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Research Article

Nuttapol Pakkaranang*, Habib ur Rehman, and Wiyada Kumam

Two strongly convergent self-adaptive
iterative schemes for solving
pseudo-monotone equilibrium problems
with applications,

https://doi.org/10.1515/dema-2021-0030
received October 30, 2020; accepted July 6, 2021

Abstract: The aim of this paper is to propose two new modified extragradient methods to solve the pseudo-
monotone equilibrium problem in a real Hilbert space with the Lipschitz-type condition. The iterative
schemes use a new step size rule that is updated on each iteration based on the value of previous iterations.
By using mild conditions on a bi-function, two strong convergence theorems are established. The applica-
tions of proposed results are studied to solve variational inequalities and fixed point problems in the setting
of real Hilbert spaces. Many numerical experiments have been provided in order to show the algorithmic
performance of the proposed methods and compare them with the existing ones.

Keywords: equilibrium problem, pseudomonotone bifunction, Lipschitz-type conditions, strong conver-
gence, variational inequality problems, fixed point problem

MSC 2020: 47]25, 47H09, 47H06, 47]05

1 Introduction

Assume that K is a convex subset of a real Hilbert space &. Suppose that f: & x & —» R satisfying
f(v, ) = 0 for each y; € K and the equilibrium problem (EP) [1,2] for f on K is defined in the following
manner:

Find x* € K such that f(x*,y;) >0, forall y, € K. (EP)

Let the solution of an EP be denoted by EP(f, K) and x* € EP(f, K). Let take x* = Pgp(f,5(6), where 6
stands for the zero element in . Next, we consider the different types of bi-function monotonicity (see [1,3]
for further information). A bi-function f: & x & - R on K for some ¢ > 0 is said to be

(1) strongly monotone if

FOLY) +Fs Y) < =€l - vl Yy, 15 € K

* Corresponding author: Nuttapol Pakkaranang, Department of Mathematics, Faculty of Science and Technology, Phetchabun
Rajabhat University, Phetchabun 67000, Thailand, e-mail: nuttapol.pak@pcru.ac.th

Habib ur Rehman: Department of Mathematics, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140,
Thailand, e-mail: hrehman.hed@gmail.com

Wiyada Kumam: Program in Applied Statistics, Department of Mathematics and Computer Science, Faculty of Science and
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(2) monotone if
fOLy) +f(y ) <0, Vi, Y, € K
(3) strongly pseudo-monotone if
fOuy) 20 = f(y) < =8l -yl Y1, ¥, € K
(4) pseudo-monotone if

fOLY)20=f(,n) <0, Wy, ek

Let f: & x & — R be satisfying the Lipschitz-type condition [4] on K if there exist two constants ¢, ¢; > 0,
such that

FO ¥3) < FOm ¥o) + F(00, ¥3) + allyy = %al? + clly, — y5l?s ¥y, ¥2s ¥ € K.

The unique format of (EP) unifies a number of mathematical problems such as fixed-point problem,
variational inequality problems, vector and scalar minimization problems, the complementarity problems,
the saddle points problems, the Nash EP in non-cooperative games and the inverse optimization problems
[1,5,6]. The problem (EP) is also taken as the Ky Fan inequality due to previous contributions [2]. Many
iterative methods have been proposed and studied to solve different classes of (EP). Many effective iterative
methods have been already established along with their convergence analysis [7-13] and others in [14-23].

The regularization method is the most effective technique to solve many ill-possessed problems in
different fields of pure and applied mathematics. The key advantage of the regularization method is that
it can solve monotone EPs and transform the original problem into a strongly monotone equilibrium sub-
problem. Therefore, each sub-problem is strongly monotone and there is a unique solution. In particular,
the sub-problem can be resolved more easily than the original problem, and the regularization solutions
converge to some solution of the initial problem once the regularization variables appear to have an
appropriate limit. The two common regularization methods are proximal point method and Tikhonov’s
regularized method. These two methods have recently been used to solve the (EP) [24-27].

The proximal method [28] is an effective method to solve EPs and need to solve minimization problems
on each iterative step. This method was also known as the two-step extragradient method in [29] due to the
previous contribution of Korpelevich extragradient method [30] to solve the saddle point problems. Tran et al.
in [29] introduced a sequence of {x,} as follows:

X0 € K,

. 1
¥, = argmin {(f(xn, y) + =lxn - }’llz},
yeK 2

. 1
Xn41 = argmin {(f(yn, y) + =lxn - yllz},
yekK 2
1 1
2a° 20"
Recently, Wang et al. in [31] introduced a non-convex combination iterative method to solve pseudo-
monotone EPs. Strong convergence of iterative sequences is the main contribution of the proposed method.

where 0 < { < min{

The detailed method is as follows: choose 0 < ¢, < min{ziq, 2%2}, 6, ¢ [6,1) with O < 6 < 1 and a, such that

(o)
lim a, =0 and ) a, = co.
n—oo n=1

Compute X1 = Pylanxn, + (1 — an)zn — @nbnXn], where

. i}

¥, = argmin {(nf(xn, y) + = lxn - Y"Z},
yekK 2

1 1.1)

z, = argmin {(nf(y,,, y) + =lxn - Yllz}-
yeK 2
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A natural question arises.

Is it possible to introduce a modified version of method (1.1) in the sense that constant step size took over with the non-
monotonic step size rule and it improve the numerical efficiency of the method”?

