SuUVIUFUITDY

VINMISUS=8U3uNINISS=Ausa

PROCEEDINGS




d13Usy

nii
Determinating model force-time dependent for serve tennis ball trajectory of motion 397-404
sl wsgaidu 5151500 duides goms Fidy ming JI900996 Uaz 91708 igw..............
Fabrication of mathematical and physics model for velocity time-dependent in the men’s
100 metres from 8 runners
owanwal neul lude assanyusIfi nunwa uunsdi anms iy ailnd gassased
uaz 079ne Y. 405-413

Companson of the dxsplacement of time-dependent in the vertical via the external force

qnam nisdu Ins Soullysz gnms gy uax wigeming TR 423-431
Manufacture of mathematical and physics model displacement time-dependent in vertical

of serving tennis ball under external weak gale force time-dependent

TAOET TUNTH..coeeeee e 432-441
Procreation of mathematics and physics model displacement time-dependent in vertical

projection of motion for shoot basketball

GUIT FUNTHO .o 442-450
miﬁnmuazaanwu'ua%’wv‘f'zLu.laqﬁu‘lWﬁmisuaaé’u&ﬂulﬂﬁ'misuamq dmiuszuuduiniey

¢ o °
UBlmaILnUgIUIE WA

Auersmd wmden uax 99o79 TUYS sttt e 451-456
minsvasuuaziilylgminihadadiiniuluedaedns
Wit 1) Funs udin vy weuslay uay GG WP ..o 457-465
Qmauﬁ'ﬁlm§L§nw§n°vaqmmuL?aulwmmmwwamum‘[umsuau
AIInel 23504296 01i0E st U TS SO 466-473
msﬁntﬂmsmaauwuuuiwwmiwa‘uaaaﬂw"ln MeldusiueIne useen ussaseda

T lunuaseiuLasiig
G BOUR Y.ttt s . 474-480

mvUszanaAlneldsedeuindediian
Warmanval AU Uay o) BN st sS85 e e s 481-487
msuﬂaa‘[uuauﬁﬁw%’ussuuaumﬂ%\iauﬂ’uédaa

Waanwal asun uay nzyty';mu T 488-494



maUsspAnnsIEiunARyadnsite a6 Usedid wa, 2563

4 d ¢ o o ¢ .
msmaau‘n‘uaaaqmnuUUTwsLan‘lmamminfmanszwuvamieaum‘fluﬁen'uutlaanmaau’1
Creation of physics model the trajectory of a particle motion under weak wind force
time-dependent(Fy sin (cot))

' a 1 a 1Y v w ¢l @ 1 a @ 1 £ 1 a ¢ 2
Aodna fwuni | v wmefiini’, 3oy vieewnaana, anden funed » gaws ', milnd gassaned’

¢ vag 2

RRVERE Y

U
U4

1 a a4 o
Tsafguineygaund Saminesysal

U

2 a 1Y 1Y a a L)
s YA wesYIal AasIemansuasivelulad arviiand Jmdamsysal

*corresponding author e-mail: kring1208@gmail.com

UNARED
P o a o v o o Y ' '
nmilpdeunwuulnsienindarunsadiulaludinuss iy Feo1vdunaldainnisiauinn wu nedy

v v
A K

A w v - - ¢
WUANUAU Udnnuaa L'i”]umu LLasmimaaquLuuTwmn‘lwéuuumtm‘luumuﬂux asUuILAY Y Fauonain

v
@

u.soﬁmlé’ﬁauﬁ’u'[.uﬁaqL‘%‘aumaﬁtmmauan‘ﬁLﬁm'ﬁ'awutﬁmﬁ‘unma’uﬁmﬁmmnéu’lus’uLLazﬂaNLLé’q udl

v
= v a

v o P~ v W | ' o o ' v < v <
ﬂﬂﬂﬂﬂu%ﬂﬂ?'ﬂaﬂumﬂﬂq\?ﬂlﬂﬂ 'Lua'JU‘ZJ'e]\?ﬂ'liLauﬂW'ma'NLW\?UU"US@J{}QQUﬁ'aﬂauaau‘]t'ﬂ?u']LﬂEJ'J‘U?N LUBIINLI

o

Liannsnaiuguiiemsasldduieiufludy ganvhisdinuaulalumsfinwnisiedevivuulnsianingagly

ussay
Addey : nsenlnd, uss, ussay
Abstract

Projectile motion can be seen in everyday life, which may be observed from sports such as golf,
badminton, basketball etc. The projectile motion has both vertical and horizontal forces which aside
from the force that we have learned in the classroom there may be the same forces involved same in
the type of sport of both indoor and outdoor, sports. Both type’s of sport have different factors
involved. As for outdoor sports, wind factors are involved. Since we can't control the wind direction like

indoor sports. Therefore, we are interested in studying projectile motion under weak wind force.
Keywords : Projectile, force, squall force.

