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Abstract

In this research paper, we developed a theory and model of the forced simple
harmonic oscillators in quantum mechanics system in a framework of a general approach to
the Heisenberg picture. We can be used the time-dependent Hamiltonian for the forced
simple harmonic oscillators. We use first-order ordinary linear differential equation to solve
the time-dependent lowering operator and raising operator. We evaluate the lowering
operator and raising operator as the function of time for particle mass m depend on
the parameter frequency of oscillation (f) , the damping coefficient (/J’) of particle bound in

the simple harmonic oscillator potential, the initial force (Qo).
Keywords: Lowering operator, Raising operator, Heisenberg equation

INTRODUCTION

The harmonic oscillators are widely known and many examples of a quantum
mechanics system. It is a solvable system and allows the exploration of quantum dynamics
in detail as well as the study of quantum states with classical properties. The harmonic
oscillator is a system where the classical description suggests clearly the definition of
the quantum mechanics system. Classically a harmonic oscillator is described by the position
X(t) of a particle of mass m and its momentum p(t) . The quantum mechanics system is
easily defined. The operator method is an excellent means of illustrating the power and

the utility of operators in solving problems in quantum mechanics.
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In this note, we shall show that the fundamental commutator can be derived from
the Heisenberg equation of motion (Dirac ,1981). Carruthers, & Michael (1965) is shown that
the forced quantum mechanics harmonics oscillator in term coherent states. Andrews (2010)
is shown that the Heisenberg’s operator equations of motion for the position and momentum
relative to the centroid are independent of any uniform forces. Andrey (2010) studies
contribution dynamics of quantum mechanics harmonics oscillator under external impulse
force. Chew et al. (2016) studies the equation of motion for quantum electromagnetics
resemble those of classical electromagnetics. We can be used the time-dependent lowering
operator and raising operator evaluation of the position operator and the momentum operator
of particle bound under harmonic oscillator potential. The time-dependent lowering operator
and raising operator is important for find the eigenvalue of the Hamiltonian of a one-
dimensional harmonic oscillator and anharmonic oscillator potential.

The purpose of this paper, we will calculate the time-dependent lowering operator
and raising operator (Chew et al., 2019) under the time-dependent external damping force
simple harmonic oscillator. The scheme of the article is as follows. In section materials and
method, we illustrate evaluation of the time-dependent lowering operator and raising
operator under external damping force simple harmonic oscillator (Ricardo et al., 2009).
In section results, we can be plot graph relation between lowering operator, raising operator

and time. The last section contains our conclusions.

MATERIALS AND METHODS
Evaluation of time-dependent lowering operator and raising operator under
external damping force simple harmonic oscillator

We consider a particle of mass m moving on the x-axis in a time-independent
potentialV (x) = (1/ 2)k x*, where kis the spring constant. The Hamiltonian for external

damping force simple harmonic oscillator is

A2

() =2 2o 5Q(1) + 56 (1). g
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As before, we introduce the classical angular frequency @ = vk/m = 2z f . To this

end we introduce two non-hermitian operators, called lowering operator and raising operator

é(ﬂjﬁ(\/fw rpj (2)
o)

X is the positon operator, p is the linear momentum operutor.Q(t) ondG(t)is

respectively

'O)

the time-dependent external damping force. Subtract Equation (3) from Equation (2) to yield

p=i /mza’(a*—a) @

Combination Equation (3) from Equation (2), we have

. /A
R = }m(a‘ +4). (5)

From the above definitions, the first and second terms right-hand side of Equation (1) can be

written as
p? 1 ho 2 + 2 2 2
oSk = T((”*) +alarad +(a) -(a) +a'aras - (a))
A2
P le - h—“’(é*méa*) (6)
om 2 2

From the above definitions of Equation (4), Equation (5), the two last terms right-hand side of

