ค้นหาจาก ชื่อบทความ, บทคัดย่อ, คำสำคัญ

Advanced Search

Advanced Search

Advanced Search

Advanced Search

Advanced Search

ผลการประเมินคุณภาพวารสารที่อยู่ในฐานข้อมูล TCI

Show 10 ✓ entries

Search: 2408-252X

No.	Journal Name English	Journal Name Local	ISSN	E-ISSN	TCI Tier	Date for next submission
744	SCIENCE AND TECHNOLOGY NAKHON SAWAN RAJABHAT UNIVERSITY JOURNAL	วารสารวิชาการวิทยาศาสตร์และ เทคโนโลยี มหาวิทยาลัยราชภัฏ นครสวรรค์	2408- 252X	_	2	ไม่ก่อนวันที่ 1 ม.ค. 2568
Show	howing 1 to 1 of 1 entries (filtered from 951 total entries)					1 Next

(htt ps:/ Thai-Journal Citation Index Centre (https://tci-thailand.org/) /so cial plu gins .lin e.m e/li neit /sh are ? url =ht tps %3 A% 2F %2 Ftci thai lan d.or g% 2F (https://tci-thailand.org/?page_id=6095) เราใช้คุกกี้บนเว็บไซต์ของเราเพื่อให้คุณได้รับประสบการณ์ที่เกี่ยวข้องมากที่สุดโดยจดจำความชอบของคุณและเข้าชมซ้ำ การคลิก" ยอมรับ แสดงว่าคุณ ยืนยอมให้ใช้คุกกี้ทั้งหมด (อ่านข้อมูลเพิ่มเดิม) ยินยอมให้ใช้คุกกี้ทั้งหมด (อ่านข้อมูลเพิ่มเติม) %3 (https://tci-thailand.org/?page_id=6095) **D37 ACCEPT** Cookie settings 96)

ที่ อว ๐๖๑๖.๑๐/ ธิ ๖๖

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ อ.เมือง จ.นครสวรรค์ ๖०००

๓ กันยายน ๒๕๖๔

เรื่อง ตอบรับการลงตีพิมพ์บทความงานวิจัย

เรียน อาจารย์ศุภาวัลย์ นันตา

ตามที่ ท่านได้ส่งบทความเพื่อพิจารณาลงตีพิมพ์มายังวารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ เรื่อง "Some Properties of Edge-intersection Graph of 3-uniform Hypergraphs of Order 6n and Size 4n" ความแจ้งแล้วนั้น

กองบรรณาธิการวารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ ได้ส่งให้ผู้ทรงคุณวุฒิพิจารณาบทความเรียบร้อยแล้ว เห็นว่าบทความงานวิจัยดังกล่าวมีรูปแบบและเนื้อหา เหมาะสม มีคุณค่าต่อการตีพิมพ์เผยแพร่เพื่อประโยชน์ทางวิชาการในวารสารวิชาการวิทยาศาสตร์และ เทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ ได้ใน ปีที่ ๑๓ ฉบับที่ ๑๗ ประจำเดือน มกราคม – มิถุนายน ๒๕๖๔ (Print ISSN ๒๔๐๘-๒๕๒X)

จึงเรียนมาเพื่อทราบ

อ้านกฎกพ้อง

ขอแสดงความนับถือ

(รองศาสตราจารย์ทั้นพันธุ์ เนตรแพ) คณบดีคณะวิทยาศาสตร์และเทคโนโลยี

คณะวิทยาศาสตร์และเทคโนโลยี โทร. ๐๕๖-๒๑๙๑๐๐-๒๙ ต่อ ๒๕๐๑ โทรสาร. ๐๕๖-๘๘๒๕๓๑

LIENCE AND TECHNOLOGY NAKHON SAWAN RAJABHAT UNIVERSITY JOURNAL

Search

Home / About the Journal

About the Journal

Focus and Scope

วารสารวิชาการ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ ตีพิมพ์และเผยแพร่บทความวิชาการและ ผลงานวิจัย ด้านวิทยาศาสตร์และเทคโนโลยี โดยมุ่งเน้นงานวิจัยและบทความวิชาการในศาสตร์ที่เป็นวิทยาศาสตร์ บริสุทธิ์ และวิทยาศาสตร์ประยุกต์ ได้แก่ สาขาฟิสิกส์ เคมี ชีววิทยา สิ่งแวดล้อม คณิตศาสตร์ และคอมพิวเตอร์

