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Abstract: The main objective of this study is to introduce a new two-step proximal-type method
to solve equilibrium problems in a real Hilbert space. This problem is a general mathematical
model and includes a number of mathematical problems as a special case, such as optimization
problems, variational inequalities, fixed point problems, saddle time problems and Nash equilibrium
point problems. A new method is analogous to the famous two-step extragradient method that was
used to solve variational inequality problems in a real Hilbert space established previously. The
proposed iterative method uses an inertial scheme and a new non-monotone stepsize rule based on
local bifunctional values rather than any line search method. A strong convergence theorem for the
constructed method is proven by letting mild conditions on a bifunction. These results are being
used to solve fixed point problems as well as variational inequalities. Finally, we considered two test
problems, and the computational performance was presented to show the performance and efficiency
of the proposed method.
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1. Introduction

Assume that D is a nonempty, closed and convex subset of a real Hilbert space &. Let f : EXE — R
be a bifunction with f(v,v) = 0 for all v € D. An equilibrium problem (shortly, EP) for f on D is
defined in the following manner: Find {* € D such that

£ v) =0, VveD. (EP)

Moreover, the solution set of an equilibrium is denoted by S gp. In this study, the problem (EP) is
studied based on the following conditions. A bifunction f : & X & — R is said to be (see for more
details [3,4]):

(C1) pseudomonotone on D if

S,v) 20 = f(v2,v)) <0, Yy, € D; (1.1)
(C2) Lipschitz-type continuous [15] on D if there exists two constants ki, k, > 0 such that
SO1,v3) < f1,v2) + f(v2,v3) + kilvi = val* + Kallva = wslP, Y vi,v2,v3 € D; (1.2)
(C3) For any weakly convergent sequence {v,} € D (v, — v*) the following inequality holds

limsup f(v,,v) < f(v*,v), Yve D, (1.3)

n—oo

(C4) f(v,-) is convex and subdifferentiable on & for each fixed v € &.

The general format of the problem (EP) has become attractive and has received a lot of attention
from several authors in recent years. Mathematically, the problem (EP) can be considered as a
generalization of many mathematical models, such as the fixed-point problems, scalar and vector
minimization problems, the complementarity problems, the variational inequalities problems, the
Nash equilibrium problems in non-cooperative games, the saddle point problems and the inverse
minimization problems [4, 12, 17]. The equilibrium problem (EP) has applications in economics [8] or
the dynamics of offer and demand [1], continuing to exploit the theoretical structure of
non-cooperative games and the Nash equilibrium idea [18, 19]. To the best of our knowledge, the term
“equilibrium problem” was first used in the literature in 1992 by Muu and Oettli [17] and was later
studied further by Blum and Oettli [4].

By using the idea of the Korpelevich extragradient method [13], Flam et al. [10] and Quoc et al. [21]
introduced the following method for solving equilibrium problems involving pseudomonotone and
Lipschitz-type bifunction. Choose a random starting point of uy € D; looking the given iteration u,
and choose the next iteration using the iterative scheme:

=D 1.4
Upiy = arg min{pf (v, v) + 3llu, — vIP}, (1.4

veD

{ vy = arg min{pf(un, v) + 3lu, — v},

where 0 < p < min {i, 2172} and k;, k, are two Lipschitz-type constants of a bifunction (1.2). The
method (1.4) has been extended and modified in various ways [16,24-27,29] and others in [2, 6,22,
30,32,34-36].

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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It deserves mention that the above well-established method carries two significant drawbacks. The
first is the constant stepsize that requires the knowledge or approximation of the Lipschitz constant of
the relevant bifunction and it only converges weakly in Hilbert spaces. From the computational point
of view, it might be hard to use a fixed stepsize, and hence, the convergence rate and usefulness of
the method could be influenced. The inertial-type algorithms are of particular interest here. These
algorithms are derived from an oscillator equation with damping and a conservative restoring force.
This second-order dynamical system is known as Heavy Ball with Friction, and it was first studied
by Polyak [20]. In general, the main feature of the inertial-type algorithms is that we can use the
two previous iterations to construct the next one. Recently, inertial-type algorithms have been widely
studied for the special cases of the problem (EP).

A natural question therefore arises:

Is it possible to introduce a new inertial strongly convergent extragradient method with a
non-monotone stepsize rule to determine the numerical solution of the problem (EP) involves a
pseudomonotone bifunction?