In this paper, we provide a positive answer to the above question, that is, the gradient method pro-
vides a strong convergence sequence by using a non-monotonic step size rule for solving EPs accompanied
with pseudo-monotone bi-functions. Motivated by the works of Censor et al. [32] and Wang et al. [31] we
introduce a new gradient-type method to figure out the problem (EP) in the setting of an infinite-dimen-
sional real Hilbert space. Some applications on the topic of the variational inequality problem and the fixed
point problem are provided. Numerical experiments have described that the proposed methods are more
successful than the given one in [31].

The rest of this article has been arranged as follows: Section 2 contains some basic definitions and
identities used in this paper. Sections 3 and 4 include the proposed methods as well as the convergence
theorems. Section 5 presents an application of our results to solve variational inequalities and the fixed
point problems. Section 6 sets out numerical explanations which demonstrate the computational effective-
ness of the proposed methods.

2 Preliminaries

For a convex function h : K — R subdifferential of h at y; € K is defined by
Oh(y) ={y; € & : h(yo) - h(¥) = (¥3. ¥, - ¥)» Wy, € K.
A normal cone of K at y, € K is defined by
Nix(y) ={y; € E: (13,7, -y <0, Vy, € K}

Lemma 2.1. [33] Assume that h : K — R is lower semi-continuous, convex and subdifferentiable function on
K. Then, y, € K is a minimizer of a function h if and only if

0 € dh(y,) + Ngc(y1),
where dh(y;) and Ny(y,) denote the subdifferential of h at y, € K and the normal cone of K at y,, respectively.
Definition 2.2. [34] The metric projection P (y,) for y, € & onto a closed and convex subset K of & is
defined by
Py (y,) = argmin{lly, - yll : y, € K}
Lemma 2.3. [35] Let Px : & — K be a metric projection on K. Then
(1) For eachy, € K and y, € & such that
Iy, = Pre(yll < Iy, = vals
(2) y; = Px(yy) if and only if
N-YpY-y3) <0, Vy, ek

Lemma 2.4. [36] For each y,, y, € & with x € R, we have
by + (=Xl = xlyl? + A = 0lyl? = x@ = ly, = vl
and

Iy, + Yol < Il + 2¢v5, ¥y + ¥s)-
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Lemma 2.5. [37] Let a sequence {x,} of non-negative real numbers such that
Xns1 < A = TX, + Tbn, VN EN,

where {1,} c (0, 1) and {6,} ¢ R satisfy the following conditions:

lim7,=0, Y f=co, and limsup §,<O.
n=1

n—oo n—oo
Then, lim,_, X, = O.
Lemma 2.6. [38] Let {x,} be a sequence of real numbers such that there exists a subsequence {n;} of {n}

such that X, <Xy, for alli € N. Then, there exists a non-decreasing sequence my C N such that my — oo
as k — oo, and the following conditions are fulfilled by all (sufficiently large) numbers k € N:

Xy SXm;m and Xk SXmm‘
In fact, m = max{j < k 1 X SX)'H}'
Let f: & x & — R satisfy the following conditions:
(C1) f(y,,¥,) =0 forall y, € K and f is pseudo-monotone on K;
(C2) f satisfies the Lipschitz-type conditions on & with constants ¢ > 0 and ¢, > O;

(C3) f(y,¥,) is jointly weakly continuous on & x &;
(C4) f(y, .) is subdifferentiable and convex over & for each x € &.

3 Explicit subgradient extragradient method and its convergence
analysis

The following is the first method in detail.

Algorithm 1

Initialization: Let x; € K, 0 < min{l, ziq’ i}, ue(0,0),¢>0,6,c[6,1) with0<b<1anda,c(0,1)
such that

[ee]
lima,=0 and ) a, = oo.
n—-oo n=1

Step 1: Compute

. 1
Y, = argmin {(,,f(xn, y)+ =lxn - YIIZ}-
yekK 2

If x,, = y,, then STOP. Otherwise, go to the next step.
Step 2: Construct a half-space
En={z€8&: (Xn— n— Yz — ¥y <0},

where w, € df (x,, y,) and compute

. 1
z, = argmin {u(,.f(y,., y) + =lx, - yllz}-
y€En 2
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Step 3: Compute

Xn+1 = Prc[@tnXn + (1 = @n)zn — QnbnXn].

Step 4: Revise the step size rule as follows:

. llf()'m zn)
min- o, : 5 5
Fns 2n) = £ (ns V) — GllXn = Yal? = Gallzn = YllP + 1

o1 = . U Vs Zn) S (3.1)
£ s zn) = fGns V) — GllXn = Yl = Cllzn = Yul? +1 7
o else.
Put n:=n + 1 and go back to Step 1.
Remark 3.1. The iteration {,,, in (3.1) is well-defined and
1 (F Oy Zn) = £ (s Vo) = Gillxn = Yl = Gally, = zalP®) < 1f (Vs Z0)- 3.2

Lemma3.2. Let f : & x & — R be a bi-function satisfying conditions (C1)—(C4). Then, forany x* € EP(f, K) + @,
we have

Izn = X*IP < I = X*I? = (1 = &pudlzn = Xal? = $pan( = 268 )1%n — Yl = $in(1 = 2681120 — Yl
Proof. The value of z, and Lemma 2.1 give that
1
0e€ 6z{u(nf O ¥) + '2'“xn = yllz}(zn) + Ng,(zn).

From above wy, € 3,f(¥,, zn) and @, € Ng,(z,), we have

UGWn + 2n — Xn + Wy = 0.

