£nrnk ~ Xnmk) > 0.
Since £ is quasimonotone, then

(3.23) + €k nm
k )) y + ffc nTrlfc _ Xnr„k } > 0.

For all nmk > Nq, we have

(3.24) (.C(y),y-xnrn
k) > (C(y) - C(y + ekT„mJ, y + efcT„mfc - xnmfe)- efc(£(?/), T„mfc).

Due to {xnfc} weakly converges to x £ K, through £ is sequentially weakly continuous on
the set /C, we get {C(xnk)} weakly converges to C(x). Suppose that £(x) 7  0, we have

(3.25) ||£(®)|| < iiminf ||£(®nfc)||.
k-> 00

Since {xnmk } C {xn)c} and limfc_,.oo efc = 0, we have

(3.26) 0 < lim ||efcTn || = lim gff
-ttt < ° = 0.

fc -oo fc -oo ||£(xn
mfc

)|| ||£(x)||

Next, consider fc -> 00 in (3.24), we obtain

(3.27) (C(y),y-x)>0,\/yelC.

Let x £ AC be arbitrary element and for 0 < A < 1, let

(3.28) x\ = Ax + (1 - X)x.

Then x\ £ AC and from (3.27) we have

(3.29) \(T(x\),x - x) > 0.
Thus, we have

(3.30) (T(x\),x - x) > 0.
Let A -> 0. Then x\ x along a line segment. By the continuity of an operator, T{x\)
converges to T(x) as A -» D. It follows from (3.30) that

(3.31) (T(x),x - x) > 0.
Therefore, x is a solution of the problem (VIP). 

Theorem 3.1. Let £ : £ -» £ be an operator satisfies the conditions (£l)-(£4). Then, the
sequence {xn } generated by the Algorithm 1 converges strongly to a solution x* £ VIOC, £).

Proof.
 From Lemma 3.5

, we have

(3.32) \\zn - x* ||2 < \\xn - x*||2, Vn>ni.

Since pn -» p, thus there exists a fixed number e £ (0,1 - p) such that

lim
n->00

(l_WrL\ =1 . >,>0.

 Pn-\-1 '
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Thus, there exists a finite number r%\ G N such that

n i.(3.33) (l - ~ L) > e > 0, Vn >
 Pn+1'

By the use of definition of {xn+\} we obtain

||xn+i - ®*|| = \\(XnXi + (1 - an)zn - x*||
= ||o!n[x\ - x

*] + (1 - an)[zn - x*]||
(3.34) < an||xi - x*|| + (1 - an)||zn - x*||.

Combining expressions (3.33) and (3.34), we obtain

||xn+i - x*|| < c*n||xi - x*|| + (1 - an)\\xn - x*||.

< max | ||zi - x* ||, ||x„ - x*

(3.35) < max | ||xi - x* ||, ||xni - x*
Thus, we conclude that {x„} is a bounded sequence. By using Lemma 2.1 (i), we have

||xn+i - x*|| = ||ctnxi + (1 - an)zn - x*||2
= ||an[x] - X

*] + (1 - an)[zn - x*]||2
= an||xi - X

*||3 + (1 - otn)\\zn - x*||2 - an(l - Qn)||xi - z, 112

< ocn|]xi - x*||2 + (1 - an) \\xn - x
*||2 - (l - Pn )
 Pn-\-1 '

n||

2
I%n Vn I

(l - IIzn - yn||21 - an(l - an)||xi - znII
V On

-H /

2

Pn+1

< Qn||xi - X
*||2 + ||xn - X*||2

71 Vn(3.36) - (1 - an)(\ - - !L)||xri - yn\\i - (1 - an)(l - ||z
 Pn+1'  Pn+1'

The above relation implies that

(1 - a„)(l - \\Xn _ yn||2 + (l _ an)( 1 - - !L)||zn - yn||2
 Pn+1'  Pn+1'

(3.37) < an||xi - x* ||2 + ||xn - x* ||2 - ||xn+i - x* ||2.

