Source details

Scopus Preview

Walailak Journal of Science and Technology

Open Access (i)

Scopus coverage years: from 2012 to Present

Publisher: Walailak University

ISSN: 1686-3933 E-ISSN: 2228-835X

Subject area: (Multidisciplinary)

View all documents >

Set document alert

Save to source list

CiteScore 2019

8.0

Add CiteScore to your site

SJR 2019

0.154

(i)

①

①

SNIP 2019

0.318

CiteScore CiteScore rank & trend Scopus content coverage

Improved CiteScore methodology

CiteScore 2019 counts the citations received in 2016-2019 to articles, reviews, conference papers, book chapters and data papers published in 2016-2019, and divides this by the number of publications published in 2016-2019. Learn more >

CiteScore 2019

253 Citations 2016 - 2019

331 Documents 2016 - 2019

Calculated on 06 May, 2020

CiteScoreTracker 2020 ①

206 Citations to date

316 Documents to date

Last updated on 02 October, 2020 • Updated monthly

CiteScore rank 2019 ①

Category	Rank	Percentile	
Multidisciplinary Multidisciplinary	#58/111	48	th
View CiteScore methodology	> CiteSc	ore FAQ >	

જી

About Scopus

What is Scopus
Content coverage
Scopus blog

Privacy matters

Scopus API

Language

日本語に切り替える 切換到简体中文 切換到繁體中文 Русский язык

Customer Service

Help Contact us Copyright © Elsevier B.V \nearrow . All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

Walailak Journal of Science & Technology

International Advisory Board

Prof. HAMEL, Rodolphe

Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Montpellier, France

Prof. MOMENI, Davood

Department of Physics, College of Science, Sultan Qaboos University, Muscat, Oman

Prof. MONTEIL, Arnaud

Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS), Montpellier, France

Prof. ODINTSOV, Sergey

Institute of Space Sciences (IEEC-CSIC) C. Can Magrans s/n, Barcelona, Spain

Prof. SANNINO, Francesco

CP3-Origins & the Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark

Prof. WIBIG, Tadeusz

Faculty of Physics and Applied Informatics, University of Lódź, Poland

MAKE A SUBMISSION

SCIMAGO JOURNAL RANK

Walailak Journal of Science & Technology

Editorial Team

EDITOR IN CHIEF

CHANNUIE, Phongpichit

School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand Phongpichit received his Ph.D. in physics from University of Southern Denmark in 2012. He then moved to Walailak University, where he is now an associate professor in theoretical physics. His current research interests focus on issues in theoretical cosmology and high energy physics, including those with implications for early universe cosmology. He has been an Editor-in-Chief of Walailak Journal of Science and Technology since October 2019.

EDITORS

KOOMHIN, Phanit

School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand Phanit received his Ph.D. in medical physiology from Mahidol University in 2012. He then moved to Walailak University, where he is now an assistant professor in physiology. His current research interests focus on odorants, consciousness, learning and memory, and applications in related fields. He has been an Editor of Walailak Journal of Science and Technology since October 2019.

PIMTON, Pimchanok

School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand Pimchanok received her Ph.D. in Biomedical Science from Drexel University, USA in 2013. She then moved to Walailak University, where she is now a tenure-track lecturer at Department of Biology,

School of Science. Her current research interests focus on plasma medicine and its applications, including the effect of cold plasma on various types of cancer and normal cells. She has been an Editor of Walailak Journal of Science and Technology since October 2019.

PAYAKA, Apirak

School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand Apirak received his Ph.D. in chemistry from Suranaree University of Technology in 2009. He then moved to Walailak University, where he is now an assistant professor in chemistry. His current research interests focus on computational chemistry, e.g., in particular, protein-ligand interactions. He has been an Editor of Walailak Journal of Science and Technology since October 2019.

REVIEW EDITORS IN NATURAL SCIENCES

DAM-O, Punsiri

School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand Punsiri received her Ph.D. in Physics from University of Lodz, Republic of Poland in 2015. She then moved to Walailak University, where she is now a tenure-track lecturer at Division of Physics, School of Science. Her current research interests focus on physics education, including the design of lessons and experiment for teaching and learning physics. She has been a Review Editor of Walailak Journal of Science and Technology since October 2019.

TANTAPAKUL, Cholpisut

School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand Cholpisut received her Ph.D. in applied chemistry from Mae Fah Luang University in 2015. She was a postdoctoral researcher at Khon Kaen University for 2 years and then moved to Walailak University, where she is now a lecturer at Division of Chemistry, Shcool of Science. Her current research interests focus on natural products chemistry including chemical constituents and their biological activities as well as structure modifications. She has been a Review Editor of Walailak Journal of

Science and Technology since October 2019.

REVIEW EDITORS IN LIFE SCIENCES

HIRANSAI, Poonsit

School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand Poonsit received his Ph.D. in Biomedical Sciences from Prince of Songkla University in 2010. He then moved to Walailak University, where he is now an assistant professor in Medical Technology and also recognized the Senior Fellowship by Advanced Higher Education. His current research interests focus on issues in immuno-modulation, cell signaling transduction, and natural products. He has been an Editor-in-Chief of the Journal of Learning Innovation Walailak University since October 2017 and a Review Editor of Walailak Journal of Science and Technology since October 2019.