Peer Review Process

บทความที่นำมาดีพิมพ์ในแต่ละฉบับ กองบรรณาธิการจะตรวจสอบเป็นขั้นแรก แล้วจัดให้มีกรรมการภายนอกร่วมกลั่น กรอง (Peer Review) และประเมินบทความตามเกณฑ์และแบบฟอร์มที่กำหนดในลักษณะเป็น Double-blind peer review คือปกปิดรายชื่อทั้งผู้ประเมินและผู้เขียนบทความ

บทความงานวิจัยที่ได้รับการตีพิมพ์ต้องได้รับการประเมินความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้อง อย่างน้อย 2 ท่าน

Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Sponsors

ศูนย์วิทยาศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์

Science Center, Faculty of Science and Technology, Nakhon Sawan Rajabhat University

Sources of Support

ศูนย์วิทยาศาสตร์ มหาวิทยาลัยราชภัฏนครสวรรค์

Science Center, Nakhon Sawan Rajabhat University

Journal History

คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์ ประกอบด้วยหลักสูตรที่เป็นทั้งวิทยาศาสตร์บริสุทธิ์ และวิทยาศาสตร์ประยุกต์ มีงานวิชาการและวิจัยของนักศึกษาและคณาจารย์เป็นจำนวนมาก เพื่อให้เกิดเผยแพร่ผลงาน ดังกล่าว จึงได้จัดทำ "วารสารวิชาการ วิทยาศาสตร์และเทคโนโลยี" ขึ้นครั้งแรกในปี พ.ศ. 2551 มีกำหนดออกปีละ 2 ฉบับ คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี

ดาวน์โหลดรูปแบบการเตรียมตันฉบับบทความ (Word) ดาวน์โหลดรูปแบบการเตรียมตันฉบับบทความ (pdf) ดาวโหลดแบบส่งบทความเพื่อตีพิมพ์

คู่มือการใช้งานระบบ ThaiJO2 สำหรับผู้แต่ง

- การสมัครสมาชิก
- การส่งบทความ
- การแก่ไขบทความ

Visitors

Visitors

[100000]	58,456		153
(504	2,680		120
φ	924		81
(0)	509		69
	256	*	44
	FIZ	1C	

Keywords

CIENCE AND TECHNOLOGY NAKHON SAWAN RAJABHAT

Search

Home / Archives / Vol. 13 No. 17 (2021): JANUARY 2021 - JUNE 2021

Vol. 13 No. 17 (2021): JANUARY 2021 - JUNE 2021

Published: 2021-06-30

บทความวิจัย

ประสิทธิภาพของเอนโดไฟติกแบคทีเรียสายพันธุ์ Terriglobus saanensis MJUP06 ต่อการงอกของผัก หวานป่า

nuttaporn Chanchay

1-1

🗈 PDF (ภาษาไทย)

การใช้แป้งข้าวหอมมะลิท่อนทดแทนแป้งสาลีในผลิตภัณฑ์บราวนี้กรอบ: คุณภาพ เนื้อสัมผัสและองค์ ประกอบทางเคมี

wirachya intakan

12-25

閏 PDF (ภาษาไทย)

การจัดสรรเงินลงทุนในกองทุนรามเพื่อการเลี้ยงชีพและกองทุนรวมหุ้นระยะยาว

Prayad Sangngam

26-37

図 PDF (ภาษาไทย)

Some Properties of Edge-intersection Graph of 3-uniform Hypergraphs of Order 6n and Size 4n Supawan Nanta, Krittawit Limkul