From Lemma 2.1
, we have

||arn+i - x*||2 = ||q„xi + (1 - an)zn - x* ||2
= ||o:n[xi - x

*] + (1 - an)[zn - x*]||2
< (1 - c*n)2\\zn - x

*||2 + 2a„(xi - x*, (1 - an)[zn - x*} + an[xi - x*])
= (1 - atn)2\\zn ~ x

*\\2 + 2an{xy - x*,Xn+l - X*)
(3.38) < (1 - £*n)||x„ - x*||2 + 2an(xi - x*,xn+i - x*}.

Case 1: Assume that there exists a fixed number n2 € N such that

(3.39) ||xn+i - x*|| < ||xn - x*||, Vn > n2.
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Thus, the above expression implies that limn oo ||xn - x*|| exists and let lim™-,.  ||xn -
x
*|| = I. From expression (3.37), we have

(1 -«n)( 1 - ~ 1L)\\xn -yn II2 + (1 -Qn)(l - -\\\zn -yn II2
 Pn+X '  Pn+X '

(3.40) < an||xi - x*||2 + \\xn - x*\\2 - ||xn+i - x*\\2.

The existence of limn-  \\xn - x*|| = I, and an -» 0 we can deduce that

(3.41) lim ||xn - yn|| = lim ||,zn - yn|| = 0.
n->-oo n-Voo

It follows that

(3.42) lim \\xn-zn\\< lim \\xn - yn\\ + lim ||j/n - zn\\ = 0.
n-  oo n-voo n->-00

Furthermore, we obtain

11 n+l || - ll n l (1 ) Zn n||
= ||an[xi - xn] + (1 - an)[zn - x„]||

(3.43)  an ||xi 3-n 11  (1- ) 11 2n. rc 11 .
It follows that

(3.44) lim ||xn+i -x„|| =0.
n-  oo

Since {xn} is bounded sequence and there exists a subsequence {xnA.} that converges
weakly to some x <5 £. By using Lemma 3.6, we have

lim sup(xi - x*, xn - x
*)

n-too

(3.45) = limsup(xj - x*,xnk - x*) = (a?! - x*,x - x*) < 0.
k-y oo

Since x* = Pvi(k,£)(X~l)- Thus, we have

(3.46) <xi - x*, y - x*) < 0, V y G VJ(/C, C).

Combining expressions (3.45) and (3.46), we obtain

limsup(xi - x*,xn+i -x
*)

n->oo

(3.47) < limsup(xi - £*, 71+1 - Xn) + limsup(xi - x*,xn - x*) < 0.
n-¥ oo n-too

Case 2: Assume that there exists a subsequence {7 } of {n} such that

||x„i - X* II < ||xni+1 - X*II, Vi e N.

Thus, by Lemma 2.3 there exists a sequence {mk} c N as {mk} -> 00, such that

(3.48) ||xmfc - x*|| < \\xrrik+l - x*\\ and ||xfc - x*|| < ||xmfe+1 - x*||, for all fceN.

Similar to Case 1 and expression (3.37) provides that

(1 -amj(l - -y„„||J + (l )(l - -)\\zmt - ymif
V Pmk +1' V Pmk +

(3.49) < amJ|xi - X*II3 + 11xmic -x*||2 - \\xmk+1 -x*||2.
Due to amk -> 0

, we deduce the following results:

(3-50) lim ||xmfc -ymk\| = lim ||*mfc - ymk\I =0.
n->-oo 71->. oo
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Next, we can obtain

II TOfc + l _ Xmk II = + (1 ~ 0mk)Zmk ~ Xmk ||
= 11Qmk \%1 ~ Xmk] + (1 _ _ mjJH

(3.51) < 11 .*1 1 Xmk \ \ (1 mk) 11 Zmk Xmk |  0.
We use the same argument as in Case 1, which is as follows:

(3.52) limsup(xi - x*,xmk+i - x*) < 0.
k-¥ ooNow, using expressions (3.38), we have||«£mfc + l % || - (1 rrifc) || rafc || ~t~ (X\ X , Xrnk-\-\ X )(3.53) < (1 Q'm/c) + l  || (« 1 & ? mfc + 1 % )

It continues from that

(3.54) ll mfc+1 - X* ||2 < 2(xi - x*,xmk+1 
- X

*).

