

รายงานสืบเนื่อง จากการประชุมวิชาการระดับชาติ

PROCEEDINGS

การประชุมวิชาการระดับชาติพิบูลสมครามวิจัย ครั้มที่ 6 ประจำปี พ.ศ. 2563 วันที่ 12 กุมภาพันธ์ 2563

กลุ่มวิทยาศาสตร์และเทคโนโลยี

สารบัญ

•	หน้า
Determinating model force-time dependent for serve tennis ball trajectory of motion	397-404
ณัฐณิชา มะสูงเนิน ธารารัตน์ สำเนียง สุภาพร หู้เต็ม ศานิตย์ สุวรรณวงศ์ และ อาทิตย์ หู้เต็ม	371-404
Fabrication of mathematical and physics model for velocity time-dependent in the men's	
100 metres from 8 runners	
ธนาลักษณ์ ทองมี โชษิตา วรรณบุษราคัม กนกพล นนทะสัน สุภาพร หู้เต็ม ศานิตย์ สุวรรณวงศ์	
และ อาทิตย์ หู้เต็ม	405-413
Creation of physics model the trajectory of a particle motion under weak squall force time-	405-415
dependent Fy sin(wt)	
ิ ต่อสกุล ทิพบบท์ พิชาภัค มาหญ้านั้นท์ สิรีณัฐ ฟองจางวาง สาริศา จับทวงค์ สุภาพร หู้เต็ม ศานิตย์	
สุวรรณวงศ์ และ อาทิตย์ หู้เต็ม	414-422
Comparison of the displacement of time-dependent in the vertical via the external force	141 166
สุทธดา กาฬะสิน วิกร เรือนปัญจะ สุภาพร หู้เต็ม และ นายอาทิตย์ หู้เต็ม	423-431
Manufacture of mathematical and physics model displacement time-dependent in vertical	101
of serving tennis ball under external weak gale force time-dependent	
วิศัลย์ จันทร์ผ่อง	432-441
Procreation of mathematics and physics model displacement time-dependent in vertical	
projection of motion for shoot basketball	
สุนารี จันทร์ผ่อง	442-450
การศึกษาและออกแบบสร้างตัวแปลงผันไฟฟ้ากระแสสลับเป็นไฟฟ้ากระแสตรง สำหรับระบบขับเคลื่อน	
มอเตอร์เหนี่ยวนำสามเฟส	
กันยารัตน์ เอกเอี่ยม และ องอาจ ทับบุรี	451-456
การตรวจสอบและแก้ไขปัญหาไฟฟ้าสถิตที่เกิดขึ้นในเครื่องจักร	
วุฒิชัย ชำปู่ วรินทร แช่ลิ้ม คมสัน พะปะโคน และ สุรพงษ์ แก่นมณี	457-465
คุณสมบัติใดอิเล็กทริกของสารแบเรียมไททาเนตที่เจือด้วยนาโนคาร์บอน	
ศานิตย์ สุวรรณวงศ์ อาทิตย์ หู้เต็ม และ จิราพัชร มากคำ	466-473
การศึกษาการเคลื่อนที่แบบโพรเจคไทล์ของลูกขนไก่ ภายใต้แรงต้านอากาศ แรงยก แรงลอยตัว	
ในแนวระดับและแนวดิ่ง	
สุวิมล ก้อนคำ	474-480
การประมาณค่าโดยใช้ระเบียบวิธีเชิงตัวเลข	
พิลาศลักษณ์ ศรแก้ว และ เอเปา ลุงเชิง	481-487
การแปลงโมแฮนด์สำหรับระบบสมการเชิงอนุพันธ์ย่อย	
พิลาศลักษณ์ ศรแก้ว และ กัญญารัตน์ พลมาตย์	488-494

การเคลื่อนที่ของอนุภาคแบบโพรเจกไทล์เนื่องจากผลกระทบของแรงลมที่เป็นฟังก์ชันของเวลาอ่อนๆ

Creation of physics model the trajectory of a particle motion under weak wind force

time-dependent $(F_y \sin (\omega t))$

ต่อสกุล ทิพนนท์ ¹ , พิชาภัค มาหญ้านันท์ ¹, สิรีณัฐ ฟองจางวาง ¹, สาริศา จันทวงค์ ¹, สุภาพร หู้เต็ม ¹, ศานิตย์ สุวรรณวงศ์ ², อาทิตย์ ห้เต็ม ²