Thus, we have since @, € Ng (2,), (Wn, Y — zn) < 0, Vy € &y It implies that

U Wn, Y = 2Zn) 2 (Xn = Zn, ¥ — Zn), VY € En. (3.3)
By wp € 92f(,, zn), we obtain
fOw ¥) = Fs 2n) 2 (Wny Yy = Zn), VY €&, B.4)
Combining expressions (3.3) and (3.4) gives that
MG f Vs ¥) = MG f Vs Z0) 2 (Xn = Zns ¥ = Zn), VY € En. (3.5)
Substitution by y = x* in (3.5), we get
MG f Vs X = UG f Vs Zn) 2 (Xn = Zn, X* = Zn), VY € Ep. (3.6)

Since x* € EP(f, K), f(x*, y,) = 0 and because of condition (C1) we have f(y,, x*) < 0. It implies that
(Xn = Zn, Zn = X*) 2 UG, f (Vs Zn)- (3.7)
Combining expressions (3.2) and (3.7), we have

(Xn = Zns Zn — X*) 2 (n+1[(n{f(xm zn) = f(Xn, Y,.)} = Cl(,,"Xn - Y,.!|2 = Cz(,,HZn = yn"2]- (3.8)
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Due to z, € &,, we have
ColWns Zn = Vo) 2 (Xn = Vs Zn = V) (3.9)

From w, € 0,f(xn, y,,) and y = z,, we have

fGns Zn) = fOtns V) 2 {Wns Zn — ¥y), Wy € E. (3.10)
Combining expressions (3.9) and (3.10), we obtain
(n{f(xm Zn) — (s Y,.)} > (Xp — Yn» Zn — )’,,)- (3.11)

Expressions (3.8) and (3.11) imply that
2(xn = zZn, Zn = X*) 2 (20 = Yoo Zn = V) = 268,l1xn = Yl = 201120 = Yl ]- (.12
We have the following facts:
20n — Zny Zn = X*) = X = X" = 20 = Xall® = llzn = x"IP.
20 = Vg Zn = Yo) = 0 = Yl + lzn = Yol = lxn = Zall.
Combining above inequalities with (3.12) completes the proof. O
Theorem 3.3. Let {x,} be a sequence generated by Algorithm 1 and the solution set EP(f, K) is non-empty.
Then, the sequence {x,} is strongly convergent to an element x* € EP(f, K).
Proof. From Lemma 3.2, we have
Izn — x*I? < X — x*I?, Vn>2. (3.13)
Next, we prove that {x,} is bounded. For all n > 2, with Lemma 2.4 (i), we obtain

X1 = X*I? = IPgc[@n(1 = 8x)Xn + (1 — Xn)zn] — Pr(x*)I?
<llan(1 — 8)xn + (1 — @n)zn — x*|I?
= llan[(1 = 82)%0 — x*] + (1 — @n)(Zn — x*)IP
Sl = 8u)xn — X*IP + (1 = ap)llzn — x*I

3.14
<an[l(Q = 8)(xn — X*) + X" IP] + (1 = an)lixy — Xx*|2 B:34)
- (1 - ap)lA = § o dlzn — Xal? + Gy = 268X — Yl + Gui( = 268120 — Y4l
<[ = 8p)lxn — x*|? + SallX*IP] + A — an)lxn — x*|2
-1 - a[A - O)lzn - Xl + 01 - 260)|Ixn = Y,I? + 0(1 = 260)|zn — ¥, I]
=(1 - anbp)llxn - X"lz + ansn"x‘llz (3.15)

< max{[x, — x*[I?, Ix*|*} < max{lx — x*[?, l|Ix*|?}.

Thus, {x,} is a bounded sequence as well as {y,}, {z,} bounded. Let g, = anx, + (1 — ay)zy, for everyn € N.
By Lemma 2.4(i), we have

Ign = x*I? = lanXn + (1 = an)zn = X*I? < Xy = X*I?, V2 2. (3.16)
Thus, we obtain
Xn+1 = Px(gn = @nbnXn) = Pxc[(1 — anpn)gn + anbn(1 — an)(zn — Xn)]- (3.17)
By Lemma 2.4(ii) and (3.16), (3.17), we have (see equation (3.6) [31])

Xns1 — x*I2 = IP[(1 = @n6n)Gn + @nbn(1 — @n)(Zn — Xn)] — Prc(x*)|?
< (1 = anbp)lxn — X*I? + 20,6,(1 — @n){(Zn — X, (1 - nbn)Gn + nbn(1 — an)(2n — Xp) — x*)  (3.18)
+ 20p8n(1 = An){ = X*, Zn = Xn) + 20;0n( — X*, X — X*) + 2026X(X*, Xy).
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The rest of the proof will be divided into the following two parts:

Case 1. Assume there is n, € N (n, > 2) such that
IXns1 = X < 1% = x*I,  Vn 2 n,.