In this study, we provide a positive answer to this question, i.e., the gradient method still operate in
the case of a non-monotonic stepsize rule for solving equilibrium problems accompanied by a
pseudomonotone bifunction and obtain a strong convergence of the iterative sequence. We introduce a
new extragradient-type method to solve the problem (EP) in the context of an infinite-dimensional
real Hilbert space, inspired by the works of [7,20,21]. The key contributions to this research are given
below:

(e) We introduce a new self-adaptive subgradient extragradient method by using an inertial scheme
and a non-monotone stepsize rule to solve equilibrium problems. Also, we confirm that the generated
sequence is strongly convergent. This result can be regarded as a modification of the method (1.4).

(o) The applications of our main results are considered in order to solve particular classes of
equilibrium problems in a real Hilbert space.

(o) The numerical experiments regarding Algorithm 1 with Algorithm 3.1 in [11], Algorithm 1
in [28] and Algorithm 3 in [31]. The numerical results have indicated that the suggested method is
appropriate and performed better compared to the existing ones.

The rest of the study has been arranged as follows: Section 2 includes basic definitions and key
lemmas that are used throughout this manuscript. Section 3 consists of the proposed iterative scheme
with a variable stepsize rule and a theorem of convergence analysis. Section 4 sets out the application of
the proposed results to solve the problems of variational inequalities and fixed point problems. Section
5 gives numerical results to illustrate the performance of the new algorithms and equate them with the
two existing algorithms.

2. Preliminaries

Let D be a nonempty, closed and convex subset of a real Hilbert space &. The metric projection
Pp(u) of u € & onto a closed and convex subset D of & is defined by

Pp(u) = arg min||y — ul|.
veD

Definition 2.1. Let D be a subset of a real Hilbert space & and x : D — R a given convex function.

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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(1). The subdifferential of set » at u € D is defined by
Ox(u) ={z€ & :x(v) —x(u) > {(z,v—u), Yv e D).
(2). The normal cone at u € D is defined by
Npu) ={zeE:(z,v—u) <0, Vv e D}

Lemma 2.2. [23] Assume that » : D — R is a convex, subdifferentiable and lower semicontinuous
Junction on D. An element u € D is a minimizer of a function x if and only if

0 € 9x(u) + Np(u),
where Ox(u) stands for the subdifferential of x at u € D and Np(u) the normal cone of D at u.
Lemma 2.3. [33] Assume that {a,} C (0, +c0) is a sequence satisfying the following inequality
a,. < (1 -=bya, + b,c,, YneN,

Moreover, {b,} C (0, 1) and {c,} C R are sequences such that

lim b, =0, 3" b, = +co and limsupc, < 0.

n—+00 = n—+oo
Then, lim,_,. a, = 0.

Lemma 2.4. [14] Assume that {a,} C R is a sequence and there exists a subsequence {n;} of {n} such
that a,, < ay,,, for all i € N. Then, there exists a nondecreasing sequence my C N such that m; — oo as
k — oo, and the subsequent conditions are fulfilled by all (sufficiently large) numbers k € N:

oy & Oy, ONA G < Gy«

Indeed, my = max{j <k:a;<aj.}
3. Main algorithm and its convergence analysis

Now, we introduce a new variant of Algorithm (1.4) in which the constant stepsize p is chosen
adaptively.

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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Algorithm 1 (Inertial Non-monotone Strongly Convergent Iterative Scheme)

Step 0: Choose ug,u; € D, ¢ > 0,0 < o < min{l,%kl,i}, u € (0,1), p; > 0. Moreover, select

{¢,} C (0, 1) satisfies the conditions, i.e.,

n—+oo

+00
lim ¢, =0 and Z'/’" = +o0.
n=1

Step 1: ComPUte Xn = Up + ¢n(un i un—]) - wn [un + ¢n(un == un—l)] where

. ¢ € .
5 " min{5, —2—t if wu, # Uy,
0<¢,<¢, and ¢,,:{¢ (% ) e

. 3.1)
= otherwise,

where €, = o(y,,) is a positive sequence such that lim,,_, , % =0.
Step 2: Compute v, = arg min{p,, f(x,,v) + %IIX,, -V}
veD
If ¥ = v,, then STOP. Otherwise, go to Step 3.
Step 3: Firstly choose w, € d5f(xx, v,) satisfying x, — pnw, — v, € Np(v,) and generate a half-space
8,-, = {Z 68 4 <Xn_pnu)n -Vn,Z_Vn> S 0}

and compute

, 1
Uy = arg min{, f(va, v) + Sllin = VI[P

veE,

Step 4: Next, the stepsize rule p,,; is updated as follows:

: 1 f (Vpsttng1) }
min {‘T’ FCtmtine 1)~ Crmm) K1l n—Va P KTl —valP+1 |
— 1 ﬂf(vmun+l) 3 2
Pr1 L oy = -y e g 62
o otherwise.