PUNSAWAD, Chuchard

School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand Chuchard received his Ph.D. in Tropical Medicine from Mahidol University in 2012. He then moved to Walailak University, where he is now an Associate Professor in Parasitology. His current research interests focus on issues in the pathology and pathogenesis of severe malaria complications, epidemiology and immunology of parasitic infections as well as antimalarial activity of medicinal plants. He has been a Review Editor of Walailak Journal of Science and Technology since October 2019.

SAENGOW, Udomsak

School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand Udomsak received his Ph.D. in epidemiology from Prince of Songkla University in 2015. He also holds a master degree in economics. He has worked at Walailak University since 2011, where he is now an assistant professor in public health. His research interests focus on alcohol policy and health system. He has been an editor of Walailak Journal of Science and Technology since February 2018.

REVIEW EDITORS IN APPLIED SCIENCES

CHAIJAN, Manat

School of Agricultural Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand Manat received his Ph.D. in Food Technology from Prince of Songkla University in 2006. He then moved to Walailak University, where he is now an associate professor in Food Science and Technology. His current research interests focus on seafood chemistry and functional food ingredients. He has been a Review Editor of Walailak Journal of Science and Technology since October 2019.

THUBSUANG, Uthen

School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand

Uthen received his Ph.D. in polymer science from the Petroleum and Petrochemical College, Chulalongkorn University in 2014. He then moved to Walailak University, where he is now an assistant professor in materials science and engineering. His current research interests focus on porous materials, zeolite nanoparticles, gas sensors, catalysts, and energy storage materials. He has been an Editor of Walailak Journal of Science and Technology since July 2018.

LANGUAGE EDITORS

BARKER, John

Bangkok, Thailand

HARDING, David James

School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

ULLA, Mark Bedoya

Walailak University Language Institute, Walailak University, Nakhon Si Thammarat 80161, Thailand

WALUYO, Budi

Walailak University Language Institute, Walailak University, Nakhon Si Thammarat 80161,

Thailand

INTERNATIONAL EDITORIAL BOARD

ABU-BASHA, Ehab Abdel Rahman

Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan

AGARWAL, Praveen

Department of Mathematics, Anand Intenational College of Engineering, Jaipur 303012, India

AHMAD, Fridoon Jawad

Molecular Cell Biology and Genetics Center, Pathology Department, King Edward Medical University, Lahore, Pakistan

AKCA, Haydar

Department of Applied Sciences and Mathematics, College of Arts and Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates

BEAMISH, Frederick William H.

Department of Integrative Biology and Institute of Ichthyology University of Guelph, Guelph, Ontario, Canada

BOYD, Claude E.

Department of Fisheries and Allied Aquacultures, Auburn University, Alabama 36849, United States

CHISTI, Yusuf

School of Engineering, Massey University, Palmerston North, New Zealand, New Zealand

CHOUBEY, Bhaskar

Analogue Circuits and Image Sensors, Faculty IV, University of Siegen, Hölderlinstraße 3, 57076 Siegen, Germany, Germany

EL-ASHRY, El Sayed H.

Organic Chemistry, Chemistry Department, Faculty of Science, University of Alexandria, Egypt

FEDUSHKO, Solomia

Lviv Polytechnic National University, Lviv 79013, Ukraine

GORSKI, Krzysztof

Institute of Vehicle and Machine Exploitation, Radom University of Technology, Boleslawa Chrobrego 45, Radom, Poland

GRIZZI, Fabio

Laboratories of Molecular Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy

GUAN, Zhongwei

Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GQ, United Kingdom

HEMMATEENEJAD, Bahram

Chemistry Department, Faculty of Science, Shiraz University, Shiraz, Iran

HOSEINZADEH, Siamak

Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria, South Africa

ISMAIL, Ahmad

Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

KALA, Chandra Prakash

Ecosystem & Environment Management, Indian Institute of Forest Management, Nehru Nagar, Bhopal 462 003, Madhya Pradesh, India

KANNAN, Narayanan

Faculty of Applied Sciences, Asian Institute of Medicine, Science & Technology, Bedong, Malaysia

KIM, Kyoung-Woong

School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Korea

KUMAR, Sunil

Department of Mathematics, National Institute of Technology, Jamshedpur, Jhrkhand 831014, India

MOHAMED, Che Abd Rahim

Marine Ecosystem Research Center, Faculty Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

MONTEMANNI, Roberto

University of Applied Sciences of Southern Switzerland (SUPSI), Galleria 2, 6911 Manno, Switzerland

NAJAM, Laith Ahmed

Department of Physics, College of Science, Mosul University, Mosul, Iraq

RASHIDI, Mohammad Mehdi

Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai, China

SAEEDI, Mohsen

School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

SANTULLI, Carlo

Department of Electrical Engineering, Università La Sapienza, via Eudossiana 18, 00184 Roma, Italy

SEDIGHI, Hamid Mohammad

Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

SENTHILKUMAR, Sukumar

School of Mathematical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

SINGH, Ajaya Kumar

Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, India

SRIVASTAVA, Hari Mohan

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

TANG, Chuanhe

Department of Food Science and Technology, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China

WAN, Jinrong

Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, United States

WONG, Ming Hung

Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong

WU, Guo-Cheng

College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China

ZEIN, Sharif H.

