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Abstract

In this paper, a matrix-free method for solving large-scale system of nonlinear equations is presented. The
method is derived via quasi-Newton approach, where the approximation to the Broyden’s update is done
by constructing diagonal matrix using acceleration parameter. A fascinating feature of the method is that
it is a matrix-free, so is suitable for solving large-scale problems. Furthermore, the convergence analysis of
the new method is discussed based on some standard condition. Preliminary numerical results on some test
problems show that the method is promising.

Keywords: Matrix-free, Descent direction, Global convergence, Acceleration parameter.
2010 MSC: 65H11, 65K05, 65H12, 65H18.

1. Introduction

Many of problems in sciences, engineering and economics can be expressed as optimization problems or
nonlinear system of equations, which are usually solved using iterative methods. This paper focuses on the
following system

F(z) =0, (1)
where 2z € R™ and the nonlinear function F' : R" — R" is continuous. Throughout this paper, the symbol R"
denotes the n—dimensional real space equipped with the Euclidean norm || - ||, Fx = F(zy) where z; € R"

is the point at certain iteration k =1,2,....
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Moreover, the system (1) can be obtained from general unconstrained optimization problems [9]. Let
f:R™ = R be a merit function defined by

i
f(z) = §||F(1‘)||2, rz e R". (2)
Then the nonlinear equations problem (1) is equivalent to the following unconstrained optimization problem
min f(z), z€R".

The study of such mappings is applied in a variety of scientific areas, including economic and chemical
equilibrium systems [37, 39, 38]. Some iterative methods for solving these problems include Newton method
[41], the quasi-Newton methods [4, 6, 9], the Levenberg-Marquardt methods [42, 43], the double direction
methods [23, 33, 29], The double step length methods [17, 18, 28|, and derivative-free methods [34, 45, 46, 44].
But, the famous method used to solve (1) is Newton method that determines the search direction dj by solving
the following linear system of equations,

Fy + Fid =0, (3)

where F} is the Jacobian matrix of F" at ;. The Newton method is appealing because it converges quadrat-
ically from a reasonably good starting point [14]. Despite its excellent convergence property, the method
has some shortcomings, which includes storing of Jacobian matrix and solving system of linear equations in
every iteration. In order to overcome some of the challenges associated with Newton method, alternatives
such as quasi-Newton methods have been developed [4, 6]. These Methods avoid the computation of the
exact Jacobian matrix and a matrix which is an approximation the Jacobian matrix or its inverse is used
instead. This matrix is there by updated in every iteration. It has been shown that most of the quasi-Newton
methods have supperlinear order of convergence [14]. One of the successful quasi-Newton method, known as
Broyden’s method, generates a sequence of iterates {z} using

Tk41 =2k — By By, k=0,1,2,..., (4)

where the Broyden matrix Bj is the approximation of the Jacobian matrix, such that the following quasi-
Newton equation

Biy1(@k+1 — k) = Fit1 — Fy, (5)
is satisfied for all k. It is important to note that Broyden’s method requires the computation and storage
of n x n matrix at every iteration. Therefore, for large-scale problems, this could result to serious memory
constraints. Efforts have been made by different researchers to reduce the storage problem associated with
quasi-Newton methods. For instance, some modifications of the Broyden’s method have been done in the
literature in order to reduce its computational cost [5, 8, 11, 12|. These methods are usually referred to as
limited memory Broyden methods [12, 16].

As mentioned earlier, the quasi-Newton methods has contributed in overcoming of the shortcomings of
Newton’s method which is computing Jacobian matrix in every iteration. However, the prize paid by the
quasi-Newton method is that only superlinear rate of convergence can be achieved instead of quadratic rate.
In order to improve the convergence order of quasi-Newton method, many higher order approaches have been
proposed. There is a great deal of literature on the family of derivative-free methods used to solve nonlinear
equations. In [16], a family of conjugate gradient methods for solving nonlinear monotone equations has
been presented. The advantage of the method is that, the computation of Jacobian matrix is completely
avoided throughout the iteration process. Also, a derivative-free methods for nonlinear monotone equations
has been proposed in [26] and it hs shown to converged Q-linearly to the solution of the monotone equations
based on the assumption that the underlying function is Lipschitz continuous. Recently. some matrix-free
methods have been proposed (19, 20, 21, 24, 21, 25].