1 โรงเรียนวิทยานุกูลนารี จังหวัดเพชรบูรณ์

² มหาวิทยาลัยราชภัฏเพชรบูรณ์ คณะวิทยาศาสตร์และเทคโนโลยี สาขาฟิสิกส์ จังหวัดเพชรบูรณ์

*corresponding author e-mail: kring1208@gmail.com

บทคัดย่อ

การเคลื่อนที่แบบโพรเจกไทล์สามารถเห็นได้ในชีวิตประจำวัน ซึ่งอาจสังเกตได้จากการเล่นกีฬา เช่น กอล์ฟ แบดมินตัน บาสเกตบอล เป็นต้น และการเคลื่อนที่แบบโพรเจกไทล์นั้นมีทั้งแรงในแนวแกน x และแนวแกน y ซึ่งนอกจาก แรงที่เราได้เรียนกันในห้องเรียนอาจมีแรงภายนอกที่เกี่ยวข้องเช่นเดียวกับการเล่นกีฬามีทั้งการเล่นในร่มและกลางแจ้งจะมี ปัจจัยที่มาเกี่ยวข้องแตกต่างกันไป ในส่วนของการเล่นกีฬากลางแจ้งนั้นจะมีปัจจัยเรื่องลมอ่อนๆเข้ามาเกี่ยวข้อง เนื่องจากเรา ไม่สามารถควบคุมทิศทางลมได้เช่นเดียวกับกีฬาในร่ม ผู้จัดทำจึงมีความสนใจในการศึกษาการเคลื่อนที่แบบโพรเจกไทล์ภายใต้ แรงลม

คำสำคัญ : โพรเจกไทล์, แรง, แรงลม

Abstract

Projectile motion can be seen in everyday life, which may be observed from sports such as golf, badminton, basketball etc. The projectile motion has both vertical and horizontal forces which aside from the force that we have learned in the classroom there may be the same forces involved same in the type of sport of both indoor and outdoor, sports. Both type's of sport have different factors involved. As for outdoor sports, wind factors are involved. Since we can't control the wind direction like indoor sports. Therefore, we are interested in studying projectile motion under weak wind force.

Keywords: Projectile, force, squall force.

Introduction

A golf hall in motion is an example of a projectile that moves under the effect of gravity. In the absence of air resistance, what is the trajectory of a projectile? The motion is that of constant

acceleration due to gravity, and this constant acceleration \vec{g} has only a vertical component. The ball's motion is best described by separating it into horizontal and vertical components as we have already emphasized, the horizontal motion is independent of the vertical motion and then applying the kinematic equations for constant acceleration.

Usually it is easiest to place the origin at the starting point, assigning the y-direction vertically and the x-direction along horizontal. The initial position of the ball is $x_0=y_0=0$; the initial velocity at t=0 is \vec{v}_0 . The flight of the golf ball starts at an initial angle to the horizontal that we call the elevation angle θ_0

G.W.Parker studied two-dimensional motion of a projectile experiencing a constant gravitational force and a fluid drag force which is quadratic in the projectile's speed. Peter Coutis studied the equation of motion governing the trajectory of a cricket ball subject to linear drag force are developed. Ghassan Y Shahin studied a relativistic projectile motion in a vacuum is examined by means of elementary consequences of special relativity. Sean M. Stewart studied the time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic from in terms of the recently defined Lambert W function. Artit Hutem and Supoj Kerdmee studied Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who studied the projectile motion experiment set. Currently, the present computational analysis meets important instructional and research – based objectives of kinematics and mechanics from introductory physics and engineering are simulated for three different problems.

Ordinary Differential Equation First-order Inhomogeneous Linear Equation

$$\frac{dy}{dx} + p(x) y = q(x)$$
 (1)

Equation is the most general linear first-order ODE. If g(x) = 0, Eq. (1) is homogeneous (in y). A nonzero q(x) may represent a source or a driving term. Eq. (1) is linear, each term is linear in y or $\frac{dy}{dx}$. There are no higher powers, that is, y^2 , and no products, $y\frac{dy}{dx}$. Note that the linearity refers to the y and $\frac{dy}{dx}$; p(x) and q(x) need not be linear in x, Eq. (1), the most important of these first-order

ODEs for physics, may be solved exactly.