Equation (1) can be rewritten as

iQ(t)+ﬁG(t):\/%(é*+é)Q(t)+i\/%7(é*—é)G(t)
[(fewsiswe | w1 s,
We now define the parameter of force g(t) E(r Q(t +|\/@ (t)J and

we can be rewritten of Equation (7) as
%Q(t)+pG(t) =g(t)a"+g (t)a . (8)
We can rewrite the Hamiltonian for the time-dependent external damping force

simple harmonic oscillator in terms of lowering operator and raising operator to give

N

()= "2 (8 +aa)+ g (1) +9"(1)a ©)

53



PSRU Journal of Science and Technology 5(3): 51-59, 2020

To illustrate this Heisenberg equation of motion (Dirar et al., 2013) approach we
consider once more the time-dependent external damping force simple harmonic oscillator in

Equation (9). In the Heisenberg equation of motion (Moya-Cessa et al. 2008) the case of

the lowering operator are

ih%ﬁt)z[“,ﬁ(tﬂ
:{”, %‘)(é’é+éé*)+g(t)a +g (t)éﬂ,
Y 1 2a) o1
B pa(r) -9 (10

in
These are the famous first-order linear ordinary differential equation (Tikjha et al.,

2018).
In the Heisenberg equation of motion the case of the raising operator are

in dé;t(t) =[a" H(1)]

or

L ORI AU (11

__T

The solution given by Equation (10) and Equation (11) may be written in a different form
as follows using integrating factors et gnd et respectively to give

A =i ot [ ot A —iot

a(t) = i J'O e g(t) dt+a(0)e™ (12)

A I ot (U ot o+ At iot

a'(t) =Ee"" IO e’ g (t)dt+a’(0)e"", (13)
where 4=4(0), a'=4"(0). We now define of the time-dependent external

damping force simple harmonic oscillator to give

Q(t)=G(t) = Qe sin(ot). (14)
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Substituting Equation (14) into g (t) z( Q( )i ,@G (t)] we can rewrite

g(t) as
):[\/%H\/@j(goe‘ﬁ‘sin(o‘t), (15)

where Q, is intitial force, B is the damping coefficient. With this definition

the parameter becomes

= L-ﬁ-l mha)’ —| mha) (’]6)
We can rewrite the time-dependent lowering operotor Equotlon (12) a
a(t) = %ef‘”ﬂ Q[ € &7 sin(ot) dt+4a(0)e ™,
~ inQ,e” ((ia)—ﬂ)sin(d)—o-cos(d))+ inQ,oe
(iw-pB) +o° (io-BY +o°

We can rewrite the time-dependent raising operator Equation (13) as

+a(0)e™ . (17)

at(t) = %eia’t Q1" j'; e e sin(ot) dt+a" (0)e"!

in' Qe ((-iw-p)sin(ot)-ccos(ot))  in'Q,oe'™
+
(iw+p) +o (ia)+,6’)2+02

From Equation (17) and Equation (18) is the time-dependent lowering operator and

+4a" (0)e'*.(18)

a'(t) =

raising operator show in program. Putting this into program mathematica for plot graph.
Case 1: The time-dependent lowering operator.

The frequency parameter (f, =0.12, f,=0.14, f,=0.16, f, =0.18) of lowering
operator is the independent varioble. The parameter o =0.12, Q, =10, m=#r =1,
o =012,and £ =0.01 of the lowering operator is the control variable. In Figure 1(a)
we illustrate schematically the time-dependent lowering operator for a particle bound
the harmonic oscillator potential by change the frequency parameter. Next, we can be used
the damping coefficient parameter g =0.02, p, =0.04, B, =0.06, g, =0.08,
(independent variable) evaluation the lowering operator in Figure 1(b). The parameter
0=012, Q, =10, m=n=1 o0=0.12and f =0.150f lowering operator is the control
variable.

Case 2: The time-dependent raising operator.
The frequency parameter (f, =0.12, f, =0.14, f,=0.16, f,=0.18) of raising

operator is the independent variable. The parameter o =0.12, Q, =10, m=#r =1,
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0=0.12,and £ =0.01 of the raising operator for image part is the control variable.
In Figure 2(a) we illustrate schematically the time-dependent raising operator of image part
for a particle bound the harmonic oscillator potential by change the frequency parameter.
Next, we can be used the damping coefficient parameter g =0.02, g, =0.04,
B, =0.06, B, =0.08, (independent variable) evaluation the raising operator for image part
in Figure 2(b). The parameter o =0.12, Q, =10, m=%=1, 0=0.12,and f =0.150f

raising operator is the control variable.