Motivated by the above contributions, this paper aimed at proposing the derivative-free method for
solving large-scale problem (1) that is globally convergent. The remaining part of the paper is organized as
follows. In Section 2, we present the algorithms of the proposed method. Convergence analysis is presented
in Section 3. Numerical results of the methods are reported in Section 4. Concluding remarks are given in
Section 5.
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2. Main Result

In this section, we present the proposed method for solving large scale system of nonlinear equations.
The method is based on approximation of quasi-Newton’s update in (4) via

Bk =~ ’\k17 (6)

where Ay € R™ and [ is an identity matrix.
In order to enhance good direction toward the solution, we suggest new direction dj to be defined as

dp = =X\ 1 Fy, (7

where A\, € R is an acceleration parameter to be determined.
Furthermore, the search direction dj is usually needed to satisfy the descent condition

Vf(l‘k)Tdk < 0.
Now, consider the Broyden’s matrix updating formula given by

— B T
Byt1 = Bi + (ykT—kSk)Sk, (8)

Sk Sk
where s = xp41 — o) and yp = Fix4+1 — Fj. Despite the attractive features of this method, it is not suitable
for solving the large-scale problems due the matrix storage at each iteration. Motivated by this reason, this

work is aim at proposing a new matrix-free method for solving large-scale problems.
Now, from (6) and (8), it can be deduced that

c— A 3

/\k+II=/\k1+(ykT—kSk)ska (9)
Sk Sk

and by multiplying (8) by Fj, we have

(Yk — Aksk) st Fy,

M1 Fre = M Fy + = (10)
sk Sk
Again, multiplying (10) by s}, we have
- - st (g — A T B,
Mer18T Fie = AsT Fy, + 2k (i T’“s’“)sk L, (11)
Si. Sk
Dividing (11) by skT,Fk, where 3sz # 0 yields
5 — A\kS
N - A AR) (12)
Sk Sk
We finally present our iterative scheme as
Tht1 = Tk + oudy, (13)

where oy > 0 is the step length and dj, is the search direction. Moreover, inexact line search proposed in [9]
is used in this work to compute the step length oy as follows.

Given some positive constants 7y, 72 > 0 and let h € (0,1). Suppose that {w} is a sequence of some
positive numbers for which

o0
Zwk < w < 00, (14)
k=0
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and
fax + ady) — f(zr) < —mllaF (@x)|® — n2lladil|® + wi f (k) (15)
where o = h with i being the least nonnegative integer for which (15) holds. Set a; = a.
Algorithm 1: On Efficient Matrix-Free Method Via Quasi-Newton Approach (EMQN)

Input: Given zg, Ao = 0.01, e = 1074, set k = 0.

Step 1: Compute F(xy).

Step 2: If ||F|| < € then stop, else go to Step 3.

Step 3: Compute dj = —A,:lF(a:k).

Step 4: Compute step length oy (15).

Step 5: Set xxyr1 = ) + apdg.

Step 6: Compute Fj .

4 =
Step 7: Determine A\y; = A\, + s’“(y:T—;\k'“sk)
T ok

Step 9: Set k =k + 1, and go to Step 2.

Remark 2.1. It can be seen that the parameter \py1 defined by (12) is a scalar for all k. In addition, the
gradient of F' is not needed in the implementation of Algorithm 1. With these into consideration, we can
conclude that the Algorithm 1 is derivative-free as well as matriz-free. Therefore, Algorithm 1 is suitable for
large-scale problems as well as nonsmooth problems. Furthermore, we show in Lemma 3.4 that the search
direction generated by Algorithm 1 is sufficiently descent.

3. Convergence Result

In this section, we present the global convergence of our method (EMQN). To start, let the level set be
defined as

Q = {zf| F(z)[| < [|F(zo)ll}- (16)

Assumption 3.1. We now state the following assumptions to establish the convergence result of EMQN
Algorithm .