Let us look for an integrating factor $\, lpha(x) \,$ so that

$$\alpha(x)\frac{dy}{dx} + \alpha(x)p(x)y = \alpha(x)q(x)$$
 (2)

It be rewritten as

$$\frac{d}{dx}[\alpha(x)y] = \alpha(x)q(x)$$
(3)

The purpose of this is to make the left-hand side of Eq. (1) a derivative so that it can be integrated by inspection. It also incidentally makes Eq. (1) exact. Expanding Eq. (1) we obtain

$$\alpha(x)\frac{dy}{dx} + \frac{d\alpha}{dx}y = \alpha(x)q(x)$$

Comparison with Eq. (2) it's that it is required

$$\frac{d\alpha}{dx} = \alpha(x)p(x) \tag{4}$$

Here is a differential equation for $\alpha(x)$, with the variable α and x separable. We separate, integrate and obtain

$$\alpha(x) = \exp\left[\int_{-\infty}^{x} p(x)dx\right]$$
 (5)

as our integrating factor.

With $\alpha(x)$ known, we proceed to integrate Eq.(3). This of course, was the point of introducing α in the first place. We have

$$\int_{-\infty}^{\infty} \frac{d}{dx} \left[\alpha(x) y(x) \right] dx = \int_{-\infty}^{\infty} \alpha(x) q(x) dx.$$

Now integrating by inspection, we have

$$\alpha(x)y(x) = \int_{-\infty}^{\infty} \alpha(x)q(x)dx + c.$$

The constants from a constant lower limit of integration are lumped into the constant c. Dividing by lpha(x) , we obtain

$$y(x) = \left[\alpha(x)\right]^{-1} \left\{ \int_{-\infty}^{\infty} \alpha(x)q(x)dx + c \right\}. \tag{6}$$

Creation of trajectory model of a particle under weak wind force .

In everyday life, there are both indoor and outdoor sports such as badminton, tennis, golf etc. Outdoor sports are sports that use are interesting in. Because the playing force have lift force and drag force, which have effect on outdoor sports.

So that, we study movement particle under weak wind force.

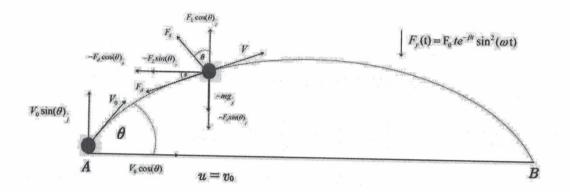


Figure 1: Representation of behavior for a particle motion under the air-resistance force (F_d) , the Magnus force (F_l) and weak wind force

$$\left(-F_d\cos(\theta)\hat{i} - F_l\sin(\theta)\hat{i} + F_l\cos(\theta)\hat{j} - F_d\sin(\theta)\hat{j} - mg\hat{j} + F_y\sin(\omega t)\hat{j} = m\frac{dv_x}{dt}\hat{j}\right).$$

In this case, the force being given by $F=F\left(t\right)$ implies that it is an explicit function of time. Hence Newton's second law may be written as.

$$\sum F = m \frac{d\vec{v}}{dt}$$

$$-F_d \cos(\theta)\hat{i} - F_l \sin(\theta)\hat{i} + F_c \cos(\theta)\hat{j} - F_d \sin(\theta)\hat{j} - mg\hat{j} + F_y \sin(\omega t)\hat{j} = m\frac{dv_x}{dt}\hat{j} \quad (1)$$

The velocity in the horizontal direction is then

$$-F_d \cos(\theta)\hat{i} - F_l \sin(\theta)\hat{i} = m \frac{dv_x}{dt}\hat{i}$$
 (2)

where $F_{_{_{d}}}=\alpha v$ is drag force, $F_{_{l}}=\hbar v$ is lift force.