8-45

3 PDF

Some Properties of Edge-intersection Graph of 3-uniform Hypergraphs of Order 6n and Size 4n

Supawan Nanta^{1*} and Krittawit Limkul¹

¹Mathematics Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun

Abstract

Let H=(V,E) be a 3-uniform, 2-regular, connected hypergraph of order 6n and size 4n for some $n\in\mathbb{N}$. For $e\in E$, let $E_e=\{f\in E\setminus \{e\}: e\cap f\neq\emptyset\}$, the transversal number of a hypergraph H in which $|E_e|=2$ for all $e\in E$ are investigated. In this paper, we are interested in studying some properties of an edge-intersection graph L(H) of a hypergraph H such as the vertex cover, the matching, and the independent set. We prove that L(H) is a bipartite graph and the transversal number of H is equal to the vertex covering number of L(H).

Keywords: Hypergraph, Edge-intersection graph, Transversal, Bipartite graph

1. Introduction

A graph is a pair G = (V, E) of sets satisfying $E \subseteq V^2$; thus, the elements of E are 2-element subsets of V. The elements of V are the *vertices* of the graph G, the elements of E are its *edges*. The vertex set and the edge set of a graph G is referred to as V(G) and E(G), respectively. The number of vertices of graph is its *order*, written as |V(G)|; its number of edges is called *size* of G, denoted by |E(G)|. Two vertices X, Y of G are *adjacent*, if $\{X,Y\}$ is an edge of G.

A vertex v is *incident* with an edge e if $v \in e$; then e is an edge at v. The set of all the edges in E at a vertex v is denoted by E(v). The degree d(v) of a vertex v is the number |E(v)| of edges at v. A graph G is called r-regular, if all the vertices of G have the same degree v. A v-path is a non-empty graph v-path v-path is a non-empty graph v-path v

Received: 17 มี.ค. 64; Revised: 1 ก.ค. 64; Accepted: 3 ก.ย. 64

^{*} Corresponding author : nanta.supawan@gmail.com

if any two vertices are linked by a path in G. A graph G = (V, E) is called *bipartite* if V admits a partition into $\mathbf{2}$ classes such that every edge has its ends in different classes: vertices in same partition classes must not be adjacent.

A subset U of vertex set V of a graph G is a *vertex cover* of G if every edge of G is incident with a vertex in U. A minimum cardinality of a vertex cover of G is called a *vertex covering number* of G, denoted by G.

Pairwise non-adjacent vertices or edges are called *independent*. More formally, a set of vertices or of edges is *independent set* if no two of its elements are adjacent. A maximum cardinality of a vertex independent set of a graph G is called *independent number* of G, denoted by $\alpha(G)$. A set M of independent edges in a graph G = (V, E) is called a *matching*. A maximal cardinality of a matching of G is called *matching number* of G, denoted by $\mu(G)$. The independent number and the matching number are well studied in the literature (see, for example [Bouchou, A. & Blidia, M. (2014)], [Harant, J. & Rautenbach, D. (2011)], [Henning, M. A., Lowenstein, C. & Rautenbach, D. (2012)], [Zhang, Z. & Lou, D. (2010)]).

Hypergraphs are systems of sets which are conceived as natural extensions of graphs. A hypergraph H=(V,E) is a nonempty finite set V of elements, called *vertices*, together with a family of finite subsets E of V, called *hyperedges* or simply edges. We shall use the notation $n_H=|V|$ and $m_H=|E|$, and sometimes simply n and m without subscript if actual H need not be emphasized, to denote the order and size of H, respectively. The edge of set E is often allowed to be a multiset in the literature, but in this paper, we exclude multiple edges.

A k-edge in H is an edge of size k. The hypergraph H is said to be k-uniform if every edge of H is a k-edge. For $2 \le r \le n$, we define the complete r-uniform hypergraph to be a hypergraph $K_n^r = (V, E)$ for which |V| = n and E is the family of all subset of V of size r.