This implies that lim,,_, .|x, — x*|| exists and let lim,,_,||x, — x*|| = 1. Thus, expression (3.14) (Vn > n,) implies
that

A = Dz — xal? + 01 = 260X, = Y l? + 0(1 — 260)|z, — ¥,

*)|12 *||12 *||12 (3'19)
< lIxn = X*IP = IXns1 = X7 + anllx*[* + axAo,
where Aj is the finite number
Ao = sup{[(1 - 0)llzn — Xal? + 01 = 2¢10)IXn — Y, I* + 0(1 = 26:0)||z — Y,I?] : ¥ € N}
The existence of lim,_,.||x, — x*|| = [, with expression (3.19) implies that
lim |[x, - 2z, = lim |x; = y,| = lim ||z, - y,/| = O. (3.20)
n—oo n—oo n—oo

Since the sequences {x,}, {),} and {z,} are bounded, there exists a subsequence {x,,} of {x,} such that {x,,}
converges weakly to some x € K and

lim sup(-x*, X, — x*) = lim sup(—x*, X5, — X*) = (=x*, X — x*). (3.21)
n—oo k—o00

By expression (3.20), the subsequences {y,, } and {z,,} weakly converge to x as k — co. From (3.5), we have
u(nkf(ynk, }') - u(nkf()’nk’ znk) 2 (xnk - znp y - znk)’ Vy € 8"' (3'22)
By letting k — oo, it implies that
f(x,y) >0, VyeXKcé&n (3.23)
It follows that x € EP(f, K). In conclusion, by (3.21) and Lemma 2.3(ii), we get
lim sup(—x*, x, — x*) = lim sup{-x*, xp, — x*) = (—x*, x — x*)
n—oo k—00 (324)
=(0 = Pep(r,50(0), X = Pep(5,50(6)) < 0.

By using expressions (3.18), (3.20), (3.24) and Lemma 2.5, we obtain the required result.

Case 2. Suppose that there exists a subsequence {n;} of {n} such that
IxXn, — x*II < lXn;,, — x*I, VieN.
From Lemma 2.6, there is a sequence {m;} ¢ N with {m;} — oo, such that
1Xm, = X*II < lIXmy,, — x*I  and  [Ixx — x*|| < lIXm,,, — x*|I, forall k e N. (3.25)
From expression (3.19) (for all my > 2), we have

(1 = Olzm, = XmlP? + 01 = 260)Xm, = Y, I? + (1 = 26:0)|Zm;, = Vi I

(3.26)
< xmy = X*IP = IXmes1 = X*IP + @I + @m,Ao.
The aforementioned expression implies that
klif?o IZm = Xmll = khf& Xmy = Vil = ;}ff,'o IZme = Ym,ll = O. (3.27)
Similar to expression (3.24), we have
lim sup(—x*, Xm, — x*) < 0. (3.28)

k—o0
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From expression (3.18), we obtain

[1Xme+1 — X*"Z <(1- amkémk)"xmk -xI? + 2amk5mk(1 = amk)(zmk = Xmys 1- amk‘smk)qu
+ UmBm (1 = A )Zmye = Xmy) = X*) + 20mEm (1 = A )(~X*, Zmy — Xmy) (3.29)
+ 20mBm (X", Xmy — X*) + 207, 87 (X*, Xmy).

It is given that ||x,, — X*|| < [IXpm,,, — x*|l. Thus, we have

1Xm1 — x*|? < 1= amksmk)llxmk+1 = X*HZ +* Zamksmk(l = amk)<zmk = Xmy» a- amkamk)qu
+ amkémk(l - amk)(zmk - xmk) - X*> E = Zamksmk(l = amk)<_x‘1 zmk = xmk> (3-30)
+ 20 Bm(—X*, Xy — X*) + 207, 87, (X", Xm).
Expressions (3.25) and (3.30) imply that

lIxie = x*I? < 1 Xms1 — X*I?
<2(1 - Am)(Zmy — Xme> (1 = AmeOm)dmy + AmeBm (1 = Am ) (Zmy — Xomy) — X*) (3.31)
+ 21 = A ) (X", Zmy = Xmy) + 2(=X*, Xy, — X*) + 20O (X*, Ximp), YN > 2.

Since a,,, — 0, it follows from (3.27) such that

lim [Ix — x*? < lim [Xp,1 — x*|?> < O. (3.32)
n—oo n—oo
Consequently, x, — x*. This completes the proof. O

4 Modified explicit subgradient extragradient method and
its convergence analysis

The following is the second method in detail.

Algorithm 2

Initialization: Let x; € &, 0 < min{l Lt }, ue(0,0),§>0,6,c[6,1)with0 < 6 <1anday, B, c (0,1)

> 2° 2

such that

00
lima, =0, Yay=oco and liminfB,(1-48,) > 0.
n—oo n=1 n—oo

Step 1: Compute

Y, = argmin {c,,f(P«(x,.), )+ 21Px(en) - y||2}.
yeK

If x, = y,, then STOP. Otherwise, go to the next step.
Step 2: Construct a half space first
8" = {z €& (PW(XH) - (nwn - Ynlz - yn) < 0}’

where w, € of (Px(xy), y,) and solve the following convex problem:

. 1
zn = argmin {u(,.f Vs ¥) + =P (xn) — yllz}.
yeén 2
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Step 3: Compute
Xn+1 = (1 = 8x)Xn + (1 = @)[Bpzn + (1 = B)Xn].

Step 4: Revising the step size as follows:

mm{a Hf Vs 2Zn) }
" fF(Px(xn), Zn) — fPxc(xn), V) — GllPx(xn) = Yl = Gollzn = Wl + 1)
=9 . W (Vs Zn) (4.1
if >0
FPx(xn), zn) — f(Pxc(Xn), ¥,) — GllPx(Xn) — Vl? — Gllzn — y,lP + 1
g else.

Set n :=n + 1 and go back to Step 1.