Setn = n+ 1 and go back to Step 1.

Remark 3.1. By the use of p,., in expression (3.2), we obtain

Pn+1 [f(/\/na un+]) - f(an vn) - kl IL\,/n - anlz - k2”vn — Upy ”2] < /.lf(V,,, un+1)- (33)

Lemma 3.1. Suppose that the conditions (C1)—(C4) are satisfied and {u,} be a sequence generated by
Algorithm 1. Then, we have

ltna1 = &2 < M = 1P = (1 = prec)llttnar = xeull®

(3.4)
_pn+l(l - 2k1pn)”/\/n - vn”2 _pn+1(l - 2k2pn)”un+l - vn”2'

Proof. By the use of definition of u,,;, we obtain
1
0 € Dafpnf (- ) + 31l = IP}ttn1) + Nop(utren).

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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Thus, there exists w, € d,f(Vy, upy1) and w, € Np(u,,1) such that
PnWn + U1 — Xn + 0p = 0.
The above expression implies that
Un = Uns1,V = Uni1) = PulWn, V = Uns1) + (Dny V = Upi1), YV E€D.
Due to w,, € Np(u,.1) imply that (w,, v — u,.1) < 0, for every v € D. Thus, we obtain
Prk@ns V = Uni1) 2 n = Uns1,V = Upi1), YV ED. (3.5)
By given w, € 9, f(v,, U,41), we have
JOn, V) = fn, Uns1) 2 {Wn, V = Ups1), Vv € D. (3.6)
From expressions (3.5) and (3.6), we obtain

pnf(vm V) —pnf(vm un+l) > (/\/n — Upt1,V — un+1>’ Vve D (37)

In the similar way, v, gives that

PulfOnsv) = fOns v} 2 n = Vi, v = vy}, Vv € D. 3.8)
By the use of v = u,,, into expression (3.8), we get
Pl fOns Uns1) = FOns Va)} 2 (tn = Vi ns1 — V). (3.9)
By the use of v = {* into expression (3.7), we obtain
PrfVns &) = puf Wy thn1) 2 n = Uni1, & = Unir)- (3.10)

Since {* € Sgp implies that f({*,v,) > 0 and pseudomonotonicity of a bifunction f gives that
S, (") < 0. Thus, expression (3.10) implies that

Wn = Uns1s Unet = &) 2 P f (Vs Unsr). (3.11)
From expression (3.2), we have
FOn i) 2 Prar f s tni1) = FOns va) = killn = vall® = Kallve = ). (3.12)
Combining expressions (3.11) and (3.12) gives that

(Xn — Upy1s Upy) — {*) 2 Pn+1 [pn{f(Xm un+l) - f(an vn)}

(3.13)
— kipaltn = vl = Kapulltn 1 = valP?].

From expressions (3.9) and (3.13), we obtain

2<Xn — Upyy, Upyy — (*> = Pn+1 [2(/\/11 — Vn, Upy1 — vn>

3.14)
~ 2k1pnllxn = vall® = 2kapallitnsr = vall?]-

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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By the use of following formulas:
*\ %112 2 *112
2(Xn — Un+15 Un+1 — { > - ”/\/n - { ” - “un+l —Xn” - “un+l - C ” .
2 2
2</\/n — Vny Upi] — Vp) = lbyn — Vn”2 + |[#n1 = vall® = ”Xn — U]l

Finally, we have

Ntnr = &% < Wn = 1P = (1 = P llttns1 = xall?

(3.15)
"'pn+l(l - Zklpn)”/Yn - vn”2 _pn+|(1 - 2k2pn)”un+] - vn”2-

O

Theorem 3.2. Assume that conditions (C1)—(C4) are satisfied. Then, the sequence {u,} generated by
Algorithm 1 converges strongly to an element {* = P, ().