Thus, expressions (3.47) and (3.54) implies that

(3.55) ||xmfc+i - x*||2 -> 0, as k -> oo.

It implies that

(3.56) lim ||xfc - x*|| < lim ||xmfc+i - x* ||2 < 0.
n- oo n-y oo

Consequently, xn -> x*. This completes the proof of the theorem. 

Now, we propose a second variant of tne tirst method to solve quasimonotone vari-
ational inequalities in real Hilbert spaces and prove a strong convergence result for the
proposed method. The second method involves a non-monotonic self adaptive step rule
to make the method independent of the Lipschitz constant. The second method is written
as follows:

Algorithm 2 (Non-Monotonic Explicit Halpern-Type Subgradient Extragradient Method)

Step 0: Let x\ G /C, pi > 0, p G (0,1) and sequence { n} satisfying Xln=i < +oo.

Moreover, {7„} C (0,1) satisfying the following conditions:
+ 00

lim 7n = 0 and -yn = +oo.
71->- + 00 J

71= 1

Step 1: Compute yn - Pic{xn - pnC(xn)). If xn = yn, STOP. Otherwise, go to Step 2.
Step 2: Compute zn = P£

n(xn - pnC(yn)) where
Sn - {z G £ : (xn pn£(xn") yn, z yn) 0}.

Step 3: Compute xn+1 = jnxi + (1 - 7n)zn.
Step 4: Compute

(3.57)

_

 Jmin [pn + pn, 2?) "'!",,' ,''""y",C1 } if (C(xn)-C(yn),zn-yn)> 0,
Pn+l - * I

. £{yn)iZn VnJ J
pn + ipn, otherwise.

Set n := n + 1 and go back to Step 1.
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Lemma 3.7. A sequence {pn} generated by (3.57) is convergent to p and satisfying the following
inequality

+ 00

min { >Pi} < Pn < Pi + P where P = tpn.
71=1

Proof. Due to the Lipschitz continuity of a mapping £ there exists a fixed number L > 0.
Consider that {£(xn) - £{yn), zn - yn) > 0, implies that

//(|| Xn 2/7-111 "I" || Zn yn || )  2/J,\\xn ynllll- n 2/n 11
l(

K£{xn) - £{yn)? %n ~ Un) 2||£(xn) £{yn)||\\zn J/„||

3 5gx > 2/z|\xn - yn\\\\Zn ~ Vn\\ > P

2L\\xn ynllll n Vn\\ IJ

By using mathematical induction on the definition of pn+\, we have

min | j-

, pi | < pn < p\ + P.
Let [pn+1 - pn]+ = max {0, pn+i - pn} and [pn+i - pn]~ = max {0,-(pn+1 - Pn)}- From
the definition of {pn}, we have

+00 +00

(3.59) {pn+l ~ Pn)+ = 2 ™&X {°>Pn+l ~ Pn) < P < +°0.
n=l n=1

+00

That is, the series J(/3n+1 - pn)+ is convergent. Next, we need to prove the convergence
71=1

+ OO -f- OO

of \ (pn+1 - Pn)~ Let 2
_,

(Pn+i ~ Pn)~ = +°o. Due to the reason that pn+l - pn =
71=1 71=1

(pn+l - Pn)+ - (Pn+1 - pn)~  Thus, we have
k k k

(3.60) Pk+1 Pi =  (Pn+1 Pn) -   (Pn+l Pn)  (Prt+1 Pn)
n=0 n=0 n=0

By allowing k -> +00 in (3.60), we have pk -> -00 as k -> 00. This is a contradiction. Due
k k

to the convergence of the series (pn+1 - pn)+ and (/?n+i - pn)~ taking k -> +00 in
71 = 0 71=0

(3.60), we obtain liir oo pn = p. This completes the proof. 

