

รายงานสืบเนื่อง จากการประชุมวิชาการระดับชาติ

PROCEEDINGS

การประชุมวิชาการระดับชาติพิบูลสมครามวิจัย ครั้มที่ 6 ประจำปี พ.ศ. 2563 วันที่ 12 กุมภาพันธ์ 2563

กลุ่มวิทยาศาสตร์และเทคโนโลยี

สารบัญ

	หน้า
Determinating model force-time dependent for serve tennis ball trajectory of motion	397-404
ณัฐณิชา มะสูงเนิน ธารารัตน์ สำเนียง สุภาพร หู้เต็ม ศานิตย์ สุวรรณวงศ์ และ อาทิตย์ หู้เต็ม	
Fabrication of mathematical and physics model for velocity time-dependent in the men's	
100 metres from 8 runners	
ธนาลักษณ์ ทองมี โชษิตา วรรณบุษราคัม กนกพล นนทะสัน สุภาพร หู้เต็ม ศานิตย์ สุวรรณวงศ์	
และ อาทิตย์ หู้เต็ม	405-413
Creation of physics model the trajectory of a particle motion under weak squall force time-	
dependent Fy sin(wt)	
ต่อสกุล ทิพนนท์ พิชาภัค มาหญ้านันท์ สิรีณัฐ ฟองจางวาง สาริศา จันทวงค์ สุภาพร หู้เต็ม ศานิตย์	
สุวรรณวงศ์ และ อาทิตย์ หู้เต็ม	414-422
Comparison of the displacement of time-dependent in the vertical via the external force	
สุทธดา กาฬะสิน วิกร เรือนปัญจะ สุภาพร หู้เต็ม และ นายอาทิตย์ หู้เต็ม	423-431
Manufacture of mathematical and physics model displacement time-dependent in vertical	
of serving tennis ball under external weak gale force time-dependent	
วิศัลย์ จันทร์ผ่อง	432-441
Procreation of mathematics and physics model displacement time-dependent in vertical	
projection of motion for shoot basketball	
สุนารี จันทร์ผ่อง	442-450
การศึกษาและออกแบบสร้างตัวแปลงผันไฟฟ้ากระแสสลับเป็นไฟฟ้ากระแสตรง สำหรับระบบขับเคลื่อน	
มอเตอร์เหนี่ยวนำสามเฟส	
กันยารัตน์ เอกเอี่ยม และ องอาจ ทับบุรี	451-456
การตรวจสอบและแก้ไขปัญหาไฟฟ้าสถิตที่เกิดขึ้นในเครื่องจักร	
วุฒิชัย ขำปู่ วรินทร แช่ลิ้ม คมสัน พะปะโคน และ สุรพงษ์ แก่นมณี	457-465
คุณสมบัติไดอิเล็กทริกของสารแบเรียมไททาเนตที่เจือด้วยนาโนคาร์บอน	
ศานิตย์ สุวรรณวงศ์ อาทิตย์ หู้เต็ม และ จิราพัชร มากคำ	466-473
การศึกษาการเคลื่อนที่แบบโพรเจคไทล์ของลูกขนไก่ ภายใต้แรงต้านอากาศ แรงยก แรงลอยตัว	
ในแนวระดับและแนวดิ่ง	
สุวิมล ก้อนคำ	474-480
การประมาณค่าโดยใช้ระเบียบวิธีเชิงตัวเลข	
พิลาศลักษณ์ ศรแก้ว และ เอเปา ลุงเฮิง	481-487
การแปลงโมแฮนด์สำหรับระบบสมการเชิงอนุพันธ์ย่อย	
ฟิลาศลักษณ์ ศรแก้ว และ กัญญารัตน์ พลมาตย์	488-494

Fabrication of mathematics and physics models for velocity time-dependent in the men's 100 metres from 8 runners การสร้างแบบจำลองคณิตศาสตร์และฟิสิกส์ของกราฟความเร็วที่ขึ้นอยู่กับเวลาของนักวิ่งชาย 8 คนใน ระยะทาง100 เมตร

ธนาลักษณ์ ทองมี¹*, โชษิตา วรรณบุษราคัม¹, กนกพล นนทะสัน¹, สุภาพร หู้เต็ม¹, ศานิตย์ สุวรรณวงศ์² และ อาทิตย์ หู้เต็ม² 1 โรงเรียนวิทยานุกูลนารี