Introduction

A golf hall in motion is an example of a projectile that moves under the effect of gravity. In the

absence of air resistance, what is the trajectory of a projectile? The motion is that of constant
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acceleration due to gravity, and this constant acceleration g has only a vertical component. The ball’s
motion is best described by separating it into horizontal and vertical components as we have already
emphasized, the horizontal motion is independent of the vertical motion and then applying the kinematic

equations for constant acceleration.

Usually it is easiest to place the origin at the starting point, assigning the y -direction vertically
and the x -direction along horizontal. The initial position of the ball is x, = ¥, =0; the initial velocity at
t=0is V, . The flight of the golf ball starts at an initial angle to the horizontal that we call the elevation

angle 6,

G.W.Parker studied two-dimensional motion of a projectile experiencing a constant gravitational
force and a fluid drag force which is quadratic in the projectile’s speed. Peter Coutis studied the
equation of motion governing the trajectory of a cricket ball subject to linear drag force are developed.
Ghassan Y Shahin studied a relativistic projectile motion in a vacuum is examined by means of
elementary consequences of special relativity. Sean M. Stewart studied the time of flight, range and the
angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic
from in terms of the recently defined Lambert W function. Artit Hutem and Supoj Kerdmee  studied
Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science
and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and
Technology Phetchabun Rajabhat University students who studied the projectile motion experiment set.
Currently, the present computational analysis meets important instructional and research — based
objectives of kinematics and mechanics from introductory physics and engineering are simulated for three

different problems.

Ordinary Differential Equation First-order Inhomogeneous Linear Equation

%er(X)y =q(x) (1)

Equation is the most general linear first-order ODE. If g(x) =0, Eq. (l) is homogeneous (in y). A

dy

nonzero g(x)may represent a source or a driving term. Eq. (1) is linear, each term is linear in y or ;
; . dy . .
There are no higher powers, that is, ¥*, and no products, y;x—. Note that the linearity refers to the y

d
and Ey; p(x) and q(x) need not be linear in x, Eq. (1) , the most important of these first-order
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ODEs for physics, may be solved exactly.

Let us look for an integrating factor a(x) so that

a(x)%+a(x)p(x)y=a(x)q(x) @)

It be rewritten as

%{a(x) yl=a()q(x) 3

The purpose of this is to make the left-hand side of Eq. (1) a derivative so that it can be integrated-

by inspection. It also incidentally makes Eq. (1) exact. Expanding Eq. (1) we obtain
dy da
a(x)—=+——=y = a(x)q(x)
i
Comparison with Eq. (2) it's that it is required

‘ffw(x)p(x) @)

Here is a differential equation for a(x), with the variable @ and x separable. We separate, integrate

and obtain

a()=exp) [ poys| ®)
as our integrating factor.

With a(x) known, we proceed to integrate Eq.(3). This of course, was the point of introducing

& in the first place. We have

"2 [ar)de= [ a(xlq(ods.
Now integrating by inspection, we have

a(x)y(x)= I : a(x)q(x)dx+c.

The constants from a constant lower limit of integration are lumped into the constant c. Dividing by

a(x) , we obtain
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. x
y(x)=[a(x)]" {I a(x)q(x)dx+c}. (6)
Creation of trajectory model of a particle under weak wind force .

In everyday life, there are both indoor and outdoor sports such as badminton, tennis, golf etc.
Outdoor sports are sports that use are interesting in. Because the playing force have lift force and drag

force, which have effect on outdoor sports.

So that, we study movement particle under weak wind force.

F ety
£ f lﬁ;(t)mﬁ,re“" sin*(@1)
v
Hyeosd),  Fsbih) e T
_mg‘.‘
’2!55!‘(9’); s,
4 B U Ve =

Figure 1: Representation of behavior for a particle motion under the air-resistance force (F,) , the Magnus

force (F,) and weak wind force

( ~F, cos(6)f - F, sin(0) i+ F cos()] - F, sin() j - mgj + F, sin(wt) ] = m ‘2‘;* j‘j .

In this case, the force being given by F = F (t) implies that it is an explicit function of time.

Hence Newton’s second law may be written as.

v

F=m—

2 dt

2 . s A . A A . i dv A
—F, cos(6)i — F, sin(8) i+ F cos(0)j - F, sin(0) j — mgj + F,sin(wt) j=m dtx J @
The velocity in the horizontal direction is then
2 : 2 dvx 2
—F;, cos(0)i — F, sin(0)i = m o I 2)
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where F = qv is drag force, E, =%v is lift force.