School of Engineering Faculty of Science and Engineering University of Hull Cottingham Road Hull, HU6 7RX, United Kingdom

MANAGING EDITOR

SIRIRAK, Kosin

College of Graduate Studies, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

ART EDITOR

AMAEK, Waluka

School of Architecture and Design, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

INTERNAL ADVISORY BOARD

CHANTRAPROMMA, Kan

Hatyai University, Hatyai, Songkhla 90110, Thailand

CHOORIT, Wanna

Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

KIATSIRIROAT, Tanongkiat

Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

KURDTHONGMEE, Wattanapong

Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

MAISRIKROD, Surin

Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

THAMRONGTHANYAWONG, Sombat

Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand

YIMNIRUN, Rattikorn

Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand

MAKE A SUBMISSION

SCIMAGO JOURNAL RANK

Walailak Journal of Science and Technology

0.8

2019 CiteScore

48th percentile

CITESCORE

Powered by Scopus

VISITORS

Counter Installed 13 July 2017

Vol. 17 No. 10 (2020): Walailak Journal of Science and Technology Volume 17, Number 10, October 2020

PUBLISHED: 2020-10-01

RESEARCH ARTICLE

Dementia Community Screening Program in District Health Area 11: Phase 1

Tharin PHENWAN, Weeratian TAWANWONGSRI, Phanit KOOMHIN, Udomsak SAENGOW 1042-1047

PDF

The Effects of Childbirth Preparation Nursing Intervention Integrating Islamic Praying Program on Duration of Labor and Neonatal Outcomes in Primiparous Muslim Women

Desmawati, Waraporn KONGSUWAN, Warangkana CHATCHAWET 1048-1059

A PDF

New Theory of Light and Resolution of the Abraham-Minkowski Controversy

Adnan Salih AL-ITHAWI

1060-1065

A PDF

Quality of Life of Older People with Dementia in Thailand

Linchong POTHIBAN, Rojanee CHINTANAWAT, Nahathai WONGPAKARAN, Chomphoonut SRIRAT, Khanokporn SUCAMWANG

1066-1076

PDF

Assessment of Optimal Infusion Condition for Thunbergia laurifolia Tea by using **Response Surface Methodology**

Piyanuch ROJSANGA, Puriwat JIEWATAKUNTUM, Waree LIMWIKRANT, Kotchaphan CHOOLUCK 1077-1087

A PDF

Preliminary Study on Hepatoprotective Activity of Aqueous Crude Extract of Allium ascalonicum against Ethanol-induced Liver Injury in Mice

Sakaewan OUNJAIJEAN, Voravuth SOMSAK 1088-1094

PDF

Mapping Potential Planting Areas for Golden Camellias in North Vietnam

Tran Van DO, Tran Duc MANH, Nguyen Van TUAN, Phung Dinh TRUNG, Nguyen Toan THANG, Dang Van THUYET, Dao Trung DUC, Mai Thi LINH, Ninh Viet KHUONG, Vu Tien LAM, Nguyen Huu THINH, Hoang Thanh SON, Trinh Ngoc BON, Ho Trung LUONG, Vu Van THUAN, Nguyen Thi Thu PHUONG 1095-1103

A PDF

Antibacterial Activity of Lupinifolin from Derris reticulata and Its Effect on Cytoplasmic * **Membrane of Methicillin Resistant**

Kamol YUSOOK, Pettaya PANVONGSA 1104-1112

PDF

Universal Multiplex Polymerase Chain Reaction-Restriction Fragment Length polymorphism (UMPCR-RFLP) for Rapid Detection and Species Identification of Fungal and Mycobacterial Pathogens

Jidapa SZEKELY, Sureerat CHELAE, Natnicha INGVIYA, Weerapan RUKCHANG, Sauvarat AUEPEMKIATE, Kumpol AIEMPANAKIT

1113-1125

PDF

Anti-Hyperlipidemia and Anti-obesity Properties of Garcinia atroviridis and Camellia sinensis Extracts in High-Fat Diet Mice

Anawat KONGCHIAN, Narissara KEAWBOONLERT, Thanchanok BOONRAK, Sarai LOOKYEE, Krittiyaporn BUASRI, Nassaree SURONGKUL, Jitbanjong TANGPONG 1126-1138

PDF

Emergence of Carbapenem-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Southern Thailand†

Prerit Upadhyaya ARYAL, Benjamas THAMJARUNGWONG, Kamonnut SINGKHAMANAN, Paramee THONGSUKSAI, Natnicha INGVIYA, Varaporn LAOHAPRERTTHISAN, Rungtip DARAYON, Mingkwan YINGKAJORN