Theorem 3.2. Let a mapping £ : £ ->. £ satisfies the condition (£l)-(£4). Then, the sequence
{xn} generated by the Algorithm 2 converges strongly to a solution of VI (JC. £).

Proof. The proof is the same as of Theorem 3.1. 

4
. Numerical Illustrations

The computational results of the proposed schemes are described in this section and
study how variations in control parameters affect the numerical effectiveness of the pro-
posed algorithms. All computations are done in MATLAB R2018b and run on HP i 5
Core(TM)i5-6200 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let £ = l2 be a real Hilbert space with sequences of real numbers satisfying the
following condition

(4-61) ||xi ||2 + 113 21|2 + . . . + ||xn||2 + . . . < +OO.
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Assume that operator C : K. -> /C is defined by

G(x) = (5 - ||x||)x, Vi G £

where K. = {x € £ : ||x|| < 3}. It is easy to see that C is weakly sequentially continuous on £ and
VI()C,C) = {0}. Foranyx,y € £, we have

||£(x) - £(y)|| = ||(5 - ||x||)x - (5 - ||y||)y||
= ||5(x - y) - ||as||(a: - y) - (||x|| - \\y\\)y\\
< 5||x - y\\ + ||x||||x - y\\ + |||x|| - llt/lllllj/H
< 5||x - y|| + 3||x - y\\ + 3||x - y||

(4.62) <ll||x-y||.

Hence C is L-Lipschitz continuous with L = 11. For any x, y € £ and let (C(x), y - x) > 0 such
that

(5 - \\x\\)(x,y - x) > 0.

Since ||x|| < 3 implies that

(x,y - x) > 0.

Thus, we have

(C{y),y-x) = (5- \\y\\)(y,y - x)
> (5 - \\y\\)(y,y- x) - (5 - ||y||)<x,y- x)

(4.63) > 2||x - y\\2 > 0.

Thus, we shown that C is quasimonotone on JC. Let x = (§, 0,0, . . . , 0,  . .) and y = (3,0,0, 
. . . ,0, . . .),

we have

(C(x) - C(y),x - y) = (2.5 - 3)3 < 0.

A projection on the set C is computed explicitly as follows:

x if ||x|| < 3,
Pc(x) -

jmr, otherwise.

Numerical results are shown in Figures 1 and 2 and Table 1. The iterative control parameters
are taken in the following manner: (i) Algorithm 1 : pi = 0.20; p, = 0.55; 7n = ; Dn =

\\xn -yn||; (ii) Algorithm 2 : px = 0.20;// = 0.55; -yn = = |k„ - yn||.

TABLE 1. Numerical results values for Example 4.1.

Number of Iterations Execution Time in Seconds

Xx Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
(1,1,-  , I5000, 0, 0, .   ) 120 75 7

.47764030000000 4.79321210000000

(1,2,--  ,5000,0,0, ... ) 220 72 14.3395908000000 6.83192160000000
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FIGURE 1. Numerical illustration of Algorithm 1 and Algorithm 2 by us-
ing x\ = (1,1, . . . , l5ooo, 0,0,  . .).

FIGURE 2. Numerical illustration of Algorithm 1 and Algorithm 2 by us-
ing x\ = (1,2, 

. . . , 5000, 0,0, . . 

Conclusion

The main idea of this paper is to study quasimonotone variational inequality problems
in infinite-dimensional Hilbert spaces and to prove that the iterative sequence generated
by the Halpern subgradient extragradient algorithm is convergent strongly to a solution.
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