ชื่อเรื่อง การเตรียมไฟโบรอินเมมเบรนและการดัดแปรเพื่อใช้เป็นวัสดุตรึงเอนไซม์

Fibroin membrane preparation and modification for using as enzyme immobilized

material

นักวิจัย ดร.ปิยรัตน์ มูลศรี

E-mail Piyarutto@hotmail.com

คณะ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเพชรบูรณ์

ปีการศึกษา 2552

บทคัดย่อ

ไฟโบรอินเมมเบรนชนิดต่างๆ ในงานวิจัยนี้ได้ถูกเตรียมขึ้นจากสารละลายไฟโบรอินซึ่งได้มาจากการใช้ปุยไหมที่ เป็นวัสดุเหลือทิ้งจากการผลิตเส้นไหม ในการเตรียมไฟโบรอินดัดแปรด้วยสารเชื่อมไขว้ทำโดยใช้สารเชื่อมไขว้ (พอลิเอทิลีนไกลคอล ไดไกลซิดิว อีเธอร์) และกลูตารัลดีไฮด์ การเตรียมเมมเบรนทำโดยทิ้งสารละลายไฟโบรอินปริมาตร 10 ml ในจานพอลิสไตรีนขนาด 6x9 cm ที่อุณหภูมิห้อง นาน 16 hrs จะทำให้ได้เมมเบรนที่มีลักษณะโปร่งแสง มีความ หนาเฉลี่ยประมาณ 0.0952 ± 0.009 mm โดยการใช้พีอีจีดีอีในสัดส่วน 2-10%∨ ของสารละลายไฟโบรอิน และกลูตารัล ดีไฮด์ในสัดส่วน 2-6% v ของสารละลายไฟโบรอิน จะช่วยปรับปรุงให้ได้เมมเบรนที่มีความยืดหยุ่นและความเหนียวดีขึ้น จากการศึกษาสมบัติของไฟโบรอินเมมเบรนชนิดต่างๆ ที่เตรียมได้พบว่า การดัดแปรไฟโบรอินเมมเบรน ไขว้และการนำไฟโบรอินเมมเบรนไปแช่ในสารละลาย 95% เอทานอล จะทำให้เปอร์เซ็นต์การละลายน้ำของเมมเบรนลด ลง สัณฐานวิทยาของเมมเบรนที่ตรวจสอบด้วยเครื่อง SEM พบว่าไฟโบรอินเมมเบรนที่ดัดแปรด้วยพีอีจีดีอีในสัดส่วน 4% แสดงลักษณะสภาพความเป็นรูพรุนเกิดขึ้นมากกว่าการเตรียมไฟโบรอินเมมเบรนด้วยวิธีอื่นๆ การศึกษาโครงสร้างโปรตีน ทุติยภูมิของเมม-เบรนด้วยเทคนิค FTIR พบว่าทั้งไฟโบรอินเมมเบรนดัดแปรด้วยสารเชื่อมไขว้และไฟโบรอินเมมเบรนที่ ผ่านการใช้สารละลายเอทานอล มีโครงสร้างทุติยภูมิของเมมเบรนเป็นแบบเบต้า-ชีท หรือแบบ Silk II ในขณะที่ไฟโบรอิน เมมเบรนเริ่มต้นจะแสดงโครงสร้างแบบ แรนดอม คอยล์ หรือแบบ Sik I ซึ่งเป็นโครงสร้างที่ไม่มีความเสถียรต่อตัวทำละลาย ที่มีขั้วและความร้อนมากนัก จากการศึกษาการตรึงเอนไซม์ 2 ชนิด ได้แก่ เอนไซม์เพอร์ออกซิเดสและเอนไซม์กลูโคสออก ซิเดสในไฟโบรอินเมมเบรนชนิดต่างๆ พบว่าปริมาณเอนไซม์ทั้งสองชนิด สามารถถูกตรึงไว้ในไฟโบรอินเมมเบรนที่ดัดแปร ด้วยพีอีจีดีอีในสัดส่วน 4% มากกว่าไฟโบรอินเมมเบรนที่ดัดแปรด้วยกลูตารัลอีไฮด์ในสัดส่วน 4% และไฟโบรอินเมมเบรน ที่ผ่านการทำให้เสถียรด้วยสารละลายเอทานอล ตามลำดับ นอกจากนั้นยังพบว่าเอนไซม์ที่ถูกตรึงไว้ในไฟโบรอินเมมเบรน ดัดแปรด้วยพี่อีจีดีอีในสัดส่วน 4% ยังคงมีเปอร์เซ็นต์แอคทิวิตีสัมพัทธ์ และประสิทธิภาพในการทำงานของเอนไซม์สูงกว่า การตรึงไว้ในไฟโบรอินเมมเบรนชนิดอื่น ๆ ที่สภาวะเหมาะสมของการศึกษา อีกทั้งยังมีเสถียรภาพของเอนไซม์ในช่วงระยะ เวลาที่เก็บรักษาที่อุณหภูมิ 4°C นาน 14 วัน ดีกว่าเอนไซม์ที่ถูกตรึงไว้ในในไฟโบรอินเมมเบรนชนิดอื่นๆ และเอนไซม์อิสระ ตามลำดับ

คำสำคัญ : เคมี ไฟโบรอินเมมเบรน วัสดุตรึงเอนไซม์

ABSTRACT

In this research, various types of fibroin membrane were prepared from fibroin solution which derived from silk waste of silk thread production. Modified fibroin membranes were carried out by using PEGDE (Polyethylene glycol diglycidyl ether) and glutaraldehyde as crosslinking agents. In the membrane preparation, the 10 ml of fibroin solution was left in 6x9 cm polystyrene plate at room temperature for 16 hrs. The resulting membranes have translucent appearance and average thickness 0.0952 ± 0.009 mm. The modification by using PEGDE 2-10%v of fibroin solution and glutaraldehyde 2-6%v of fibroin solution can improve the membranes flexibility and tenacity. From the membranes properties studying, it found that water solubility percent of the membrane decreasing for the modified fibroin membranes and the 95% ethanol treaded fibroin membrane. Membranes morphology from SEM investigation show more porosity exhibited in the PEGDE modified fibroin membrane in the fraction of 4% than the membranes which prepared by the other methods. From FTIR technique, the secondary protein structure of the modified fibroin membranes and the ethanol treated fibroin membrane exhibited beta-sheet structure or Silk II structure while the original fibroin membrane exhibited random coil structure or Silk I structure which unstable for both of strong polar solvents and heat treatment. From enzymes immobilization of horseradish peroxidase and glucose oxidase onto the various types of membrane, it found that the amount of both enzymes could be entrapped in the PEGDE modified fibroin membrane in the fraction of 4% higher than the glutaraldehyde modified fibroin membrane in the fraction of 4%v, and the ethanol treated fibroin membrane, respectively. In addition, the immobilized enzymes in the PEGDE modified fibroin membrane in the fraction of 4% remained relative activity and working efficiency higher than the other membranes at the enzymes optimal conditions. Moreover the enzymes immobilized into the PEGDE modified fibroin membrane in the fraction of 4% show more stable than the enzymes which immobilized onto the other materials and the free enzymes, respectively.

Keyword: chemical, fibroin membrane, enzyme immobilized material