Insert this into Eq. (2), we get

$$\frac{dv_x}{dt} + \left(\frac{\alpha}{m}\cos(\theta) + \frac{\lambda}{m}\sin(\theta)\right)v_x = 0$$
(3)

find the function of angle as $\, oldsymbol{arphi} \,$ become

$$\varphi = \left(\frac{\alpha}{m}\cos(\theta) + \frac{\hat{\lambda}}{m}\sin(\theta)\right) \tag{4}$$

Substituting Eq. (4) we can rewrite Eq. (3) in term of t as

$$\frac{dv_x}{dt} + \varphi v_x = 0 ag{5}$$

Rearranging and integrating by part for Eq. (5) we obtain.

$$v_{x}(t) = Ce^{-\varphi t} \tag{6}$$

Note that if the initial velocity is $v_x(0) = v_0 \cos(\theta)$, if at t = 0 we get

$$v_x(t) = v_0 \cos(\theta) e^{-\varphi t} \tag{7}$$

Substituting $v = \frac{dx}{dt}$ into Eq. (7) and again assuming the initial condition that x(0) = 0 at t = 0, we get by direct integration

$$x(t) = \frac{v_0 \cos(\theta)}{\varphi} \left(1 - e^{-\varphi t} \right) \tag{8}$$

In this case, we can rewrite for the time of a particle movement in the horizontal as

$$t = -\frac{\ln\left(1 - \frac{\varphi x}{\nu_0 \cos(\theta)}\right)}{\varphi} \quad s. \tag{9}$$

The velocity in the vertical direction is then.

$$F_{i}\cos(\theta)\hat{j} - F_{d}\sin(\theta)\hat{j} - mg\hat{j} + F_{y}\sin(\omega t)\hat{j} = m\frac{dv_{y}}{dt}\hat{j}$$
 (10)

Where $F_{_{_{d}}}=\alpha v$ is drag force, $F_{_{l}}=\lambda v$ is lift force. Inserting this into Eq. (10) , we get

$$\frac{F_{y}}{m}\sin(\omega t) - g = \frac{dv_{y}}{dt} + \left(\frac{\alpha}{m}\sin(\theta) - \frac{\lambda}{m}\cos(\theta)\right)v_{y}$$
 (11)

find the function of angle as ϕ become

$$\phi = \left(\frac{\alpha}{m}\sin(\theta) - \frac{\lambda}{m}\cos(\theta)\right) \tag{12}$$

Substituting Eq. (12) we can rewrite Eq. (11) in term of t we get

$$\frac{F_{y}}{m}\sin(\omega t) - g = \frac{dv_{y}}{dt} + \phi v_{y}$$
 (13)

Rearranging and integrating by part for Eq. (13) to give.

$$y(t) = \frac{\phi F_{y}}{m\omega(\phi^{2} + \omega^{2})} + \frac{v_{0}\sin(\theta)}{\phi} + \frac{\omega F_{y}}{m\phi(\phi^{2} + \omega^{2})} + \frac{g}{\phi^{2}} - \frac{\phi F_{y}\cos(\omega t)}{m\omega(\phi^{2} + \omega^{2})} - \frac{\sin(\omega t)}{\omega(\phi^{2} + \omega^{2})} - \frac{gt}{\phi}$$
$$-\left(v_{0}\sin(\theta) + \frac{\omega F_{y}}{m(\phi^{2} + \omega^{2})} + \frac{g}{\phi}\right)\frac{e^{\phi t}}{\phi}$$
(14)

Use Eq. (9) and (14) to plot the displacement graph in vertical and horizontal by Mathematica. The result of the graph is shown in next section.

Result and discussion

From Eq. (9) and (14) in the section of creation of model the trajectory of a particle under weak wind force, Eq. (9) and (14) can be finding plotted and the parameter F_y = force in vertical (N), v_0 = start velocity (m/s), m = mass (g), g = Gravitational acceleration 9.8 (m/s²), ω = correlation coefficient of the time dependent angle, θ = angle, α = coefficient of the drag force, λ = coefficient of the lift force and t = time (s) in the program Mathematica. The result of the study on the displacements vertical and horizontal is shown in Fig.(2)

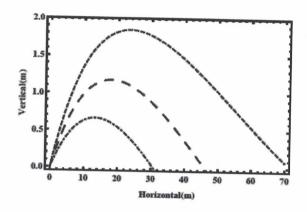


Figure 2: Relation between displacements in vertical and horizontal motion.