Remark 4.1. The iteration ¢, in (4.1) is well-defined and

Cuii(f Pxc(Xn), 2n) — f(Pc(Xn), ) — CillPx(Xn) — Yl = clly, — 2all?) < uf (Vs Z0)- (4.2)

Lemma4.2.Letf : & x & — R bea bi-function satisfying conditions (C1)—(C4). Then, for eachx* € EP(f, K) + &,
we have

Izn = X*I? < IPx(an) = x*IP = A = Gy )lzn = PP = 011 = 268)IPx 0) = Yl = §q(1 = 268120 = il

Theorem 4.3. Let {x,} be a sequence generated by Algorithm 2 and the solution set EP(f, K) is non-empty.
Then, the sequence {x,} is strongly convergent to an element x* € EP(f, K).

Proof. First, we need to show that {x,} is a bounded sequence. By the use of Lemma 4.2, we have
Xne1 = X7 = llan(1 = 8)xn + (1 - an)[ﬂnzn +(1- ﬂn)xn] - x*P
=llanl(1 = )% = x*] + (1 = an)[B,(zn = x*) + (1 = B, )0 = xM)]IP
<l = 8p)xn — x*|2 + (1 - an)"ﬂn(zn -x)+ (- ﬁn)(xn - x")P
< a1 = 6)xn — x*) + 6x*I2 + (1 = an)[Byllzn — X*I? + (1 = Blxn — x°IP
- ﬂn(l - Bn)"zn - X,,||2] (4.3)
S an[(1 = 8)lIxn — X*I2 + Sallx*IP] + (1 — an)[lIXn — x*[> - ﬁn(l = Gz - Px ()|
= Bubnii = 268)IPx(xn) = Yl = Bp$nii(1 = 26801120 = Yll* = B, (1 = BlIzn — Xull?]
< (1 = anbp)lixn = X*I? + anbllx*I? - (1 - an)[B,(1 = 0)lzn — Pxc(xn)I?
+ Bno(1 = 260)Px(xn) = Yl + B,0(1 = 260)zn — Yl + B, (1 = BIIzn — Xal?].
Since 0 < o0 < 1, the above inequality implies that
Ixns1 = x*IP < max{lx, = x*I?, Ix*I?} < max{lx - x*I?, Ix*I?}. (4.4)
It implies that {x,} is a bounded sequence. By using x,.; with Lemma 2.4 gives that (see equation (3.17) [31]):

IXns1 — x*|? < A = anbp)lXn — x*I? + 20,6,(1 - an)ﬁn(zn = Xny Xns1 — X*) + 2036,(—X*, Xn1 — X*).  (4.5)

Case 1. Assume that there is an m, € N (m, > 2) such that

X241 = X*I < X0 = x*,  Vn = m,. (4.6)
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Then, the lim,,_,o|[x, — x*| exists. By expression (4.3), we have

Bal(1 = O)lizn — Px()I? + 0(1 = 260)|IPx(Xn) — Y,l? + 0(1 = 260)|zn — Y,l? + (1 = BNz — Xall?]

4.7)
< X = X*I? = IXns1 — X*IP + anlx*I? + anBo,
where By is the finite number
Bo = sup{B,[(1 - 0)llzn — Px(x)I? + 0(1 — 260)|Pxc(Xn) — ¥,I> + 0(1 = 26:0) 12 — ¥, 4.8)
+ (1 - Blzn — xal?] : Vn € N}
Thus, expression (4.7) implies that
lim [|[Px(Xn) — znll = lim [|Px(xn) = y,ll = lim ||z, — y,ll = 0 = lim [Ixn — 24l = O. (4.9)
n—-oo n—oo n—oo n—oo

Due to the boundedness of the sequence {x,}, there exists a subsequence {x,,} of {x,} such that {x,,} weakly
converges to x € K and

lim sup(-x*, X, — x*) = lim sup(-x*, Xp, — X*) = (=x*, x — x*). (4.10)

n—co k—o0
Similar to expression (3.5), we have

Mo f Ones ¥) = MG f Ois Zn) 2 (Pxc(Xn)) = Zms ¥ = 25 VY € En (4.12)
By letting k — +00, we have

f(x,y) >0, Vye¥XK.
It implies that x € EP(f, K). By expression (4.10) and Lemma 2.3, we obtain
lim sup(—x*, x, — x*) = lim sup(-x*, x,, — x*) = (-x*, x — x*)
n—co k—o0 (4.12)
= (0 - Pep(f,90(8), X — Pgp(s,90(0)) < 0.

By expression (4.5) and Lemma 2.5, we obtain the required result.

Case 2. Suppose that there exists a subsequence {n;} of {n} such that
IXn, = x*I| < lIXn,, — x*I, VieN.
Then, by Lemma 2.6 there is a non-decreasing sequence {m} ¢ N with my — co, which implies that
1Xm, = x*II < IXmy,, — x*I and  |Ixx — x*|| < Xm,,, — x*II, forall keN. (4.13)
From expression (4.5), we obtain

1Xm1 — x*|? < a- am,,smk)"xmk -x? + zamksmk(l = amk)ﬁmk(zmk = Xmys Xmy41 — X*)

(4.14)
+ 20mOm (=X, Xmy+1 = X*).