1139-1148

PDF

Development of USI-Kit for Evaluation of Iodine Content in Iodized Salt

Sakaewan OUNJAIJEAN, Kongsak BOONYAPRANAI, Kanokwan KULPRACHAKARN, Kittipan RERKASEM 1149-1156

PDF

MAKE A SUBMISSION

SCIMAGO JOURNAL RANK

0.8

2019 CiteScore

48th percentile

CITESCORE

Powered by Scopus

http://wist.wu.ac.th Life Sciences

Antibacterial Activity of Lupinifolin from *Derris reticulata* and Its Effect on Cytoplasmic Membrane of Methicillin Resistant *Staphylococcus aureus*[†]

Kamol YUSOOK* and Pettaya PANVONGSA

Program of Public Health, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

(*Corresponding author's e-mail: vetgetmoonlight@hotmail.com)

Received: 9 March 2019, Revised: 15 July 2019, Accepted: 18 August 2019

Abstract

Lupinifolin from *Derris reticulata* Craib. was extracted with hexane by Soxhlet extractor and purified by crystallization. The yellow needle-shaped lupinifolin crystals were identified and confirmed by nuclear magnetic resonance (NMR) spectra and Liquid chromatography mass spectrometry (LC/MS). The lupinifolin showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 8 and 16 μ g/ml against Methicillin resistant *S. aureus* (MRSA), respectively. The flow cytometry (FCM) was performed to determine the alteration of cytoplasmic membrane (CM) permeability of MRSA by using Propidium iodide (PI) 5 μ g/ml as an indicator for bacterial membrane integrity. It was found that the bacterial CM permeability was effected by lupinifolin with the MIC of 8 μ g/ml comparable to the control when investigated by Propidium iodide intensity. Additionally, DNA laddering assay was carried out to evaluate apoptosis in bacterial cells. It was shown that the lupinifolin has no effect on DNA fragmentation.

Keywords: MRSA, Lupinifolin, Cytoplasmic membrane, Derris reticulata

Introduction

In the past 20 years, the numbers of both community-associated and hospital-acquired infections have increased continuously. *Staphylococcus aureus* is a major problem in nosocomial infections disease such as pneumonia, operative wound infections and bloodstream infection [1]. Infections caused by *S. aureus* include skin lesions such as boils, furuncles and more serious infections, for example, phlebitis, and meningitis, endocarditis and urinary tract infections. The mortality rate for nosocomial endocarditis is found higher than that for urinary tract infection when the pathogen is *S. aureus* [2]. The hallmark of staphylococcal infection is the abscess, which consists of a fibrin wall surrounded by inflamed tissues enclosing a central core of pus containing organisms and leukocytes. The organisms may be disseminated hematogenously, even from the smallest abscess. *S. aureus* has a tendency to spread to particular sites, including the bones, joints, kidneys, and lungs [3]. This may result in virulent sepsis. The presentation of staphylococcal sepsis is similar to that of gram-negative sepsis, with fever, hypotension, tachycardia, and tachypnea. Severe cases progress to multiorgan dysfunction [4], lactic acidosis and death [5].

Many strains of S. aureus are developing resistance to available antibacterial agents, creating a serious problem in public health such as methicillin-resistant S. aureus (MRSA). The organism may acquire genes encoding enzymes, moreover β -lactamase that destroys the antibacterial agent before it can

[†]Presented at the International Conferences on Biomedical Sciences and Medical Technology 2019: June 20 - 21, 2019

have an effect. For these problems, searching and development of novel antibacterial compounds are urgently required [6].

Flavonoids are well-known and interesting sources for new antibacterial agents. More than 6,000 flavonoid compounds have been purified and identified [7]. They are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. These compounds have been used in traditional herbal medicine as the principal physiologically active constituents to treat human diseases for centuries. In addition, this class of natural products is becoming the subject of antimicrobial research. Many groups of flavonoids possessing antiviral, antifungal or antibacterial activities have been isolated and identified for the structure [8].

Derris plants have received much interest from phytochemical researchers because of their plentiful bioactive compounds of flavonoids. Many Derris flavonoids exhibit wide varieties of biological activities. For example, D. reticulata has been reported to possess anti-diabetic action and anti-inflammatory activity [9]. Lupinifolin is the prenylated flavanone that has been isolated from D. reticulata Benth. [10], D. reticulata Craib., Myriopteron extensum and Eriosema chinense [11]. There are several lines of evidence demonstrating its antimicrobial potential, including antiviral, antibacterial and antimycobacterial activities [12]. Derris reticulata Craib., a plant in Leguminosae family, contains flavonoids as its major bioactive compound similar to other plants in genus Derris. It is a well-known Thai herbal medicine commonly called as Cha-am-nuea. The picture of this plant is shown in Figure 1. Phytochemicals isolated from some species of Derris plants have been reported to possess biological activities. Three pyranoflavanones, lupinifolin, 2^{III}, 3^{III} - epoxylupinifolin and dereticulatin were identified from the stems of D. reticulata Benth [13].

Figure 1 Derris reticulata [14].