Setting dashed line as $F_y=20\,\mathrm{and}\ v_0=30$, dashing[large] line as $F_y=21\,\mathrm{and}\ v_0=31$, dot-dashed line as $F_y=22\,\mathrm{and}\ v_0=32$. Figure 2 describes the relation between displacement in vertical and horizontal motion. Example from graph, vertical axis is approximately 0.5 m, horizontal axis is approximately 10 m.

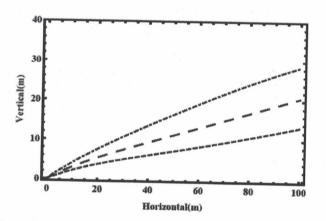


Figure 3: Relation between displacements in vertical and horizontal motion.

Setting dashed line as $\omega=2$ and $\theta=5$, dashing[large] line as $\omega=2.5$ and $\theta=7$, dot-dashed line as $\omega=3.5$ and $\theta=9$. Figure 3 describes the increase of displacement vertical. Example from graph, vertical axis is approximately 10 m, horizontal axis is approximately 100 m.

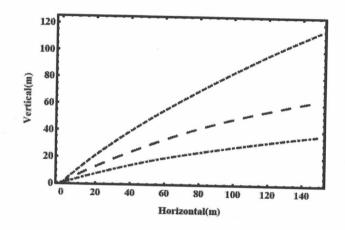


Figure 4: Relation between displacements in vertical and horizontal motion.

Setting dashed line as $\lambda=0.2$ and $\alpha=0.2$, dashing[large] line as $\lambda=0.3$ and $\alpha=0.18$, dot-dashed line as $\lambda=0.4$ and $\alpha=0.15$. Figure 4 describes the depreciate of displacement vertical. Example from graph, vertical axis is approximately 60 m, horizontal axis is approximately 145 m.

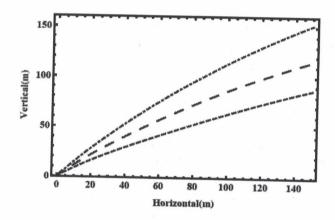


Figure 5: Relation between displacements in vertical and horizontal motion.

Setting dashed line as $\lambda=0.2$ and $\alpha=0.05$, dashing[large] as $\lambda=0.18$ and $\alpha=0.06$, dot-dashed line as $\lambda=0.16$ and $\alpha=0.08$. Figure 5 describes the accrete of displacement vertical. Example from graph, vertical axis is approximately 120 m, horizontal axis is approximately 145 m.

Conclusion

If force in vertical and start velocity are cumulative. Displacement graph in vertical and horizontal are depreciate.

If ω and heta are progressive. Displacement graph in horizontal is increase.

If λ and lpha are decrease. Displacement graph in horizontal is lesson.

If λ and lpha are accrete. Displacement graph in horizontal is inflate.

Acknowledgement

We acknowledgement wittayanukulnaree School and The Institute for the Promotion of teaching Science and Technology(IPST) and Physic division, Parallel IPST, Faculty of Science PhetchabunRajabhat University, Thailand, for partial support of computer.

Reference

G.W.Parker. (1977). Projectile motion with air resistance quadratic in the speed, American Journal of Physics, 97(45), 606-610.

Peter. (1998). Coutis Modelling the projectile motion of a cricket ball. 98(29). 789-798.

Ghassan Y Shahin, (2005). Features of projectile motion in special theory of relativity. 05(27). 1-9.

Sean M. Stewart. (2006). An analytic to projectile motion in a linear resisting medium. 06(37), 411-431.

Artit Huten and Supoj Kermee. (2013). Physics Learning Achievement Study: Projectile, using Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University Students. 13(4). 22-33.

Jeffrey Leela et. al. (2014). Modelling the flight characteristics of a soccer ball. 14(8). 1-9.

Kaan Yetilmezsoy and Carl E Mungan. (2018). MATHLAB time-based simulations of projectile motion, pendulum oscillation, and water discharge. 18(39). 1-18.