RESULTS

We can explain of numerical and result in Equation (17) and Equation (18). The time-
dependent lowering operator can be plot graph in Figure 1(a) and Figure 1(b). The time-
dependent raising operator can be plot graph in Figure 2(a) and Figure 2(b). The time-

dependent lowering operator for image part are plotted in Figure 1.
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6F

Lowering Operator
+— =
Lowering Operator
=

0 5 10 15 20 0 5 10 15 20

Time(s) Time(s)

(a) (b)

Figure1 Plots of é(t), which represents the right-hand sides of Equation (17), as a function
of the time t (a) for change of the frequency parameters (The red hard thing line is
f, =0.12 Hz . The blue hard thing line is f, =0.14 Hz . The pink hard thing line is
f, =0.16 Hz. The green hard thing line is f, =0.18 Hz.) and (b) for change of
the parameters S (The red hard thing line is £, =0.02 . The blue hard thing line is
B, =0.04. The pink hard thing line is 8, =0.06. The green hard thing line is
S, =0.08))
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The time-dependent raising operator for conception of part are plotted in Figure 2.
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Figure 2 Plots of &' (t) which represents the right-hand sides of Equation (18), as
a function of the time t (a) for change of the frequency parameters (The red hard
thing line is f, =0.12 Hz . The blue hard thing line is f, =0.14 Hz . The pink hard
thing line is f, =0.16 Hz . The green hard thing line is f, =0.18 Hz .) and (b) for
change of the parameters S (The red hard thing line is g, =0.02 . The blue hard
thing line is B, =0.04 . The pink hard thing line is £, =0.06. The green hard thing
line is B, =0.08 )

DISCUSSION

The time-dependent lowering operator for fantasy part are plotted in Figure 1. From
Figure 1(a), if higher the frequency (f)of]‘ect decreasing value amplitude and wavelength of
the time—dependent lowering operator. Thus the effect of the interaction Heisenberg picture is
that the product of the frequency parameter and lowering operator is function of time and
denote the change for particle harmonic oscillator under influence of the time-dependent
external damping force simple harmonic oscillator ( g(t) ). Such a system of time-dependent
lowering operator in Figure 1(a) is said to be moderately damped.

From Figure 1(b), if higher the damping coefficient( ﬂ) affect decreasing value
amplitude of the time-dependent lowering operator. Such a system of time-dependent
lowering operator in Figure 1(b) is said to be lightly damped. The time-dependent raising
operator for meditate part are plotted in Figure 2.

From Figure 2(a), if extra the frequency(f)impinge relieving value amplitude and

wavelength of the time-dependent raising operator. Thus the effect of the interaction
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Heisenberg picture is that the product of the frequency parameter and raising operator is
function of time and denote the change for particle harmonic oscillator under influence of
the time-dependent external damping force simple harmonic oscillator (g(t)). From Figure
2(b), if superior the damping coefﬂcient(,B) influence mitigating value amplitude of the time-

dependent raising operator.

CONCLUSIONS

We can be calculated the time-dependent lowering operator and raising operator of
particle mass M lean on the time-dependent external damping force simple harmonic
oscillotor(Q (t) G (t)) , the parameter frequency of oscillation ( f) , the damping coe]‘ficient( ﬂ) ,
the initial force (Qo) of particle bound in the simple harmonic oscillator potential (Liang et al.,
2018). The behavior of the time-dependent lowering operator and raising operator for
imagine part is wave group. We can apply the lowering and raising operator result to
the particular case of a particle of mass moving in the Gaussian potential and other potential.
Finally, we can be used to calculation of the position operator and momentum operator of

a particle in vibration bound the harmonic oscillator potential.
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