Several studies have demonstrated the mechanisms of action underlying antimicrobial effects of flavonoids extracted from medicinal plants. Because of a variety of the structures in this phytochemical class, the mechanism of action previously established by researchers varies dramatically. For example, sophoraflavanone G and catechins alter the fluidity of outer and inner layers of bacterial membranes [15]. Antimicrobial activities of the plant flavonoid lupinifolin has been demonstrated, however its mechanism of action has never been documented. Therefore, in the present study, lupinifolin was purified from *D. reticulata* stem. Then screening test for antibacterial activities of lupinifolin against MRSA was performed. Moreover, the pilot study also revealed that lupinifolin caused damage of bacterial cell wall and/or cell membrane. The data obtained from this study will provide scientific evidence to support the use or development of this compound as antimicrobial agent. The possible mechanisms of action were also elucidated.

Materials and methods

Chemicals

Hexane, ethanol, methanol, dichrolomethane, CDCl₃, tetramethylsilane, NaCl, Mueller-Hinton, CDCl₃, glutaraldehyde, acetone and dimethyl sulfoxide were purchased from Carlo Erba (Italy). Propidium iodide (PI), ampicillin and tetracycline were purchased from Sigma-Aldrich (USA).

Plant material and purification of Lupinifolin

Derris reticulata Craib. was collected from Prachinburi province, Thailand by the former Ph.D. student (Dr. Pakarang Kumkrai). Botanical identification was performed by Dr. Paul J. Grote, School of Biology, Suranaree University of Technology (SUT). A voucher specimen (Pharm-Chu-006) was deposited at School of Pharmacology, SUT. The stems were cut into small pieces and dried at 50 °C in hot air oven. The dried stems was stored at room temperature until used for extraction.

Determination of constituents of Lupinifolin by LC/MS and NMR

The structure of lupinifolin was also confirmed from its mass spectrum. The yellow lupinifolin crystal was dissolved in MeOH (containing 0.1 % formic acid) and injected directly to Electrospay ionization (ESI) source of Bruker micro-TOF-Q mass spectrometer. The ESI source was performed at positive mode, the scan range of mass detector was 50 - 1,500 m/z [16].

The purified lupinifolin was confirmed by NMR spectra on a 500 MHz NMR spectrometer (Bruker AVANE III HD) with a CPP BBO 500 Cyroprobe. Deuterated chloroform (CDCl₃) was used as solvent and tetramethylsilane (TMS) was used as reference standard. The ¹H and ¹³C NMR spectra was collected at frequencies of 500.366 and 125.83, respectively [13], and was consistent with the published data for lupinifolin.

Antibacterial assays

Disc diffusion

Bacteria used in this study was obtained from Thailand Institute of Scientific and Technological Research (TISTR). The antibacterial activities of lupinifolin was evaluated against Gram-positive bacteria Methicillin resistant *S. aureus* (MRSA 4738). The screening of the antibacterial activity was done using disc diffusion method. Bacterial suspensions were prepared by inoculating 1 loopful of a pure colony into Mueller-Hinton Broth (MHB), incubated overnight and diluted in 0.85 % NaCl. Cell suspensions, of which adjusted turbidity equivalent to that of a 0.5 McFarland standard, contains about 10⁸ cfu/ml. These were used to inoculate on Mueller-Hinton Agar (MHA) plates by swabbing over the entire agar surface. Lupinifolin (20, 40 μg/disc) was impregnated to filter paper discs (Whatman No.1, 6 mm diameter) and then placed on the previously inoculated agar plate. After 24 h of incubation at 37 °C, the antibacterial activity was determined by measuring the diameter of the inhibition zones formed around the disc. Ampicillin and 0.5 N NaOH were used as a positive and vehicle controls, respectively [17].

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

A modified broth microdilution method according to Clinical and Laboratory Standard Institute Guidelines [18] was used to determine MIC and MBC of lupinifolin. It was dissolved in 0.5 N NaOH and 2-fold serial dilutions were made in Mueller-Hinton broth (MHB) using 96-well flat bottom microtiter plate (Corning Life Sciences, USA). Suspension of bacteria in MHB were prepared from the overnight broth culture. The final bacterial cell concentration was adjusted to 5×10⁵ cfu/ml. The final concentration of lupinifolin was ranged from 0.25 - 512 μg/ml. Ampicillin and 0.5 N NaOH were used as positive and negative controls, respectively. The MIC was considered as the lowest concentration of the agents showing no visible growth of microorganism after incubation at 37 °C for 24 h by spectrometry. The MBC determination was carried out by subculturing 20 μl from the broth with no growth onto Mueller-Hinton Agar (MHA) plates followed by incubation for 24 h at 37 °C. The lowest concentration with no visible growth was taken as the MBC. All tests were performed in triplicate independent experiments.