2 คณะวิทยาศาสตร์และเทคโนโลยี สาขาฟิสิกส์ มหาวิทยาลัยราชภัฏเพชรบูรณ์

Corresponding author e-mail: Thanaluk.tm46@gmail.com

Abstract

The main target of this project is to find who has the most value of correlation and time-dependent velocity from 8 runners of the men's 100 metres at the 1991 IAAF World Championships in Athletic. We take 8 months for this research. Limit of research is the study of about time-dependent velocity from 8 runners of men's 100 metres at the 1991 IAAF World Championships in Athletic and calculating the time-dependent velocity under the apply time-dependent force oscillation. Last we got many knowledge about calculus and how to use Mathematica and Math Type Program for use in the future.

Keywords: velocity, stride length, time-dependent velocity and correlation

จุดประสงค์หลักของวิจัยนี้คือหาค่าความสัมพันธ์และความเร็วที่ขึ้นอยู่กับเวลาที่มีค่ามากที่สุดของนักวิ่งชาย8คน ในระยะทาง100เมตรในการแข่งขันของสหพันธ์สมาคมกรีฑานานาชาติ ข้าพเจ้าและคณะใช้เวลา 8 เดือนในการทำวิจัยครั้งนี้ ขอบเขตของวิจัยคือการศึกษาเกี่ยวกับความเร็วที่ขึ้นอยู่กับเวลาของนักวิ่งชาย 8 คน ในระยะทาง 100 เมตร ในการแข่งขัน ของสหพันธ์สมาคมกรีฑานานาชาติและคำนวณความเร็วที่ขึ้นอยู่กับเวลาภายใต้แรงที่ขึ้นอยู่กับเวลา สุดท้ายนี้ข้าพเจ้าและคณะ ได้รับความรู้เกี่ยวกับแคลคูลัสและการใช้โปรแกรมMathematica และ โปรแกรม Math type สำหรับการใช้โปรแกรมในภาย ภาคหน้า

คำสำคัญ : ความเร็ว, ความอึด, เวลา, ความเร็วที่ขึ้นอยู่กับเวลา และค่าความสัมพันธ์

Introduction

Today sport science is very important especially for players and trainers. It's about your body and your health. In this research, we will talk about correlation of 8 runners on velocity, time, stride length and time-dependent velocity from the men's 100 metres at the 1991 IAAF World Championships

in Athletics. And find who has the most value of correlation by obtaining Linear first-order ordinary differential equations and integration by parts to solve the one-dimensional Newton's second law. In 2003, Robert G. Lockie study the assignment of the kinematic variant that are altered as a result of resisted sled towing in male field-sport athletes[1]. In 2007, Krzysztof Maćkala study the variation of stride length and stride frequency between athletes of different performance levels in the 100 metres and then prove the influence of these kinematic parameters on the phases of the race and technical proficiency[2]. In 2010,O.Helene and M.T. Yamashita studied Bolt's efficiency and forecasted that Bolt could run about one-tenth of a second faster, which was confirmed in Berlin and extend the analysis of Eriksen et al.to madel Bolt's velocity time dependence for the Beijing 2008 and Berlin 2009 records[3]. In 2013, James Reardon observed pacing tactics in 400-m and 800-m world-record races[4]. In 2014, Ryu Nagahara verified whether there was differentiation during the maximal accelerated running and to show the change in acceleration tactic based in the kinematic measures during the entire acceleration phase of maximal sprinting[5].In 2017, Ercilio Machanguana studied the alterations of the kinematic parameters during the running of the 100-metres speed in Mozambican athletes[6]. The aim of this research is to find who has the most value of correlation and time-dependent velocity from 8 runners of the men's 100 metres at the 1991 IAAF World Championships in Athletics. We studied and compare time, velocity, stride length in the men's 100 metres at the 1991 IAAF World Championships in Athletics. We evaluated the timedependent velocity under the apply time-dependent force oscillation. The pattern of the paper is as follows. In section 2 detailing with the ordinary differential equation. Fabrication of model for timedependent velocity in the men's 100 metres from 8 runner and result is given in section 3.