Proof. Thus, expression (3.1) implies that

tim 224, — o < tim = =0, (3.16)
Un n—+eo iy

By the use of definition of {y,} and inequality (3.16), we obtain

”/\/n - (*

= |[ttn + Gt — tno1) = Wnthy — Bt = 1) = ¢
= |1 = ) = &) + (A = )ty — tpy) = Yl
<A =y)|un = ||+ A = vl — ]| + wa|C
< (I =y)llu, = &l + ¥u Ky, (3.18)

(3.17)

where

(1- wo%llun — ||+ |l < K.
By the use of Lemma 3.1, we obtain
litnir = 1P < la = 1P, V> 1. (3.19)

Combining (3.18) with (3.19), we obtain

lunir = &7l < (1 = Yllun = Il + YKo

< max {|lu, — *|l, K1}

< max{lluz —_[*”, Kl} (320)

Thus, we infer that the sequence {u,} is bounded. Indeed, by (3.18) we have

I = I < (1= )l = 212 + 92K + 2K1yn(1 = yi)lltn — £
< ltw = &1 + YulnK? + 2K (1 = gp)llun — 1]

<l = 1P + YKo, (3.21)

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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for some K, > 0. Combining the expressions (3.4) with (3.21), we have

ltns1 = &I < Mty = 1P + YK = (1 = ppe)ltner = xall?
= Pnst(1 = 2kipa)llxn = Vall> = prs1(1 = 2kopp)llitns1 = val . (3.22)

Due to the Lipschitz-continuity and pseudomonotonicity of f implies that the solution set S zp is a
closed and convex set (for further details see [21]). It is given that {* = Ps,, o, such that

0—£9 =320, YU ESer. (3.23)

The remainder of the proof is divided into the following two cases:
Case 1: Assume that there exists a fixed number N, € N such that

lner — 7Nl < Nl = &7l Y2 Ny (3.24)

Thus, above expression implies that lim,,,, ||u, — £*|| exists and let lim,,_, ., |lu, — £*|| = I, for some
[ > 0. From the expression (3.22), we have

(1 = pre)tnst = xull* + Prs1(1 = 2k1o)n = Vall* + prir (1 = 2kap)llttnsr — vl
< et = 1P + Kz — lltgir = 1% (3.25)

Due to existence of limit of the sequence ||u, — ¢*|| and ,, — 0, we conclude that
yn —vall = 0 and ||uper —vall 0 as n— +oo. (3.26)

It continues from (3.25) that
Hm 1 = xall = 0. (3.27)

Next, we have to compute

”Xn un” == |un + ¢n(un un—]) - lﬁn[un + ¢n(un - un—l)] - un”
= ¢n”un = un—]” + l)bn”un“ + ¢nwn“un - un—l“
bn 20n

- ‘//nl/’ ”un Up— l” + l,[l,,”u,,” + (/’ l//

The above expression implies that

”un — Up- 1” = (328)

lim |lu, = tpi|l < lim flu, = xll + lim Iy, = 1]l = 0. (3.29)
n—+oo n—+oo n—+oo

he above explanation guarantees that the sequences {y,} and {v,} are also bounded. Due to the
reflexivity of & and the boundedness of {u,} guarantees that there exists a subsequence {u,,} such that
{un,} — @t € Eas k — +oo. Next, we have to prove that &t € S gp. Due to the inequality (3.7) we have

l)nkf(vnk’ V) > l)nkf(vnkv unk+l) + <X"k - unk+l’ V= unk+l)
> pnkpnk+lf(/\/nk’ unk+|) _pnkpnkﬂf(/\/np Vnk) - klpnkpnk+1|LYnk - vllk

2
- k2pnkpnk+| “vnk - unk+1“ * <Xnk - u”k+1, V= unk+1>

AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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2
> pnk+l<Xnk - vnk’ unk+l - vnk> - k]pnkpnk+l ”/\/nk - vnk”
2
— kapPrst [V, = tntlI” + Ome — Ung1, V = U1, (3.30)

where v is an arbitrary element in &,. It continues from that (3.26)—(3.29) and the boundedness of {u,,}
that the right-hand side goes to zero. From p, > 0, the condition (1.3) and v,, — @&, we have

0 < limsup f(v,,v) < f(@1,v), Y € &E,. (3.31)

k—+00

It implies that f(&,v) > 0,V v € D, and hence it € S p. Next, we have

limsup({*, " — u,)

n—+oo

= Hm (" 8" —up) = ¢ — ) < 0. (3.32)

By the use of lim,,_, ;o ||ttp1 — u,,” = 0. Thus, expression (3.32) implies that

limsup(¢*, {* — tp41)

n—+oo
< limsup{{*, " — u,) + limsup{{*, u, — u,,1) < 0. (3.33)
n—+oo n—+oo

By the use of expression (3.17), we have

”Xn _{*

Un + Gp(tty — Un_1) — Yty — Pptfn(Uy — Up_1) — g* ’