The remaining part is similar to Case 2 in Theorem 3.3. This completes the proof. O

5 Applications

Now, we study the applications of our main results to solve fixed point problems. An operatorT : K ¢ & — K
is said to be

(i) x-strict pseudocontraction [39] on K if

1Ty, = TY,I? < lyy = yal? + (i — T%) = (0, = TR, Yy, ¥, € K,
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which is equivalent to
1-x
(Ty1 - Ty;; y1 - Y2) < ||y1 - }’2||2 - TI'(Y] - TYI) - (yz - T)’z)ﬂz, Vyp YZ € 7('

(ii) Weakly sequentially continuous on K if

T(xy,) — T(p) for any sequence in K satisfying x, — p.

Corollary 5.1. Assume that K is a non-empty, convex and closed subset of a Hilbert space & andT : K —» K

is a x-strict pseudo-contraction and weakly continuous with Fix(T) + &. Choose x; € K, 0 < min{l, ;:z"x},
ue(0,0),¢>0,6,c[6,1) with0 < § <1and ay c (0, 1) such that
0
lima,=0 and ) ay=oco

n—oo n=1

Compute xn,1 = PxlanXn + (1 — ap)zn — anbnXn], where

yn = (1 - Cn)xn + (nT(xn):
Zn = PEn[x" - ”cn()/n - T(yn))L

where &, ={z € & : (1 - {)xn + §,T(Xn) — Yo 2 — ¥, < 0}. Compute

u(yn - T}’n’ Zn — y")

min-< o,
n = TO)s Zn = Vo) = (3222 )n = Yol = (3222 )z - yol? + 1
(YH»I = if u(yn - TY)'!’ z" - YII> > O
3-2 > (3-x 2 ’
(n = TO), 2 = Yo = (2225) 1 = P = (3222 )llzm — 3al? + 1
Lo else.

Then, the sequence {x,} converges strongly to an element x* = Prix)(6).

Corollary 5.2. Assume that ‘K is a non-empty, convex and closed subset of a Hilbert space & withT : K — K

is a k-strict pseudocontraction and weakly continuous with Fix(T) + &. Choose x € &, 0 < min{l, 31_';‘},
ue€(0,0),{>0,6,c[8,1) withO < 6§ < 1and ay, B, c (0, 1) such that

n—oo

lima, =0, Y ay=oco and liminfB,(1-p8,) > 0.
n=1 n—oo

Compute Xn.1 = aq(1 = 8x)Xn + (1 — @n)[B,2n + (1 — B,)Xn], where

Yo = (1 = §IPx(Xn) + §,T(Pxc(xn)),
Zn = Pg,[Xn — u¢, (3, — T(y )]s
where &, = {z € & : (1 - {DPx(xn) + §,T(Pxc(Xn)) = Yp» Z — ¥, < O}. Compute

-

H(}’n - T}’n» Zn — }’,.)

min< o,
(Px(xn) = TPc(xa), 2n = Yo = (322 )IPx ) = Y = (322 )llzm - yolP + 1
=y Hn = TVs Zn = Y
if >0,
(Prcn) = TPxOn), 2n = Yo = (3222 )IPxcCn) = Yl = (2222 = P + 1
L0 else.

Then, the sequence {x,} converges strongly to an element x* = Pgi(r)(0).
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The variational inequality problem is defined in the following way:
Find x* € K such that (G(x*),y — x*) >0, Vye K.

Note: If f(x, y) = (G(x),y — x) for all x, y € K, the EP transforms into variational inequality problem with
L = 2¢ = 2¢, (for details see [40]). Moreover, we have

Y, = argmin {c,,f(xm ¥ & Sy = y||2} = Pt - £,G0G)],
yex 2 (5.1)

. 1 .
zp = argmin {u(nf(yn, y) + Ellxn - yllz} = Pg,[xn — u§,G(y)]-
y€&n

Suppose that G meets the following conditions:
(G1) G is pseudomonotone on K with VI(G, K) is non-empty;
(G2) G satisfies L-Lipschitz continuity on K through L > 0;
(G3) lim supn_,eo{G(Xn), y — xn) < (G(p), y — p) for every y € K and {x,} c K satisfying x, — p.

Corollary 5.3. Let a mapping G : K — & satisfy conditions (G1)—-(G3). Assume that sequence {x,} is generated
as follows:

(i) Let 3 € K, 0 < min{l, %}, u€(0,0),4>0,6,c[6,1)withO <6 <1anday, c (0, 1) such that
lim @, =0 and ) an = oco.

—
n—oo n=1

(ii) Compute xn.1 = Py[anxn + (1 — an)zn — anbnxy], where

yn = P‘K[Xn - (nG(xn)]r
Zn = Pg,[xn — UGGy,

where En = {z € & : (Xn — {,G(Xn) = Yy» Z — ¥,) < O}. Compute

mind o, ufGy,., Zn — Vo) ) ’
(GXny Zn = Vo) = 51xn = Yl = Sllzn = Yl +1

Coir = 3 " U(GYps Zn — V) S
(GXny Zn = V) — Zl%n = Yl = Zlizn = il +1

o else.

L

Then, the sequences {x,} strongly converge to a solution x* € VI(G, K).