Theory of mathematics and method

A first-order linear differential equation is one that can be expressed in the form:

$$\frac{dy}{dx} + p(x)y = Q(x) \tag{1}$$

Notice that this differential equation is not separable because it's impossible to factor the expression for y' as a function of x time a function of y. It turns out that every first – order linear differential equation can be solved in a similar fashion by multiplying both sides of Eq. (1) by a suitable function I(x) called an integrating factor. We try to find I so that the left side of Eq. (1), when multiplied by I(x) becomes the derivative of the product I(x)y:

$$I(x)(y'+P(x)y) = (I(x)y)'$$
 (2)

If we find such a function I, then Eq. (1) becomes

$$\langle I(x) y \rangle' = I(x) Q(x)$$

Integrating both sides, we obtain

$$I(x) y = \int I(x) Q(x) dx + c$$

So the solution would be

$$y(x) = \frac{1}{I(x)} \left[\int I(x) Q(x) dx + c \right]$$
(3)

To find I , we expand Eq. (2) and cancel term:

$$I(x)P(x) = I'(x)$$

This is separable differential equation for \it{I} , which can be solved as follows:

$$\int \frac{dI}{I} = \int P(\mathbf{x}) \, \mathrm{d}\mathbf{x} \,,$$

$$I = Ae^{\int P(x)dx}$$

where $A=\pm e^c$. We are looking for a particular integrating factor, not the most general one, so we take A=1 and use

$$I(\mathbf{x}) = e^{\int P(\mathbf{x}) d\mathbf{x}} \tag{4}$$

Substituting Eq. (4) into Eq. (3) becomes

$$y(x) = e^{-\int P(x)dx} \left[\int Q(x) e^{\int P(x)dx} dx + c \right]$$
 (5)

Eq. (5) is solution of the first-order linear equation, non-homogeneous differential equation.

We are attentive in cultivation the motion of the man's 100 metres at the 1991 IAAF World Championships in Athletics.

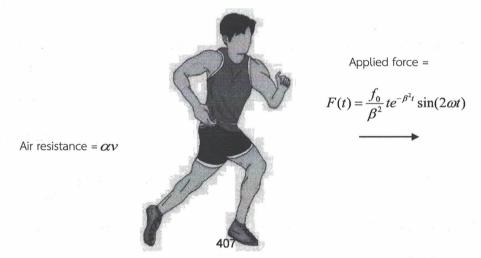


Figure 1: The applied force and air resistance.

Writing the equation of the motion for the men's 100 metres under the second laws of Newton. (see Fig.1

$$\sum F = ma$$

$$F(t) - \alpha v = m \frac{dv}{dt} \quad , \tag{6}$$

where F(t) is force, α is a resistant coefficient and ν is the velocity time-dependent of the 1991 IAAF World Championships in Athletics. With this definition, the applied force oscillation term of time becomes.

$$F(t) = \frac{\dot{f_0}}{\beta^2} t e^{-\beta^{2t}} \sin(2\omega t) \tag{7}$$

Substituting Eq. (7) into Eq. (6), we obtain

$$\frac{f_0 t e^{-\beta^2 t} \sin^2(2\omega t)}{\beta^2 m} = \frac{dv}{dt} + \frac{\alpha v}{m}$$
 (8)

Eq. (8) is the first-order, linear equation, non-homogeneous differential equation. Solving this equation by integrating by part, we must assume some initial condition. Let us say that v(t) = 0 at t = 0, rearranging and integrating we obtain

$$v(t) = e^{-\frac{\alpha}{m}t} \left(\frac{f_0}{2m\beta^2} \left\{ \left(\frac{te^{\sigma t}}{\sigma} - \frac{e^{\sigma t}}{\sigma^2} \right) - \frac{te^{\sigma t} \left(\sigma \cos(4\omega t) \right) + 4\omega \sin(4\omega t)}{\left(\sigma^2 - 16\omega^2 \right)} - \frac{\sigma}{\left(\sigma^2 + 16\omega^2 \right)} \right\}$$

$$\left\{ \frac{e^{\sigma t} \left(\sigma \cos(4\omega t) + 4\omega \sin(4\omega t) \right)}{\left(\sigma^2 + 16\omega^2 \right)} \right\} - \frac{4\omega}{\left(\sigma^2 + 16\omega^2 \right)}$$

$$\left\{ \frac{e^{\sigma t} \left(\sigma \sin(4\omega t) - 4\cos(4\omega t) \right)}{\left(\sigma^2 + 16\omega^2 \right)} \right\} + c$$

or
$$c = \frac{f_0}{2m\beta^2} \left\{ \frac{1}{\sigma^2} - \frac{\sigma^2}{\left(\sigma^2 + 16\omega^2\right)^2} + \frac{16\omega^2}{\left(\sigma^2 + 16\omega^2\right)^2} \right\}$$
 (9)