Two vertices x and y of H are adjacent if there is an edge $e \in E(H)$ such that $\{x,y\} \subseteq e$. The degree of a vertex v in H, denoted by $d_H(v)$ or simply by d(v) is the number of edges of H which contain v. A hypergraph with all vertices has the same degree r is called r-regular hypergraph. Two vertices x and y of H are connected if there is a sequence $x = v_0, v_1, v_2, ..., v_k = y$ of vertices of H in which v_{i-1} is adjacent to v_i for i = 1, 2, ..., k. A hypergraph H is said to be connected hypergraph if every pair of vertices are connected (see Fig1 for example).

A subset T of vertices in hypergraph H is a transversal (also called vertex cover or hitting set) if T intersects every edge of H. The transversal number $\tau(H)$ of H is the minimum

cardinality of transversal in H. Transversals in hypergraphs are well studied in the literature (see, for example [Bujtas, Cs., Henning, M. A. & Tuza, Zs. (2012)], [Chvatal, V. & McDiarmid, C. (1992)], [Cockayne, E. J., Hedetniemi, S. T. & Slater, P. J. (1979)], [Henning, M. A. & Yeo, A. (2008)]).

Let H=(V,E) be a hypergraph. The edge-intersection graph L(H) of H is a graph where E(H) is a vertex set and any two vertices of L(H) are adjacent if and only if the corresponding edges have a non-empty intersection (see Fig2 for example).

We are willing to refer to [Diestel, R. (2000)] and [Alain, B. (2013)] for more information about graph and hypergraph, respectively.

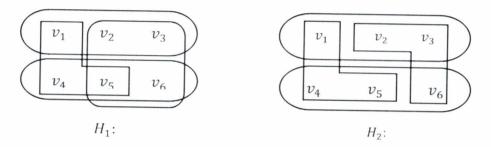


Fig. 1. The hypergraph H_1 consists 4 edges of size 3 and 4. The right hand, a hypergraph H_2 consists 4 edges of size 3. Thus H_2 is a 3-uniform hypergraph. Moreover, H_2 is 2-regular.

There have been many graphs whose properties have been investigated. L(H) constructed from a hypergraph H is also a graph, so we are interested in its properties and some relations with H. Since the characteristic of L(H) depends on the properties of H, it is necessary to provide some properties for H in each study and the desired hypergraph H in this research is a 3-uniform Hypergraph of Order 6n and Size 4n.

2. Main Results

On Transversal number of a hypergraph ${\cal H}$

For each $e \in E$, denoted by E_e , a set of all edge of H that intersects the edge e i.e. $E_e = \{f \in E \setminus \{e\}: e \cap f \neq \emptyset\}$. In this section, we present a transversal number of the hypergraph H where H is a 3-uniform, 2-regular, connected of order 6n and size 4n for some $n \in \mathbb{N}$ such that $|E_e| = 2$ for all $e \in E$. Clearly that, for each $e \in E(H)$ there is a unique $f \in E(H)$ such that $|e \cap f| = 1$, since H is 2-regular and $|E_e| = 2$ for all $e \in E$.

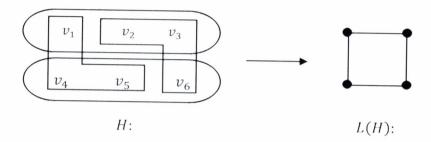


Fig. 2. The edge-intersection graph L(H) of a 3-uniform, 2-regular hypergraph H.

Let V be the set of all vertices of H such that, for all $v \in V$, $v \in e \cap f$ where $|e \cap f| = 1$ for some $e, f \in E$. The following lemma, we show that |V| = 2n.

Lemma 1 Let H be a 3-uniform, 2-regular, connected of order 6n, size 4n. If $|E_e|=2$ for all $e\in E(H)$, then |V'|=2n.