Determination of the mechanism of action

Flow cytometry analysis

Flow cytometry was used to measure membrane integrity [19]. Before each experiment, MRSA was cultured in MHB to reach a midlogarithmic-growth phase. Then, the culture was adjusted to an inoculum of 5×10^5 cfu/ml. To determine the effects of lupinifolin on bacterial cells, MRSA culture was treated with lupinifolin (MIC 8 µg/ml) and incubated for 0, 2, 4 and 6 h, respectively. The assay was followed the previously described with some modification [20]. Bacterial suspensions were centrifuged at 8,000 rpm for 15 min at room temperature and the resulting cell pellets were washed with PBS. Finally, cells were resuspended in PBS and incubated with 5 µg/ml of propidium iodide (PI, Sigma-Aldrich, USA) for 15 min in the dark. PI is generally excluded by intact plasma membrane, thus, uptake of PI (orange/red fluorescence) indicates cell death. Ampicillin and untreated bacterial were included in the experiments as the positive and negative control. The analysis of the cells was performed using flow cytometer (FACScan; BD Biosciences) equipped with a CellQuest software (BD Bioscience).

DNA laddering assay

MRSA cells (5×10⁵ cfu/ml) were incubated with lupinifolin at MIC and MBC for 8 h. Then genomic DNA of bacteria cells were extracted by using the NucleoSpin Tissue kit (Macherey-Nagel, Germany). The DNA was electrophoresed in 0.7 % agarose gel and visualized by MaestroSafe nucleic acid gel stain reagent (Maestrogen, USA). The gel was photographed under ultraviolet light. Autolysis cells by Triton-X and untreated cells was used as positive and negative controls, respectively [21].

Results and discussion

The purified lupinifolin was identified by ¹H and ¹³C NMR spectroscopic data as well as the comparison with previously reported data. The spectra of the extracted compound and the lupinifolin were consistent with the published data as shown in **Table 1**.

Its formula was confirmed by mass spectrometry. The positive mode, [M+H]⁺ at m/z 407.1850 (data not showed) which was in accordance with the monoisotopic mass of lupinifolin (406.1780) was recorded. The purity of lupinifolin obtained from this study was more than 95 % based on the NMR spectrum.

Derris plants have received much interest from phytochemical researchers because of their plentiful bioactive compounds of flavonoids [22]. Many of Derris flavonoids exhibit wide varieties of biological activities. For example, D. reticulata has been reported to possess anti-diabetic action and anti-inflammatory activity. In the present study, antibacterial were identified by using MIC and MBC. The lupinifolin showed MIC of 8 μg/ml and MBC of 16 μg/ml against MRSA. To investigate the mechanism of action, flow cytometry (FCM), a powerful technique was applied to determine the physiological changes in bacterial cells. FCM is an automated technique with time-saving, accurate and sensitive. Due to a large number of bacterial cells that were processed in a second, statistics were improved. By using

Propidium iodide (PI) 5 μg/ml as an indicator for bacterial membrane integrity, it was found that the bacterial CM permeability was effected by lupinifolin with the MIC of 8 μg/ml comparable to the control (Figure 1). Propidium iodide is used for monitoring intracellular pH, membrane potential, nucleic acid and protein. To corroborate the postulated mechanism that lupinifolin directly acts on bacterial cell membrane, the fluorescent probe PI was used to measure bacterial membrane potentials of MRSA. When exposed to bacterial cells, molecules of PI enter cells and reside either in the membrane or the cytoplasm. The results found from this study appeared similar to curcumin I which was demonstrated to inhibit the growth of *S. aureus*. Curcumin is an important natural component of the rhizome *Curcuma longa* or turmeric. Propidium iodide uptake and calcein leakage assays were investigated by using flow cytometry technique. It is suggested that its mechanism of action of curcumin I is related to the damaging of bacterial cell membrane, thus impairing the permeabilization of bacterial membranes [23].

Table 1 Comparison of ¹H and ¹³C NMR spectra of the extracted compound and lupinifolin.

Dagition	Yellow needle-shaped compounda		Lupinifolin ^b		
Position	δ_C (ppm) $\delta_{\rm H}$ (ppm)		δ_C (ppm) δ_H (ppm)		
4	196.68		196.84		
7	159.75		160.13		
8a	159.53		159.44		
5	157.50		156.48		
4	156.56		156.09		
3′′′	130.99		131.11		
1	129.62		130.60		
2'/6'	127.56	7.32 (d, 8.4)	127.66	7.31 (d, 8.4)	
3"	125.91	5.50 (d, 10.0)	126.02	5.52 (d, 10.1)	
2′′′	122.56	5.14 (dd, 7.2,7.2)	122.40	5.16 (dd, 7.2,7.2)	
4	115.67	6.64 (d, 10.0)	115.53	6.64 (d, 10.1)	
3′/5′	115.67	6.87 (d, 8.4)	115.53	6.89 (d, 8.4)	
8	108.59		108.73		
6	102.70		102.79		
4a	102.69		102.61		
2	78.80	5.34 (dd, 12.8,2.8)	78.47	5.33 (dd, 12.6,3.0)	
2 ′′	78.05		78.20		
$CDCl_3$	77.37				
$CDCl_3$	77.11				
$CDCl_3$	76.86				
3	43.23	3.04 (dd,17.6,12.8)	42.97	3.06 (dd,17.1,12.6)	
11		2.80 (dd,17.6,3.0)		2.81 (dd,17.1,3.0)	
6′′	28.39	1.45 (s)	28.25	1.46 (s)	
5′′	28.29	1.44 (s)	28.33	1.45 (s)	
4′′′	25.80	1.65 (s)	25.78	1.66 (s)	
1	21.47	3.21 (d, 7.2)	21.42	3.22 (d, 7.2)	
5	25.80	1.65 (s)	25.78	1.66 (s)	
5-OH		12.24 (s)		12.24 (s)	

^aRecorded in CDCl₃ at 500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR

^bRecorded in CDCl₃ at 300 MHz for ¹H-NMR and 75.6 MHz for ¹³C-NMR, cited in (Mahidol *et al.* 1997)

Figure 1 The zone of inhibition of lupinifolin effect on lawn of MRSA.