Corollary 5.4. Let a mapping G : K — & satisfy conditions (G1)—(G3). Assume that sequence {x,} is generated
as follows:

(i) Let 3 € &, 0 < min{l, %}, u€(0,0),¢>0,6,c[6,1)withO < § <1and ay, B, c (0, 1) such that

00
lima, =0, Y ap=oco and liminfB,(1-p,) >O0.
n—oo n=1 n—oo

(ii) Compute Xn41 = an(1 — 8,)Xn + (1 — an)[Byzn + (1 — B, )xn], where

{y,, = Py[Px(xn) - {;G(Px ()],

Zn = Pe,[Px(t) — uC,G(y)l, 52
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where &, = {z € & : (Px(xn) — {,G(Px(Xn)) = ¥p» 2 = ¥) < O}. Compute

-

min{ o, ll(LG Yor Zn = Yo = .
(GPx(n))» 2n = Vo) = FWPxCn) = Yol = Slzn = Yl +1
$re1 = 9 ; UGy Zn = Yy 5
(GPx(m))s Zn = Vo) = NPk (n) = Yol = S12n — Yol + 1
Lo else.

Then, the sequence {x,} strongly converges to a solution x* € VI(G, K).

6 Numerical illustration

The numerical discussion provided in this section demonstrates the efficiency of our proposed algorithms
compared to Algorithms 3.1 and 3.2 in [31]. The MATLAB program was run on a PC (with Intel(R) Core(TM)i3-
4010U CPU @ 1.70 GHz 1.70 GHz, RAM 4.00 GB) in MATLAB version 9.5 (R2018b). We use the built-in
MATLAB fmincon function to solve minimization problems in all algorithms.

(i) The values for control parameters for Algorithm 3.1 (Alg3.1) and Algorithm 3.2 (Alg3.2) in [31] are

1 1 1 n 1 1
an=m,6n=§+;,(n= 7*2C1",ﬁn=g+6—"anan="Xn‘ynllse.

(ii) The values for control parameters for Algorithm 1 (Alg.1) and Algorithm 2 (Alg.2) are a, = %,

n

1 1 1 1 5 1
6n=g+;,ﬂn=g+6—",l»‘=a,(l=3—qandbn=||Xn—yn||Se-

Example 6.1. Assume that f: K x K - R is
5
foay) = Y- xlxl,  vx,y € R,
i=2

where K = {(x,...,%) : 3 = -1, x; > 1, i = 2,..., 5}. Thus, bifunction f is Lipschitz-type continuous through
G = ¢ = 2 and meet the criterion (C1)-(C4). The solution set of an EP is EP(f, K) = {(x,1,1,1,1) : x3 > -1}
(see [31]). The numerical results are shown in Figures 1-4 and Table 1 and € = 107,

- - =Alg3.1 [z

= (1.0,3,2,5,2)7) - - -Alg3.1 [z = (1.0,3,2,5,2)7]
. ——Alg3.1 [zo = (1.5,3,2,5,2)7] 5 ——Alg3.1 [zo = (1.5,3,2,5,2)7]
10°F - - =Alg3.1 [z = (2.0,3,2,5,2)7]|] 10°F - - =Alg3.1 [z = (2.0,3,2,5,2)7]|3
——Alg3.1 [zo = (2.5,3,2,5,2)7] ——Alg3.1 [z = (2.5,3,2,5,2)7]
10 - - =Alg3.1 [z = (3.0,3,2,5,2)7]| ] 10 - - —Alg3.1 [z = (3.0,3,2,5,2)7]| ]
E 3
| |
8 102 A 102
] ]
g g
10° 10°
10+ 1 10% -
o i i . ) / . ) i . s | i . i : i i ;
0 10 20 30 40 50 60 70 80 90 100 0 0.5 4] 15 2 25 3 35 4 45
Number of iterations Elapsed time [sec]

Figure 1: Example 6.1: Choosing different initial points and behavior for Algorithm 3.1 in [31].
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10" T 10’
-- —Algl [a:o- (1.0,3,2,5,2)7] -- —Algl [a:o— (10 3 2,5, 2) ]
5 ——Alg.1 [zo = (1.5,3,2,5,2)7] " ——Alg.1 [ = (1.5,3,2,5,2)7]| |
10°F - - =Alg.1 [z = (2.0,3,2,5,2)7]| 3 10 - = =Alg.1 [z = (2.0,3,2,5,2)T ]
——Alg.1 [z = (2.5,3,2,5,2)7] ——Alg.1 [z = (2.5,3,2,5,2) ]
107 - = =Alg.1 [z = (3.0,3,2,5,2)7] oo B - = =Alg.1 [z = (3.0,3,2,5,2)7]
= =
| |
o 102 8 102} 1
] I
S g
103 E 103 J
w0 TE=== " sF====---._ . w0tk Es==sTT --
o . . i : i : : 10° i : : i 1 i ; i
0 5 10 15 20 25 30 35 40 0 0.2 04 0.6 0.8 1 1.2 14 16 18

Number of iterations Elapsed time [sec]

Figure 2: Example 6.1: Choosing different initial points and behavior for Algorithm 1.

1 0.5 I L L n L L L
0 20 40 60 80 100 120 140 160
Number of iterations

Figure 3: Example 6.1: Comparison of Algorithm 2 with Algorithm 3.2 in [31].