Insert this into Eq. (2), we get
L1 (ﬁ cos(6) + lsin(é’)) v, =0 3)
dt \(m m
find the function of angle as @ become
a K .
Q= (— cos(d) +— sm(ﬁ)) 4)
m m

Substituting Eq. (4) we can rewrite Eq. (3)in term of t as

dv
L 4+ =0 S
2 T ©)

Rearranging and integrating by part for Eqg. (5) we obtain.
v.(H)=Ce™” (6)
Note that if the initial velocity is v (0) = v, cos(8), if at £=0 we get

v, () =v, cos()e™™ (7

dx
Substituting v = E into Eq. (7) and again assuming the initial condition that x(O) =0at =0, we

get by direct integration

x(t) = %f(g)(l ~e™) ®)

In this case, we can rewrite for the time of a particle movement in the horizontal as

h{l . —W‘J
e v, cos(6)

.

)

The velocity in the vertical direction is then.
A . A A : A av, .
F cos(0)j - F, sin(0) j — mgj +F, sin(wt) j= m7tyj (10)

Where F' = qv is drag force, F =Rv is lift force. Inserting this into Eq. (10), we get
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F d
2 sin(wr)— g = 22 4 ( 2 sin(6)— 1008(6’)) v an
m dt \m m ’
find the function of angle as ¢ become
a . A
o= (—sm(@) ——cos(0)) 12)
m m
Substituting Eq. (12) we can rewrite Eq, (11)in term of t we get
F dv
—Lsin(wt)-g = —ZHgv, (13)
m dt

Rearranging and integrating by part for Eq. (13) to give.

()= ¢F, Yo Sin(6)+ oF, g PF, cos(art) ___sin(ar) _gt
R s S ST e Sl P o) e
( . oF, gJe‘W
—| Vosin(@) + ——2— 42 |
m@+0") ¢ )¢

Use Eq. (9)and (14) to plot the displacement graph in vertical and horizontal by Mathematica. The

result of the graph is shown in next section.
Result and discussion

Frc'>m Eq. (9) and (14) in the section of creation of model the trajectory of a particle under
weak wind force, Eq. (9) and (14) can be finding plotted and the parameterF;, = force in vertical (N), Vo
= start velocity (m/s), m = mass (8), g = Gravitational acceleration 9.8 (m/sz), @ = correlation coefficient
of the time dependent angle, £ = angle, o = coefficient of the drag force, A = coefficient of the lift
force and £ = time (s) in the program Mathematica. The result of the study on the displacements vertical

and horizontal is shown in Fig.(2)

419



malsspinnsssdunanyadinsnide adii 6 Usedd wa, 2563

28 v v ¥ v " W
"’ ,«p— o \
& .,
1.5p 'l \ L
! N,
3 ! » -~ \‘~
1.0 " ~ \' o
;i /7 .
g / A k.
» [ - \ N
! R “\\ \‘
B.5p l’{ ’Q’ N . \ \‘ b
VN N
‘Q‘ \ "l
9.0 a 2 by o %

o 10 20 30 40 56 4 7
Horvizontal(m})

Figure 2: Relation between displacements in vertical and horizontal motion.

Setting dashed line as F,=20and v, =30, dashingllarge] line as F, =21 and v, =31, dot-
dashed line as F, =22 and v, =32. Figure 2 describes the relation between displacement in vertical
and horizontal motion. Example from graph, vertical axis is approximately 0.5 m, horizontal axis is

approximately 10 m.
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Figure 3: Relation between displacements in vertical and horizontal motion.

Setting dashed line as @ =2and & =5 , dashing[large] line as @=2.5 and @ = 7, dot-dashed
line as @=3.5 and @=9. Figure 3 describes the increase of displacement vertical. Example from

graph, vertical axis is approximately 10 m, horizontal axis is approximately 100 m.
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Figure 4: Relation between displacements in vertical and horizontal motion.

Setting dashed line as 4 =0.2and =02 , dashing[large] line as 4 =0.3 and a=0.18,

dot-dashed line as A =0.4 and a =0.15. Figure 4 describes the depreciate of displacement vertical.

Example from graph, vertical axis is approximately 60 m, horizontal axis is approximately 145 m.
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Figure 5: Relation between displacements in vertical and horizontal motion.

Setting dashed line as A =0.2and a =0.05 , dashingflarge] as 4 =0.18 and ¢ = 0.06, dot-
dashed line as 4=0.16 and a =0.08. Figure 5 describes the accrete of displacement vertical.

Example from graph, vertical axis is approximately 120 m, horizontal axis is approximately 145 m.
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Conclusion

If force in vertical and start velocity are cumulative. Displacement graph in vertical and horizontal are

depreciate.

If @ and @ are progressive. Displacement graph in horizontal is increase.
If 4 and & are decrease. Displacement graph in horizontal is lesson.

If A and & are accrete. Displacement graph in horizontal is inflate.
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