Table 2 The zone of inhibition of lupinifolin effect on lawn of MRSA.

_	Diameter of inhibitions zone (mm)			
Strain of MRSA	Lupinifolin (μg) Ampicillin		Ampicillin (μg)	
	20	40	10	
Methicillin resistant S. aureus (MRSA 4738)	12 ± 1.1	13 ± 0.5	No inhibition zone	

Table 3 The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of lupinifolin from *D.reticulata* against MRSA compared with ampicillin.

Microorganisms	Lupinifolin		Ampicillin	
Meroor gamsus	MIC (μg/ml)	MBC (μg/ml)	MIC (μg/ml)	MBC (μg/ml)
Methicillin resistant S. aureus (MRSA 4738)	8	16	> 512	-

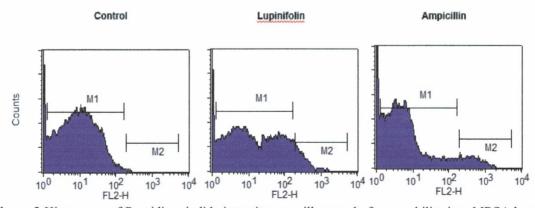


Figure 2 Histograms of Propidium iodide intensity were illustrated of permeability into MRSA by using flow cytometry at emission 544 nm.

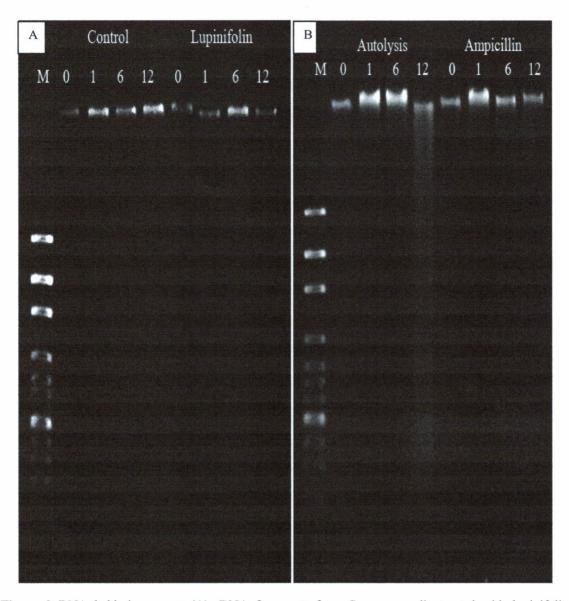


Figure 3 DNA laddering assay. (A): DNA fragments from S. aureus cells treated with lupinifolin concentration at 8 μ g/ml and untreated cells (control) are incubated for 0, 1, 6 and 12 h, respectively. (B): DNA fragments from MRSA cells treated with 0.05 % Triton X to autolysis and Ampicillin concentration at 0.25 μ g/ml are incubated for 0, 1, 6 and 12 h, respectively.

In this study, lupinifolin has no effect on apoptosis. The results showed no DNA fragmentation when treated with lupinifolin concentration at 8 μ g/ml and compared with untreated cell (**Figure 3**). DNA laddering assay was carried out to evaluate apoptosis in mammalian cells. It was revealed that the lupinifolin has no effect on DNA fragmentation implying non-genotoxicity of this compound.

Conclusions

To defeat the opportunistic MRSA, insights regarding the mechanism of action of the antibacterial agent against this bacterium is also needed. According to the results, MIC values of lupinifolin against MRSA strains confirmed the agar disc diffusion test that the lupinifolin can act as an antibacterial agent for antiresistant bacteria. Many publications reported the antibacterial mechanisms of actions of flavonoids, which mostly were the inhibition of cell wall and nucleic acid synthesis including the inhibition of cytoplasmic membrane function [24]. Furthermore, it was suggested that the action of lupinifolin was likely to be the direct disruption of the cytoplasmic membrane [25]. This hypothesis was substantiated by flow cytometry. The results obtained from this study provide direct evidence to support the hypothesis that lupinifolin inhibits bacterial growth of MRSA by damaging the cytoplasmic membrane. The data suggested that lupinifolin may have the potential to be used as antibacterial agent. However, its specific mechanism needs further investigation.