Proof: Let $|E_e|=2$ for all $e\in E(H)$. Since H is a 3-uniform and $|E_e|=2$ for all $e\in E(H)$, for each $e\in E$ there is a unique $f\in E$ such that $|e\cap f|=1$. Since |E(H)|=4n, there are 2n pairs of edges of H such that $|e\cap f|=1$. By the definition of V, we get that |V|=2n.

Theorem 2 Let H be a 3-uniform, 2-regular, connected of order 6n and size 4n. If $|E_e|=2$ for all $e \in E(H)$, then $\tau(H)=2n$.

Proof: Let $|E_e|=2$ for all $e\in E(H)$. By Lemma 1, we get that V is a transversal of H. Thus $\tau(H)\leq 2n$, since $\tau(H)$ is a minimum cardinality. Next, we will show that $\tau(H)\geq 2n$. Assume to the contrary that there exists a transversal T of H such that |T|<2n. Thus $T\cap e\neq\emptyset$ for all $e\in E$. Hence $\sum_{v\in T}d(v)<4n$, since H is 2-regular. Therefore T intersects at most 4n-2 edges of H. Because |E|=4n, this contradicts the hypothesis that T is a transversal.

Edge-intersection graph $\mathcal{L}(\mathcal{H})$ of the hypergraph \mathcal{H}

In this part, we investigate a vertex covering number of an edge-intersection graph L(H) of a hypergraph H in which $|E_e|=2$ for all $e\in E(H)$. Throughout this part, we assume that H is a 3-uniform, 2-regular, connected hypergraph of order 6n and size 4n in which $|E_e|=2$ for all $e\in E(H)$. Moreover, L(H) is a 2-regular graph, since $E_e=\{f\in E\setminus \{e\}: e\cap f\neq\emptyset\}$.

Lemma 3 If H is a connected hypergraph, then L(H) is connected graph.

Proof: Let H be a connected hypergraph and $e,f\in V(L(H))$ where $e\neq f$. By the definition of the edge-intersection graph of H, we get $e,f\in E(H)$. Suppose that $x,y\in V(H)$ such that $x\in e$ and $y\in f$. Since H is connected, there is a sequence $x=v_0,v_1,\ldots,v_k=y$ of vertices of H where v_{i-1} is adjacent to v_i for $i=1,2,\ldots,k$. Thus $\{v_{i-1},v_i\}\subseteq e_i$ where $e_i\in E(H)$ and $i=1,2,\ldots,k$. Consequently, $e_i\cap e_{i+1}\neq\emptyset$ for all i. Since $x=v_0\in e$ and $y=v_k\in f$, $e\cap e_1\neq\emptyset$ and $e_k\cap f\neq\emptyset$. By the definition of the edge-intersection graph of H, we get e,e_1,e_2,\ldots,e_k,f is a path from e to f in L(H). Therefore L(H) is connected. \square

Lemma 4 If $|E_e|=2$ for all $e\in E(H)$ then L(H) is a bipartite graph. Moreover, $V(L(H))=V_1$ $\dot{\cup}$ V_2 where $|V_1|=|V_2|=2n$.

Proof: Let $|E_e|=2$ for all $e\in E(H)$. Then L(H) is a 2-regular graph and $|E(L(H))|=\frac{\sum_{v\in V(L(H))}d(v)}{2}=\frac{2(4n)}{2}=4n$. Assume that, L(H) contains an odd cycle C. Thus |V(C)|<4n. Since L(H) is a 2-regular graph and every vertex in the cycle C has degree C, C is a component of C by Lemma 3. Therefore C contains no odd cycle and we conclude that C is a bipartite graph.

Next, let $V(L(H)) = V_1 \cup V_2$. Consider the number of edges associated with vertex in V_1 and V_2 , we get $2|V_1|$ and $2|V_2|$ are numbers of edges that have endpoints in V_1 and V_2 , respectively. Since L(H) is bipartite, $2|V_1| = 2|V_2|$. Therefore $|V_1| = |V_2| = 2n$.

Theorem 5 If $|E_e|=2$ for all $e\in E(H)$, then $\beta(L(H))=\tau(H)=2n$.