(1) There ezists a point z* € R™ such that F(z*) = 0.

(2) F is continuously differentiable in some neighborhood say A of x* containing 2.

(8) The Jacobian of function F is positive definite bounded on A, namely, there exists some positive constants
G > g > 0 such that

|IF'(@)| <G, VzeA, (17)

and
glld|? < d'F'(z)d, Vze A,deR" (18)

Remark 3.2. Assumption (3.1) implies that there exists a constants G > g > 0 such that

glldll < |[F'(z)d|| < Glld||, Vx€ A,deR" (19)

glle —yll < [|F(z) - F(y)| < Gllz -y, Va,ye A (20)
Since \g/ approximates Fj along direction dj, let us state the following assumption.

Assumption 3.3. \;[ is a good approzimation to F'(zy,), i.e.

I(F (zk) — Med)dill < €l F (i), (21)
where e € (0,1) [13].
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Lemma 3.4. Suppose that Assumption (3.3) holds and let {xy} be generated by EMQN algorithm. Then dj,
is a descent direction of [ at xy i.e

Vf(xr)Tdy <O0. (22)
Proof. From (7), we have
V(e d = F Fdy
= FT((Ff, — AeD)dy, — Fy] (23)
= F{(F}, — MeD)dx — || Fil?,
by Chauchy-Schwarz we have,
Vf (k) dr < || Fillll(FF. — Ae)dk || — || Fill?

- 24
~(1- IF e

IA

Hence for € € (0,1) we have (22).
Since the search direction satisfied the decent condition in (22), it means that the inequality ||Fji1| < [|Fk||
holds. O

Lemma 3.5. Suppose that Assumption (3.3) holds and {x}} be generated by EMQN algorithm. Then {z)} C
0

Proof. From lemma (3.4) we have ||Fj41|| < [|Fk||. In addition, for all £ we have
IFksrll < NFkll < [|[Foall < ... < || Fol.
This shows that {z)} C Q. O

Lemma 3.6. (see[3]) Suppose that Assumption (3.1) holds and {x}} be generated by EMQN algorithm. Then
there exists a constant g > 0 such that for all k
Yk sk = gkl (25)

Lemma 3.7. Suppose that Assumption (3.1) holds and {z}} is generated by EMQN algorithm. Then we
have

lim [Jagdi|| = lim [[s|| =0, (26)
k—o0 k—o0
and
lim HakaH = 0. (27)
k—o0

Proof. By (15), we have for all k& > 0,
ellekdi||* < o Fel|* + nolondgl|®

< B = | Fesa P + wrl B2 )
By summing the inequality above, we have
k k k
ne Y lleadill® < D (1Bl = 1 Fiall®) + D will B2
=0 1=0 i=0
k
= Boll? = [1Fxall® + ) will Ea1?
L (29)
< ||Boll® + |1 Foll® ) wi
=0

o0

< |Foll? + 1Fol2 Y wi.
i=0
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o0
So from the level set and fact that {wy} satisfies (14) then the series Z |lovid;||? is convergent. This implies

i=0
(26). Following the similar arguments as above but with 7y ||ax F)||? on the left hand side, we obtain (27). O

Lemma 3.8. Suppose that Assumption (3.1) holds and let {z}} be generated by algorithm 1. Then there
exists a constant mz > 0 such that for all k > 0,

ldk|| < ms. (30)
Proof. From (7) and (25) we have,
ldill = Il = X" Fxl
=1
1 — Ak_18k_1)SL.
= |- (/\k—11+ el = He ) ’“"1> Fy
Sk—15k-1
Yi_ s si_is o
_18k—1 —15k—1
nE (Ak_l i 3; 1Sk _/\ksl; 1$k 1) i
_1Sk—1 _15k—
k-1 k-1 (31)
2
_ |- dsa F’“H
Yi—15k—1
- ||-9k—1||2||1*;k||
9llsk-1ll
< Il
g
Taking mg = @l, we have (30). a