We get

$$v(t) = \frac{f_0 e^{-\beta^{2t}}}{2m\beta^2} \left(\frac{(\sigma t - 1)}{\sigma^2} - \frac{t(\sigma \cos(4\omega t) + 4\omega \sin(\omega t))}{(\sigma^2 + 16\omega^2)} + \frac{8\sigma\omega \sin(4\omega t) + (\sigma^2 - 16\omega^2)\cos(4\omega t)}{(\sigma^2 + 16\omega^2)} \right) + \frac{f_0 e^{-\frac{\alpha}{m}t}}{2m\beta^2} \left\{ \frac{1}{\sigma^2} - \frac{(\sigma^2 - 16\omega^2)}{(\sigma^2 + 16\omega^2)} \right\}$$

$$(10)$$

We use Eq.(10) for Table 1 from 8 runners of Krzysztof Maćkala to fined f_0 , $\pmb{\beta}$, $\pmb{\alpha}$ and $\pmb{\omega}$ by Findfit command of Mathematica.

Algorithm

The aim of command findfit in Mathematica for use f_0 , eta , lpha and ω to plot v(t) graph compare 2 model.

Model 1

Time-dependent velocity of runners from Fabrication of Mathematics and Physics of runners force by Newton's second law.

Model 2

Represent time-dependent velocity of 8 runners from research of Krzysztof Mackala.

- 1. Enter mass, velocity and time of Lewis from Krzysztof Maćkala.
- 2. Write Eq.(10) in Mathematica Program.
- 3. Used findfit to find parameter of f_0 , eta , lpha and ω .
- 4. Write parameter f_{0} , $oldsymbol{eta}$, lpha and $oldsymbol{\omega}$ in Mathematica Program.
- 5. Write Eq.(10) in Mathematica Program and show as function of time.
- 6. Plot time-dependent velocity graph.
- 7. Plot data graph of Lewis.
- 8. Input graph of time-dependent velocity and graph of data to find value of correlation.

Results and discussion

การประชุมวิชาการระดับชาติพิบูลสงครามวิจัย ครั้งที่ 6 ประจำปี พ.ศ. 2563

Table 1: Representation the value of correlation and endurance

From the table, it can be concluded that the most correlation value is Da Silva(BRA), the second is Mitchell(USA) and the third is Steward(JAM). The most beta value is Mitchell(USA), the second is Steward(JAM) and the third is Christie(GBR). The most alpha value is Steward(JAM), the second is Surin(CAN) and the third is Christie(GBR). The most Omega is Frederick(NAM), the second is Christie(GBR) and the third is Steward(JAM).

Name	m (kg)	Correlation	$oldsymbol{eta}$ (1/s)	$lpha$ (1/m^2)	ω (radius)
Lewis(USA)	80	0.99837	1.29794	0.0421665	-0.137448
Burrel(USA)	82	0.997167	1.21262	0.0960605	-0.216263
Mitchell(USA)	79	0.999418	1.35275	0.104976	-0.146195
Christie(GBR)	84	0.999056	1.3088	0.394287	0.155617
Fredericks(NAM)	73	0.999353	1.3032	0.11691	0.170767
Steward(JAM)	73	0.999411	1.33421	0.490805	0.15894
Da Silva(BRA)	82	0.999617	1.24132	0.28819	-0.206368
Surin(CAN)	86	0.999095	1.27715	0.469627	-0.182478

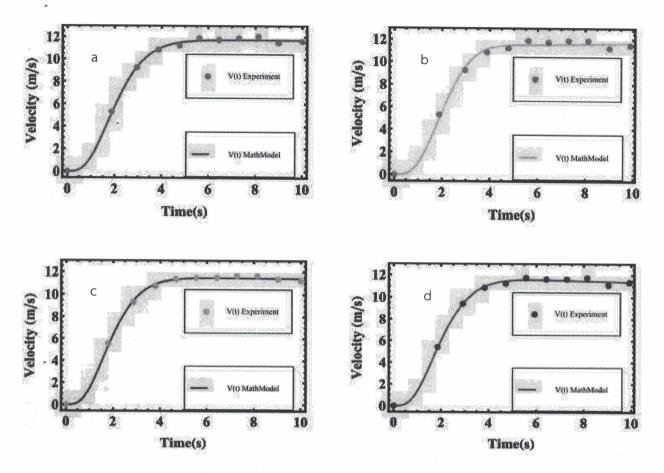


Figure 2: The relationship of velocity and time for 4 runners Lewis, Burrell, Mitchell and Christie.