2

2

= |1 = ) @tn = &) + (1 = )Pty — th ) = pul*
< | = )ty = &) + (1 = )it = )| + 200~ xn — )

= (1= g fuen = | + (1 = 9?62t = ||
+ 2¢n(1 - ll’n)z u, — g*””un - un—l” + 2'//n<_§*9/\/n - un+1> + 2(//71(_{*’ Up+1 — {*>
< (1 =yt = &|* + B2l = teu||* + 2601 = ||t = ||t = |
+ 2%: g* l/\/n — Up4 | + 2¢n<__(*’ Upy1 — {*>
= = )| un — é‘* ? + ¢’n[¢n”un — Up—) I%'l”un - “n—]”
+2(1 = ) |jun = ¢* % tt = || + 2|2 IBen = s | + 2627, = )], (3.34)
From expressions (3.19) and (3.34) we obtain
I Upy1 — {*”2
< (1 - wn)”un —g* ’ + wn[¢n Uy — Up-1 % u, — un—l”

+ 201 = )| jun — ;*ll%llun = | + 22 [l = ]| + 24478 = )] (3.35)
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By the use of (3.27), (3.33), (3.35) and applying Lemma 2.3, conclude that lim,,, ||u,, -

Case 2: Suppose that there exists a subsequence {n;} of {n} such that
lln, = &Nl < llitn,,, = &7ll, Vi€ N.
By using Lemma 2.4 there exists a sequence {m;} C N as {m;} — +oco such that
b, — Nl < llttny,, — 7l and  lug — &Il < |lth,,, — £7l, forall k € N.
As similar to Case 1, the expression (3.25) implies that

(1 —pmk+l)”umk+l _ka”z +pmk+l(1 - 2klpmk)|lek - mGllz

2

+ pmk+](1 - 2k2pmk)“umk+l - mG”
2 *112
=< ”umk - é‘*” + l//kaz - ”umk+] - { ” .

Due to ¢,,, — 0, we deduce the following:
lim “ka - mG” = lim ”umk+1 - vmk” =0.
k—+00 k—+00

It follows that

lim |lum,,, = Xmll = 0.
k—+00

Next, we have to evaluate

”/\/mk - umk” = ”umk + ¢mk(umk - umk—l) - ‘/Im/( [umk it ¢mk(umk - umk—])] - umk“
< ¢mk”umk - umk—lll + ‘//mk”umk” + ¢mk'~/’mk”umk - umk—ln
Dm 2 Pm
= l/’mkll/_k”umk - umk—lll + l/’mk”umk” + wmk{//_k”umk - umk—l” — 0.
my my
It follows that
lim |luy, — 1l < 1M ltt, = x|l + Him D, — 1]l = O,
k—+o00 k—+00 k—+00

By using the same explanation as in the Case 1, such that

limsup({*, " = tm1) < 0.

k—+0c0
By using the expressions (3.35) and (3.36), we obtain

2

*

um/(+1 - {

< (=) |tm, = ¢*

2 ¢m
+ wmk [¢mk”umk = Upmy—1 ”_k”umk = Upy—1 ||
Wim

+2(1 = W) [t = &

%”um — thmer] + 201 lme = st + 22,2 = timge)]

<1- (//mk)”umkn - g*

2 Py
+ ¢mk[¢rnkllumk - umk—l ”_”umk - umk—l ||
Ql’mk

= 0.

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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+2(1 = Ym)|[ttm, — £ %| ttm, = tmr || + 20| Deme = tmer|| + 20, 8 = tme)]- (3.43)
my
Thus, above expression implies that
Ilumk+1 - {* )
= [¢mk| Upy — Upy—1 ||%“umk — Umy—1 ”
ka
+ 201 = Y| [tt, — £ :j'”* [t = emer || + 20| [Peme = met|| + 267, 8" = tme)|.— (3.:44)
my
Since ¢,,, — 0, and | Ui, — & *|| is a bounded sequence. Therefore, expressions (3.42) and (3.44) implies
that
st — CIP = 0, as k — +oo. (3.45)
It implies that
lim e = CIP < im0 = P < 0. (3.46)
As a consequence u, — {*. This completes the proof of the theorem. O

4. Applications

In this section, we have written about the new results from our main proposed methods to solve
variational inequalities. In the last few years, variational inequalities have drawn a considerable amount
of attention from both researchers and readers. It is well established that variational inequalities deal
with a large variety of topics in partial differential equations, optimal control, optimization techniques,
applied mathematics, engineering, finance, and operational science. The variational inequality problem
for an operator A : & — & is defined as follows:

Find {* € D such that (A("),v—-{") >0, YveD. (VIP)

We consider the following conditions to study the variational inequalities.