Theorem 3.9. Suppose that Assumption (3.1) holds and {z} is generated by EMQN Algorithm. We further
assume that for all k > 0,

|y di|
ap > h ; (32)
Ik [|?
where h > 0. Then
lim || Fi|| = 0. (33)
k—o0
Proof. From Lemma (3.8), we have (30). Therefore by (26) and the boundedness of {||dy||}, we have
lim ay||dg]|? = 0. (34)
k—o0
From (32) and (34), we have
lim |F'dg| = 0. (35)
k—o0
On the other hand from (7), we have .
Fldr = =2 Fll?, (36)
IE%)1? = | — Fif diAk| 37)
< |Fd|| M-

By using (20), we obtain

T
Yio1Sk-1  Meoallseoall® Yioisk—1 < Nyk—allllsk—all

Ak = Ag—1+ —
A PR

= < <G
llsk—11? llsk—1]? llsk—12 7
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which means,|\;| < G. So from (37), we have

|1 Fell? < |Ffdi|G. (38)
Thus,
0 < [|Fk|l® < |F{di|G — 0. (39)
Therefore,
lim ||Fg|| = 0. (40)
k—o0
The proof is completed. O

4. Numerical results

In this section, some numerical results are presented to demonstrate the efficiency of the proposed method
by comparing it with the following existing methods in the literature.

e An improved derivative-free method via double direction approach for solving systems of nonlinear
equations (IDFDD) [3].

e Classical Broyden’s method (CBM) for solving system of nonlinear equations.

The three algorithms were implemented using the same line search (15) in the course of the experiments and

the following parameters are set: 171 = 7o = 1074, h = 0.35 and w;, = m However, for the classical
Broyden’s method, we set By = I, I is an identity matrix.

The computer codes used were written in Matlab 8.3.0.532 (R2014a) and run on a personal computer
equipped with a 1.40.00 GHz CPU processor and 4 GB RAM memory. We have tried the three methods
on three test problems with different initial points and dimension (n—values) between 100 to 10,000. The
iteration is set to stop for all the methods if || F)|| < 10~%. The symbol -’ represents failure due to:

(i) Failure to complete execution due to insufficient memory.

(ii) Number of iterations exceed 1000 but no z}, satisfy the stopping criterion.

Table 1: Initial points

INITIAL GUESS (IP) VALUES

R
Z2 (—1.5,~1.5,...,—1.5)"
T3 (-25,-25,...,-25)T
T4 (5,5,...,5)7
Ts (14,14,...,14)7
Problem 1: [4].
Fi(z) =2z; —sin|z;|, i=1,2,...,n.

Problem 2: [10].
Fiz)=cos(z? -1)2-1, i=1,2,...,n.
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Problem 3.

1
Fi(z) = gz‘f + —x2

1
Fy(z) = —5a} +

F,(z)=—

1
2

1
2

5
3

n
:c% +

g‘.’l)

2
3
e

3 1
3 2 ;
z;+-%i4, t=1,2,...,n—1,

The results of the numerical experiments for the IDFDD and CBM methods as well as our proposed method

Table 2: Numerical results of EMQN, CMB and IDFDD methods for problem 1

EMQN CBM IDFDD
Dimension Initial Guess NIT CPUT NIT CPUT NIT CPUT

100 1 28 0.142571 19 0.535173 23 0.143207
£ 24 0.028437 8 0.099478 25 0.112461

T3 9 0.055164 37 0.495608 - -
Ty 147 0.366485 78 0.931389 366 1.349186

T5 9 0.044106 109  1.283275 - -
1000 1 31 0.107026 18 27.2388 26 0.246356
T2 25 0.119676 8 11.92841 28 0.344145

T3 9 0.086169 42 91.47828 - -
Ty 126 0.812398 140 242.139 397 3.385763

5 9 0.070279 27 41.0478 - -
10000 1 34 0.654757 - - 27 1.842495
o 29 0.619744 - - 31 1.519259