Proof: Let $|E_e|=2$ for all $e\in E(H)$. Since L(H) is a bipartite graph, every edge has endpoint in V_1 . Thus V_1 is a vertex cover of L(H). Therefore $\beta(L(H))\leq |V_1|=2n$. Clearly that, if U is a vertex cover of L(H), then $|U|\geq 2n$, because |E(L(H))|=4n and L(H) is 2-regular. Hence $\beta(L(H))\geq 2n$. Therefore $\beta(L(H))=2n=\tau(H)$.

In 1931, Dénes Kónig described the relation between the minimum cardinality of a vertex covering and the maximum cardinality of a matching in a bipartite graph as follow:

Theorem 6 (Kónig 1931) [Diestel, R.(2000)] The maximum cardinality of a matching in a bipartite graph $\it G$ is equal to the minimum cardinality of a vertex cover.

It is easy to check that, X is a minimum cardinality vertex cover of a graph G if and only if $V(G)\setminus X$ is a maximum cardinality independent set. By using the Kónig theorem and because L(H) is a bipartite, we conclude the following,

Corollary 7 If
$$|E_e|=2$$
 for all $e\in E(H)$, then $\mu\bigl(L(H)\bigr)=\beta\bigl(L(H)\bigr)=2n$. Proof: Clearly, by Kónig theorem.

Corollary 8 If
$$|E_e|=2$$
 for all $e\in E(H)$, then $\alpha(L(H))=2n$.
Proof: Since $|V(G)|=\beta(L(H))+\alpha(L(H))$, $\alpha(L(H))=|V(G)|-\beta(L(H))$. Since $|E(L(H))|=4n$ and $\beta(L(H))=2n$, $\alpha(L(H))=2n$.

By the assumption of the hypergraph H that H is a 3-uniform, 2-regular, connected of order 6n and size 4n for some $n \in \mathbb{N}$ such that $|E_e| = 2$ for all $e \in E$. We obtain a relation between a vertex covering number $\beta(L(H))$ and the transversal number $\tau(H)$. Moreover, we get $\beta(L(H)) = \mu(L(H)) = \tau(H) = 2n$, by using Kónig theorem.

In this part, we will give a relation between a chromatic index of a complete r-uniform hypergraph K_n^r of order n and a chromatic number of an edge-intersection graph $L(K_n^r)$. Clearly that, a complete r-uniform hypergraph is a hypergraph of size $\binom{n}{r}$.

Recall that, a vertex coloring of a graph G=(V,E) is a map $c\colon V\to\{1,2,\ldots,k\}$ such that $c(v)\neq c(w)$ whenever v and w are adjacent. The element of $\{1,2,\ldots,k\}$ is called the available *colors*. If k is a smallest integer of a vertex coloring $c\colon V\to\{1,2,\ldots,k\}$ of G, then k is the *chromatic number* of G, denoted by $\chi(G)$.

The chromatic index $\chi'(H)$ of a hypergraph H is the least number of colors necessary to color the edges of H in such a way that, any two intersecting edges have distinct colors. It is easy to notice that an edge-coloring of a hypergraph is equivalent to a vertex coloring of it edge-intersection graph.

The following theorem describe the chromatic index of a complete r-uniform hypergraph K_n^r . It is the useful theorem to obtain the relation between a chromatic index of a complete r-uniform hypergraph K_n^r and a chromatic number of an edge-intersection graph $L(K_n^r)$.

Theorem 9 [Baranyai, Zs. (1975)] If n is a multiple of r, then $\chi\left(K_n^r\right)=\binom{n-1}{r-1}$.

Theorem 10 Let K_n^r be a complete r-uniform hypergraph of order n, where n is a multiple of r, and $L(K_n^r)$ be an edge-intersection graph of K_n^r . Then $\chi(L(K_n^r)) = \frac{n}{r} \chi(K_n^r)$.