(A1) The solution set of the problem (VIP) is denoted by VI(A, D) and it is nonempty;
(A2) An operator A : & — & is said to be a pseudomonotone if

(Aw),v—-—u)y >0 = (AWV),u—-v) <0, Yu,ve D;

(A3) An operator A : & — & is said to be a Lipschitz continuous if there exists a constants L > 0 such
that

lA@w) = AW)Il < Lilu = vll, Yu,v € D;

(A4) An operator A : & — & is said to be sequentially weakly continuous, i.e., {A(u,)} weakly
converges to A(u) for every sequence {u,} converges weakly to u.

On the other hand, we have also developed some results to solve fixed point problems. The existence
of a solution to a theoretical or real-world problem should be analogous to the existence of a fixed point
for an appropriate map or operator. Fixed-point theorems are thus extremely important in many fields
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of mathematics, engineering, and science. In many cases, it is not difficult to find an exact solution.
Therefore, it is crucial to create effective techniques to approximate the desired result. The fixed point
problem for an operator 8 : & — & is defined as follows:

Find ¢* € D such that B(*) = . (FPP)

The following conditions are required to study fixed point theorems.

(81) The solution set of the problem (FPP) is denoted by Fix(8, D) is nonempty;
(B2) B: D — Dis said to be a k-strict pseudocontraction [5] on D if

1Bu — Bv|* < lu—v|* + «ll(u — Bu) — (v — BV)||>, Yu,veD;

(83) B : & — &Eis said to be weakly sequentially continuous, i.e., {B(u,)} weakly converges to B(u)
for every sequence {u,} converges weakly to u.

Corollary 4.1. Assume that an operator A : D — & satisfies the conditions (A1)—(A4) and the
solution set VI(A, D) # 0. Choose uy,u; € D, ¢ >0,0< o < min{l, %},,u € (0, 1), p; > 0. Moreover,
select {y,,} (0, 1) meet the conditions, i.e.,

(i) Compute
Xn = Up + ¢n(un = un—]) i wnlun of ¢n(un - un—l)]v

where ¢, modified on each iteration as follows:

min{¢ —2 b if Uy # Uy,

0< bn < q;‘" and (ﬁn =1, 27 |lup—un-1ll ]
s otherwise,

where €, = o(y,) is a positive sequence such that lim,,_, , ., ;— =0.
(i1) Compute

Vn = PD(Xn "Pnﬂ(Xn)),
Upy1 = P&,,(Xn _pnﬂ(vn))a

where
& ={ze&: (Xn _pmﬂ(/\/n) =VinZ =¥y £ 0}.

(iii) Compute

3 AV U g1 —Vn)
min{ o
{ > (A nttns 1 =Vn)= 5 Xn—=nlP= 5 ltns1—val2+1 [
—_ . AV Upe1—Vn)
pn+l — i H(AV s Up s 1 =V >0
f (A nottns1 =Vn)= 5 Wn=vnlP— 5 s 1 =val2+1 ?
o otherwise.

Then, the sequences {u,} converge strongly to {* € VI(A, D).
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Corollary 4.2. Assume that B : D — D is a k-strict pseudocontraction and weakly continuous with
solution set Fix(B,D) # 0. Choose up,u; € D, ¢ > 0,0 < o < min{l,;_;z"x}, u € (0,1), p > 0.
Moreover, select (¢} C (0, 1) meet the conditions, i.e.,

n—+o0o

+00
lim ¢, =0 and Zgb,, = +o00,
n=1

(i) Compute

Xn = U + Gu(tty = tn-1) = Yultty + Gty — Un-1)],
where ¢, modified one each iteration as follows:
min{¢ —-‘"—} if up, # Uy,

0<¢.<¢, and ¢, = {¢ A e

5 otherwise.

where €, = o(y,,) is a positive sequence such that lim,,_, ., % =0.
(i1)) Compute
{vn = Pplxn — pulkn = Blxn)),
Uns1 = Pg,xn — pn(va — B(vp))],
where

E={ze&: ( —pn)Xn +pnB(Xn) - Vur &= V) £ 0).