T3 9 0.383985 - - - -
7} 146 3.49417 - = 428 23.4393

T5 9 0.384739 - - - -

Table 3: Numerical results of EMQN, CMB and IDFDD methods for problem 2

EMQN CBM IDFDD
Dimension Initial Guess  NIT  CPUT __ NIT _ CPUT __ NIT __ CPUT
100 1 9 0054347 10 0592524 4 0.091207
P 6 0.02207 6  0.110625 . c
a3 10 001284 8 0183785 4 0.016239
74 7 0.009098 10  0.196762 : -
5 8 0010415 10  0.44328 : -
1000 71 11 0041969 11  19.17501 = -
P 70022809 7 12.06882 . :
3 11 0.024054 9 1557875 4 0.095884
74 8 0032852 11  19.02109 - -
5 9 0051642 11  19.28136 . :
10000 1 12 0.177906 - . = =
P 8 0271242 - . - :
3 12 0.269865 - . 4 0.566027
a4 10 0171702 - : - :
5 13 0305941 - . . :

are reported in Tables 2-4, where NIT and CPUT are respectively stand for the number of iterations and
the number of time taken for each method to successfully obtained the solution of each problem. Tables 3-4
indicated that the proposed method EMQN has minimum number of iterations and CPU time, compared
to CBM and IDFDD methods, except at Table 2 with initial guesses ; and z4 for the dimension 100 and
z1 and x9 in 1000 dimension, where the number of iteration of CBM method is less than that of EMQN
and IDFDD methods. Therefore, EMQN method out performed CBM and IDFDD methods. One can easily
observe that our claim is fully justified from the Tables, that is, the proposed method has less CPU time and



M. Abdullahi et al., Adv. Theory Nonlinear Anal. Appl. 5 (2021), 568-579. 376

Table 4: Numerical results of EMQN, CMB and IDFDD methods for Problem 3

EMQN CBM IDFDD

Dimension Initial Guess NIT CPUT NIT CPUT NIT CPUT
100 1 12 0.239779 21 0.700504 27 1.230928
T9 11 0.226276 19 0.513159 29 1.29121

T3 13 0.270103 21 0.656313 23 1.156257

T4 14 0.244887 24 0.687868 28 0.968806

T5 14 0.226145 25 0.764494 26 1.047147

1000 1 14 0.944261 23 34.40515 35 5.13596
9 11 0.892505 28 76.17269 29 5.233836

T3 13 0.951678 21 46.46457 31 5.45977

T4 14 0.947066 24 54.18002 32 6.261874

5 14 1.036368 23 48.51827 40 7.275419

10000 1 14 88.4897 - - 35 647.7165
o 12 102.4096 - - 29 526.0935

T3 15 99.16974 - - 31 524.7104

= 1 75 ROANA 29 ARN 4902

T

Figure 1: Performance profile of EMQN,CBM and IDFDD methods with respect to the number of iteration for the problems
1-3.

number of iterations for each of the test problems with the exception of Problem 1. Furthermore, on average,
the CPU time of the proposed method is the smallest which signifies that our method is fully derivative-free
and matrix-free (i.e., no computation of matrix at all).

Figures 1-2 show the summery of the numerical performance of the IDFDD and CBM methods against
the proposed method in terms of iterations number and CPU time. The summery is evaluated based on the
famous performance profiles developed by Dolan and Moré [4]. This means, for each method, the fraction
P(7) of the problems for which the method falls within a factor 7 of the best time is plotted. The curve
that stays longer on the vertical axis corresponds to the method that solved highest percentage of the test
problems considered in a time that was within a factor 7 of the best time.
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Figure 2: Performance profile of EMQN,CBM and IDFDD methods with respect to the CPU time (in second) for the problems
1-3.
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5. Conclusion

In this paper, an efficient matrix-free method via quasi-Newton update for handling nonlinear system of
equations has been developed. This was achieved by approximating the Broyden’s Update via acceleration
parameter. The proposed method is completely matrix-free iterative method that is globally convergent
under certain appropriate conditions. The efficiency as well as the performance of the proposed method
have been compared with that of classical broyden method (CBM) and IDFDD method [3]. Numerical
comparisons have been done using a set of large-scale test problems. Moreover, Table 2-4 and Figure 1-2,
showed that the proposed method is quite efficient because it has the least number of iteration compared to
IDFDD and CBM methods. Future research include using the proposed method to solve nonlinear problems
as discussed in |35, 36, 40].
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