Proof: Since $L(K_n^r)$ is an edge-intersection graph of a complete hypergraph K_n^r , $L(K_n^r)$ is a complete graph with $\binom{n}{r}$ vertices. Thus $d(v) = \binom{n}{r} - 1$ for all $v \in V(L(K_n^r))$ and

$$\chi \big(L(K_n^r) \big) = \binom{n}{r}. \text{ Hence} \qquad \qquad \chi \big(L(K_n^r) \big) = \frac{n!}{r!(n-r)!} \\ = \frac{n(n-1)(n-2)...(2)(1)}{[r(r-1)(r-2)...(2)(1)](n-r)!} \\ = \left(\frac{n}{r} \right) \left(\frac{(n-1)(n-2)...(2)(1)}{[(r-1)(r-2)...(2)(1)](n-r)!} \right) \\ = \left(\frac{n}{r} \right) \left(\frac{(n-1)!}{(r-1)!(n-r)!} \right) \\ = \left(\frac{n}{r} \right) \binom{n-1}{r-1} \\ = \left(\frac{n}{r} \right) \chi (K_n^r)$$

Therefore $\chi(L(K_n^r)) = \frac{n}{r} \chi(K_n^r)$.

3. Conclusion

Our main results have been separated into three parts. The first one, we obtain the transversal number of H. The second part, the independent number, the vertex covering number and the matching number of L(H) are described. In addition, we obtain that $\tau(H) = \alpha(L(H)) = \beta(L(H)) = \mu(L(H)) = 2n$. In the last part, we also show that $\chi(L(K_n^r)) = \frac{n}{r}\chi(K_n^r)$.

4. Acknowledgement

This work was supported by the Research and Development Institute, Phetchabun Rajabhat university.

5. References

Alain, B. (2013). *Hypergraph Theory An Introduction*. Switzerland: Springer International Publishing. Baranyai, Zs. (1975). On the factorization of the complete uniform hypergraph. In Hajnal, A. Rado, R. & Sós, V. T. (eds.), *Infinite and Finite Sets. Colloquium held at Keszthely, June 25-July 1, 1973. Dedicated to Paul Erdös on his 60th Birthday* (pp. 91-108). Amsterdam, Netherlands: North-Holland.

- Bouchou, A. & Blidia, M. (2014). On the k-independence number in graphs. *Australasian Journal of Combinatorics* 59 (2), 311–322.
- Bujtas, Cs., Henning, M. A. & Tuza, Zs. (2012). Transversals and domination in uniform hypergraphs. European Journal of Combinatorics 33, 62-71. https://doi.org/10.1016/-j.ejc.2011.08.002
- Chvatal, V. & McDiarmid, C. (1992). Small transversals in hypergraphs. *Combinatorica 12*, 19-26. https://doi.org/10.1007/BF01191201
- Cockayne, E. J., Hedetniemi, S. T. & Slater, P. J. (1979). Matchings and transversals in hypergraphs, domination and independence- in trees. *Journal of Combinatorial Theory, Series B 27*, 78-80. https://doi.org/10.1016/0095-8956(79)90044-3
- Diestel, R. (2000). Graph Theory. New York: Springer-Verlag.
- Harant, J. & Rautenbach, D. (2011). Independence in connected graphs. *Discrete Applied Math* 159 (1), 79-86. https://doi.org/10.1016/j.dam.2010.08.029
- Henning, M. A., Lowenstein, C. & Rautenbach, D. (2012). Independent sets and matchings in subcubic graphs. *Discrete Mathematics 312* (11), 1900-1910. https://doi.org/10.101-6/j.disc.2012.03.002
- Henning, M. A. & Yeo, A. (2008). Hypergraphs with large transversal number and with edge sizes at least three. *Journal of Graph Theory 59*, 326-348. https://doi.org/10.1-002/jgt.20340
- Zhang, Z. & Lou, D. (2009). Notes on bipartite graphs with a perfect matching and digraph.

 Advances and Applications in Discrete Mathematics 3 (2), 155-164.