(iii) Evaluate stepsize rule for next iteration is evaluated as follows:

3 H(Vn‘_BVny“nH_Vn) }
min {0' -
" Oen=BOmttnr1 =vn)= (322 ) en—valP— (32 Y ltns 1 —valP+1 )
= L (Vn=BVn,Uns1=Vn)
pn+] - lf L
Un=Bn)sttns1 =)= (32 ) n =l = (322 Y1 —val2+1
o otherwise.

Then, the sequence {u,} converges strongly to * € Fix(B, D).
5. Numerical illustrations

In this section, the numerical performance of the proposed method is described in contrast with
some similar works in the literature.

Example S.1. The test problem here taken from the Nash-Cournot Oligo-polistic equilibrium model
in [9,21]. Suppose that the set D is defined by

D:={ueR":-10 < u; <10}
and f : D x D — R is defined as follows
fu,v)y={Mu+ Nv+r,v—u), Yu,veD,

where r € RY and M, N matrices of order N. The matrix M is symmetric positive semi-definite and
the matrix N — M is symmetric negative semi-definite with Lipschitz-type criteria k; = k, = %HM - N||
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(see [21] for details). Two matrices M, N are taken randomly [Two diagonal matrices randomly A,

and A, with elements from [0, 2] and [-2, 0], respectively. Two random orthogonal matrices O, =
RandOrthMat(N) and O, = RandOrthMat(N) are generated. Thus, a positive semi-definite matrix

B, = 0,A,07 and a negative semi-definite matrix B, = 0,A,0! is obtained. Finally, set N = B, + B,
S=B,+Bl and M =N -5].

Experiment 1: In the first experiment, we take into account the numerical efficiency of the Algorithm
1 using different starting point choices. This experiment helps the reader see how much the starting
points influenced the efficiency of the Algorithm 1. For these numerical results, we have use N = 20,
uy = uy, p; = 0.50, 0 = Z.le.-’/’l =0.22,¢ =1.00,¢, = (n+ll) s Wy = m, D, = Error = ||u,41 — |
for Algorithm 1 (Alg-4). Figures 1 and 2 demonstrate the numerical efficacy of the proposed mehod.

102 : . . . :
—e-Alg-4 (1,1,---,1,1)T
H s Alg=4 (10,10, ---,10,10)"
A —-e-=Alg-4 (20,20, ---,20,20)"
i‘ ~ e~ Alg-4 (30,30, -, 30,30)"
SRA —-e-—Alg-4 (40,40, - - -, 40, 40)7
107y 'Y E
1
R
< t
=
e
i
102F 3 ‘\
\
\
AR
ARt S Y Ty
B2 383 11333 :
e SRS E B o
10 . . ’7“%"3}%!”1 L $-saogn
0 20 40 60

80 100 120 140
Number of iterations

Figure 1. Numerical illustration of Algorithm 1 for different starting points while N = 20
and the number of iterations are 104, 133, 151, 178, 164, respectively.

160 180

102

~-e-Alg-4 (1,1,---,1,1)7
H > Alg-4 (10,10, ---,10,10)T
) —-e-=Alg-4 (20,20, -,20,20)"
“ ~ o= Alg-4 (30,30, -, 30,30)"
N —-e-—Alg-4 (40,40, - - -, 40,40)"
10’ Fi 4
(Rt
it
Q N1
%]
(3]
IR
10%F 14
L
LA
\;‘
‘“’c‘«@“\‘
10 . f.&”"f‘“w&xm Wy
0 0.2 0.4 0.6 0.8

n
1 12 14 16 18
Elapsed time [sec]

Figure 2. Numerical illustration of Algorithm 1 for different starting points while N = 20
and the execution time are 1.0100, 1.2801, 1.8741, 1.8852, 1.8766, respectively.

2

Experiment 2: In the second experiment, we consider the numerical efficiency of the Algorithm 1
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using different inertial parameter ¢ choices. This experiment helps the reader see how much the inertial
parameter ¢ influenced the efficiency of the Algorithm 1. For these numerical results, we have use
N = 20, Uy = U = (1,1, ,1,1), P1 = 030, o = #kl,ﬂ = 033, € = ﬁ, lﬂ,, = .

= T0m+2)’
D, = Error = ||up41 — u,| for Algorithm 1 (Alg-4). Figures 3 and 4 demonstrate the numerical efficacy
of the proposed method.