References

- [1] FD Lowy. Staphylococcus aureus infections. New Engl. J. Med. 1998; 339, 520-32.
- [2] ML Fernandez-Guerrero, C Verdejo, J Azofra and MD Gorgolas. Hospital-acquired infectious endocarditis not associated with cardiac surgery: An emerging problem. *Clin. Infect. Dis.* 1995; **20**, 16-23.
- [3] R Ruimy, C Angebault, F Djossou, C Dupont, L Epelboin, S Jarraud and A Andremont. Are host genetics the predominant determinant of persistent nasal *Staphylococcus aureus* carriage in humans? *Int. J. Infect. Dis.* 2010; **202**, 924-34.
- [4] FD Lowy. Staphylococcus aureus infections. N. Engl. J. Med. 1998; 339, 520-32.
- [5] R Colgan and JH Powers. Appropriate antimicrobial prescribing: approaches that limit antibiotic resistance. *Am. Fam. Phys.* 2001; **64**, 999-1004.
- [6] JM Blair, MA Webber, AJ Baylay, DO Ogbolu and LJ Piddock. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015; 13, 42-51.
- [7] WJH Liu. Traditional Herbal Medicine Research Methods. John Wiley and Sons, Canada, 2011, p. 85-91.
- [8] TP Cushnie and AJ Lamb. Antimicrobial activity of flavonoids. *Int. J. Antimicrob. Agents* 2005; **26**, 343-56.
- [9] P Kumkrai, S Kamonwannasit and N Chudapongse. Cytoprotective and anti-diabetic effects of Derris reticulata aqueous extract. J. Physiol. Biochem. 2014; 70, 675-84.
- [10] C Mahidol, H Prawat, S Ruchirawat, K Lihkitwitayawuid, LZ Lin and GA Cordell. Prenylated flavanones from *Derris reticulata*. *Phytochemistry* 1997; **45**, 825-29.
- [11] S Chivapat, P Chavalittumrong, A Attiwist and N Soonthornchareonnon. Toxicity study of lupinifolin from stem of *Derris reticulata* Craib. *J. Thai. Trad. Alternat. Med.* 2009; 7, 146-55.
- [12] N Joycharat, S Thammavong, S Limsuwan, S Homlaead, SP Voravuthikunchai, BE Yingyongnarongkul, S Dej-Adisai and S Subhadhirasakul. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch. Pharm. Res. 2013; 36, 723-30.
- [13] C Mahidol, H Prawat, S Ruchirawat, K Lihkitwitayawuid, LZ Lin and GA Cordell. Prenylated flavanones from *Derris reticulata*. *Phytochemistry* 1997; **45**, 825-29.
- [14] S Ruckhachati. *Derris Reticulata* Craib. Available at: http://www.pharmacy.mahidol.ac.th/sili, accessed January 2010.
- [15] TP Cushnie and AJ Lamb. Recent advances in understanding the antibacterial properties of flavonoids. *Int. J. Antimicrob. Agents* 2011; **38**, 99-107.
- [16] SK Prasad, D Laloo, M Kumar and S Hemalatha. Antidiarrhoeal evaluation of root extract, its bioactive fraction, and lupinifolin isolated from *Eriosema chinense*. Planta Med. 2013; 79, 1620-27.
- [17] N Humeera, AN Kamili, SA Bandh, SU Amin, BA Lone and N Gousia. Antimicrobial and antioxidant activities of alcoholic extracts of *Rumex dentatus* L. *Microb. Pathog.* 2013; 57, 17-20.

- [18] Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard. Clinical and Laboratory Standards Institute Document M07-A8. 2012, p. 16-8.
- [19] V Ambriz-Avina, JA Contreras-Garduno and M Pedraza-Reyes. Applications of flow cytometry to characterize bacterial physiological responses. *Biomed. Res. Int.* 2014; 2014, 461941.
- [20] S Ghosh, K Indukuri, S Bondalapati, AK Saikia and L Rangan. Unveiling the mode of action of antibacterial labdane diterpenes from *Alpinia nigra* (Gaertn.) B. L. Burtt seeds. *Eur. J. Med. Chem.* 2013; 66, 101-5.
- [21] DJ Dwyer, DM Camacho, MA Kohanski, JM Callura and JJ Collins. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. *Mol. Cell.* 2012; 46, 561-72.
- [22] C Mahidol, H Prawat, V Prachyawarakorn and S Ruchirawat. Investigation of some bioactive Thai medicinal plants. *Phytochem. Rev.* 2002; 1, 287-97.
- [23] P Tyagi, M Singh, H Kumari, A Kumari and Mukhopadhyay. Bactericidal activity of Curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10, e0121313.
- [24] YJ Eun, MH Foss, D Kiekebusch, DA Pauw, WM Westler, M Thanbichler and DB Weibel. DCAP: A broad-spectrum antibiotic that targets the cytoplasmic membrane of bacteria. *J. Am. Chem. Soc.* 2012; **134**, 11322-25.
- [25] K Yusook, O Weeranantanapan, Y Hua, P Kumkrai and N Chudapongse. Lupinifolin from *Derris reticulata* possesses bactericidal activity on *Staphylococcus aureus* by disrupting bacterial cell membrane. *J. Nat. Med.* 2017; 71, 357-66.