Fig.(2a) Shows the relationships between time and velocity of Lewis (USA). The experimental value and MathModel value of are close to 8 point. Fig.(2b) Shows the relationships between time and velocity of Burrel (USA). The experimental value and MathModel value are close to 6 point. Fig.(2c) Shows the relationships between time and velocity of Mitchell (USA). The experimental value and MathModel value are close to 11 point. Fig. (2d) Shows the relationships between time and velocity of Christie (GBR). The experimental value and MathModel value are close to 9 point. From all 4 graphs, Fig. (2c) is the closest value of v(t) for experiment and v(t) MathModel

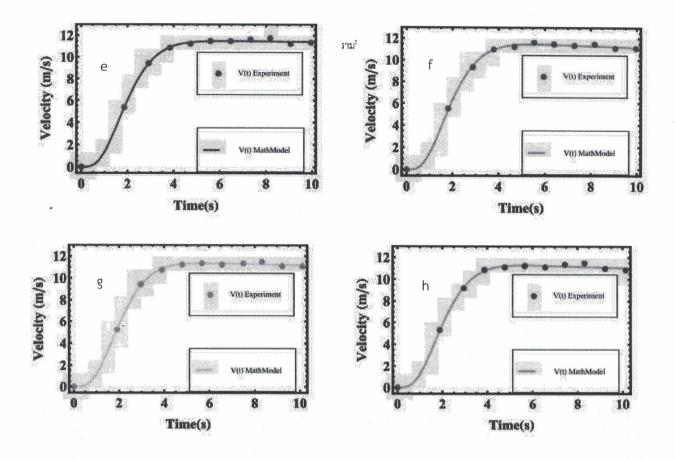


Figure 3: The relationship of velocity and time for 4 runners Fredericks, Steward, De Silva and Surin.

Fig.(3e) Shows the relationships between time and velocity of Fredericks(NAM). The experimental value and MathModel value close of v(t) are to 10 point. Fig.(3f) Shows the relationships between time and velocity of Steward(JAM). The experimental value and MathModel value are close to 10 point. Fig.(3g) Shows the relationships between time and velocity of Da Silva(BRA). The experimental value and MathModel value are close to 11 point. Fig.(3h) Shows the relationships between time and velocity of Surin(CAN). The experimental value and MathModel value are close to 10 point. From all 4 graphs, Fig.(3g) is the closest value of v(t) for experiment and v(t) MathModel. From Fig(3) Shpw graph of velocity and time which in Exponential Function that is an increasing function when time has increase and velocity has increase too. Begin from 0-4 seconds it will be increasing function after seconds 4 graph of velocity and time will stable.

Conclusion

In conclusion, we supersede the method used by obtaining linear first-order ordinary differential equation by parts to solve the one-dimensional Newton's second law to calculate velocity-time-dependent of the men's 100 metres at the 1991 IAAF World Championships in Athletics and get a graph of time that corresponds to the velocity-time-dependent. We calculated the value of correlation, the value of beta, the value of alpha and the value of omega of the men's 100 metres at the 1991 IAAF World Championship in Athletics.

Acknowledgements

We acknowledge Wittayanukulnaree School and The Institute for the Promotion of Teaching Science and Technology(IPST) and Physics division, Parallel IPST, Faculty of Science Phetchabun Rajabhat University, Thailand, for partial support of computer.

References

Robert G. Lockie et.al., Journal of Strength and Condiesisted Sled Towing on Sprint Kinematics in Field-Sport Athletes, 2003, 17(4), pp.760-767

Krzysztof Maćkala, Optimisation of performance through kinematic analysis of the different phases of the 100 metres, ,2007,pp.7-16

O.Helen and M.T. Yamashita, The force, and energy of the 100 meter sprint, Am.J. Phys.78 (3),2010,pp.307-309

James Reardon, Optimal pacing for running 400- and 800-m track races, Am.J.Phys 81(6) , June 2013, pp.428-436

Ryu Nagahara et.al., Kinematics transition during human accelerated sprinting, Biology Open, 2014,pp.1-11 Ercilio Machanguana, Kinematic analysis of Mozambican athletes in the 100 metres race, Proceeding of the 7th International Conference on Mechanics and Materials in Design, 11-15 June 2017,pp.11-15