10_5 I L I 1 L 1 1
0 1 2 3 4 5 6 7 8
Elapsed time [sec]

Figure 4: Example 6.1: Comparison of Algorithm 2 with Algorithm 3.2 in [31].
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Table 1: Example 6.1: Numerical values of Algorithm 1 and Algorithm 3.1 in [31]

Xy Number of iterations CPU time in seconds
Alg3.1 Alg.1 Alg3.1 Alg.1
@.0,3,2,5,2) 33 15 1.5027 0.8189
.5,3,2,5,2) 48 21 2.2226 0.9622
2.0,3,2,5,2) 64 27 2.8630 1.1799
(25,3,2,5,2) 79 33 3.6347 1.5886
3.0,3,2,5,2) 94 40 4.4637 1.7434

Example 6.2. Let there be n firms that assemble the same commodity. Consider that a vector x in which
each element x; remains for the quantity of the substance produces by a firm i. We see the cost function P as
a decreasing affine function, which relies on the amount of S = Z;’;lx;, i.e., P(S) = a; — S, where a; > O,
Y, > 0. The function of earnings of every firm i is defined by F(x) = P(S)x; — ti(x;), where t;(x;) is the tax
value and cost for developing item x;. Consider that %; = [x™", x/"*] is the collections of measures related
to any company i, and the game plan works out for the whole design and takes the form as K = %; x K, x
---x K. Each company wants to attain its peak earnings by pursuing the respective stage of production on
the premise that the performance of the other firms is an input parameter. The commonly used modelling
methodology is based on the famous Nash equilibrium principle. We would like to point out that point x* €
K = K x K> x---x Ky is the point of equilibrium of the model if F(x*) > F(x*[x]), Vx; € K, Vi=1,2,...,n,
with the vector x*[x;] representing the vector obtained from x* by taking x{ with x;. Furthermore, let
f(x,y) = B(x,y) — B(x, x) with B(x,y) = —ZLﬁ(x[y,-]), and the problem of getting the Nash equilibrium
point of the model may be as follows:

Find x* € K : f(x*,y) =20, Vy € K.
It follows from the paper [29] that the bifunction f could be taken in the following form:
f(x,y) = (Ax + By + ¢,y - x),

where ¢ € R% and A, B are

31 2 0 O O 1.6 1 0 0 O 1
2 36 0 0 O 1 16 0 0 O =2
A=l0 0 35 2 Of B=|0 0 15 1 0] c=]|-1
0 0 2 330 0 0 1 150 2
0O 0 O o0 3 0O 0 0O 0 2 -1

while Lipschitz constants ¢ = ¢, = %IIA — BJ| (see [29]). The feasible set K ¢ R5 is
K ={x e R5: -5 < x; < 5}.

Figures 5 and 6 and Table 2 show numerical results by letting different initial values.

Example 6.3. Suppose that & = L*([0, 1]) is a Hilbert space with

1

Ixll = j IX(ORdt

0

and the inner product (x, y) = j;x(t)y(t)dt, Vx, y € E. Assume that K == {x € L%([0, 1]) : |Ix| < 1} be the unit
ball. Let us define an operator G : K — & by

1
G(x)() = L (x(t) — H(t, s)f (x(s)))ds + g (1),
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10 g : . s ‘ : 10 : i - L ]
0 10 20 30 40 50 60 70 05 1 15 2 25 35
Number of iterations Elapsed time [sec]
Figure 5: Example 6.2: Comparison of Algorithm 1 with Algorithm 3.1 in [31]. Comparison by using x = (1,1,1,1, 1)".
E E|

= 1

3

8

I

S

10% = . - = 10 q - * = + *
0 50 100 150 200 250 300 0 2 4 6 8 10 12 14
Number of iterations Elapsed time [sec]
Figure 6: Example 6.2: Algorithm 2 and Algorithm 3.2 in [31]. Comparison by using x, = (1,1,1,1,1).
Table 2: Example 6.2: Algorithmic comparison of Algorithms 1-2 with Algorithms 3.1-3.2 in [31]
X Number of iteration CPU time in seconds
Alg3.1 Alg.1 Alg3.2 Alg.2 Alg3.1 Alg.1 Alg3.2 Alg.2
(0,0,0,0,0) 67 28 260 108 3.0321 0.8480 13.1667 4.5632
1,1,1,1,3) 67 26 262 103 3.0266 3.8970 13.1867 4.3772
(2,-1,-1,2,2) 79 32 261 103 3.2310 1.0240 13.1867 4.3512
1,-2,3,-4,5) 69 30 262 101 3.4487 1.0021 13.1867 4.3123
(2,-1,3,-4,5) 75 37 264 108 3.8215 1.5810 13.1867 4.4987
where
2tselt+s) 2tet
H(t,s) = ———, f(x)=cosx, g(t)= 5
eve? -1 e -1
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Table 3: Example 6.3: Algorithmic comparison of Algorithms 1-2 with Algorithms 3.1-3.2 in [31]

Xy Number of iteration CPU time in seconds

Alg3.1 Alg.1 Alg3.2 Alg.2 Alg3.1 Alg.1 Alg3.2 Alg.2
t 33 5 83 11 0.005131 0.0007435 0.01423 0.001465
2t2 36 6 84 15 0.005243 0.0007876 0.01612 0.001786
et 45 9 97 22 0.006754 0.0009867 0.01922 0.001987
sin(t) 40 6 84 19 0.004987 0.0007927 0.01677 0.001699

As shown in [41], G is monotone and L-Lipschitz-continuous through L = 2. Table 3 shows the numerical
results by taking different initial values.

7 Conclusion

We have provided two extragradient-like methods to figure out a pseudo-monotone EP that requires the
Lipschitz-like condition. The algorithms use a new step-size rule that is revised on each iteration,
depending on prior iterations. Strong convergence results are obtained by letting certain mild conditions
on the bi-function. Many numerical experiments are presented to demonstrate the numerical behavior of
the proposed methods.
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