10

~ e~ Alg-4 [1.00]
] «~ Alg-4 [0.80]
100 . 3
" —-e= Alg-4 [0.60]
i — e~ Alg-4 [0.40]
ol —e-—Alg-4 [0.20] .
i
S 107
iy,
five
103 F e 3
il = ‘&'ri‘:%;i;i;ﬁ;{:a;3'1-1—;—o-,-...., ]
105 L ) L L n
0 20 40 60 80 100 120

Number of iterations

Figure 3. Numerical illustration of Algorithm 1 for ¢ = 1, 0.8, 0.6, 0.4, 0.2 and the number
of iterations are 114, 93, 78, 63, 54, respectively.

—-e-—Alg-4 [1.00]
Al o Alg-4 [0.80]
100k Al
4 ~-e-—Alg-4 [0.60]
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wik % —-e-—Alg-4 [0.20]| ]
i
%
" k)
Q 102 !(;\'\
i
1A
109F WA
RS
104 b IS4 A e SRS
105 i : 3 i i
0 0.2 0.4 0.6 0.8 1

Elapsed time [sec]

Figure 4. Numerical illustration of Algorithm 1 for ¢ = 1, 0.8, 0.6, 0.4, 0.2 and the
execution time are 1.0763, 0.8257, 1.0927, 0.5489, 0.5748, respectively.

Experiment 3: In third experiment, we provide the numerical comparison of Algorithm 1 with

Algorithm 1 in [28] and Algorithm 3.1 in [11] and Algorithm 3 in [31]. For these numerical studies
we have assumed that starting points are uy = u; = vo = (1,1,---,1), N = 5,10, 40, 100 and error

term D, = |[u,11 — u,||. Figures 5—12 have shown a number of results for Tolerance=10"*. Information
regarding the control parameters shall be considered as described in the following:

() pn = 4—,1(1, On = m, and Error = ||u,,, — u,|| for Algorithm 3.1 in [11] (Alg-1).
AIMS Mathematics Volume 6, Issue 10, 10707-10727.
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(ii) p = 4171, 6 = 0.50, ¢, = m, Vi = m’ﬁ" = L(1 — ), Error = |luy. — uy,|| for Algorithm 3
in [31] (Alg-2).

(iii) p = %, ¢, = m, f(w) = 5 and Error = |lu,,) — u,|| for Algorithm 1 (Alg-3) in [28].

(iv) p; =0.50,0 = 5_2’—,“,;1 =0.22,¢ =1.00,¢, = ﬁ, Yn = Error = ||y —uy,|| for Algorithm
1 (Alg-4).

Then numerical results are reported in Table 1.

1
20(n+2)°

10’

0 10 20 30 40 50 60
Number of iterations

Figure 5. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=5.

0 0.1 0.2 0.3 0.4 05 0.6
Elapsed time [sec]

Figure 6. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=5.
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0 10 20 30 40 50 60 70
Number of iterations

Figure 7. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=10.
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Figure 8. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=10.

. \ . N . L L .
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Number of iterations

Figure 9. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm 3.1
in [11] and Algorithm 3 in [31] for N=40.
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Figure 10. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1in[11] and Algorithm 3 in [31] for N=40.
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Figure 11. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1'in [11] and Algorithm 3 in [31] for N=100.

. L L L L L . L L
0 0.2 0.4 0.6 08 1 1.2 1.4 16 1.8 2
Elapsed time [sec]

Figure 12. Numerical illustration of Algorithm 1 with Algorithm 1 in [28] and Algorithm
3.1in [11] and Algorithm 3 in [31] for N=100.
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Table 1. Numerical finding and their values for Figures 5-12.

Number of iterations

Elapsed time in seconds

N Algl Alg2 Alg3 Alg4  Algl Alg2 Alg-3 Alg-4

5 57 44 38 27 0.4910193 0.4805127 0.5035203  0.3568740
10 63 58 47 35 0.5564982  0.6466944 0.4253435 0.3249474
40 75 82 66 52 0.6889176  1.0781367 1.1124397  0.6130995
100 118 143 8l 66 14267609 1.8261292 1.767970  1.448753

6. Conclusions

We constructed an explicit, inertial extragradient-type method to find a numerical solution to the
pseudomonotone equilibrium problems in a real Hilbert space. This method is seen as a modification
of the two-step gradient method. A strongly convergent result is well-proven, corresponding to the
proposed algorithm. Numerical findings were presented to demonstrate our algorithm’s numerical
superiority over existing methods. These computational findings have indicated that the variable
stepsize rule continues to increase the performance of the iterative sequence in this context.
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