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Abstract
A unitary Cayley graph of a groupringRG, denoted by Γ(RG) is a graph withRG as a vertex
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Chapter 1
Introduction

Studying a group structure by using a graph was first studied by Arthur Cayley in 1878.
Investigating on assign a group structure to the Cayley graph has been widely study bymany authors.
In 1988 Beck [2] studied a graph that was constructed by a commutative ring. Afterwards, the graphs
associated with ring and the unitary Cayley graph has been extensively studied, such as coloring,
chromatic number, clique number etc. (see [3], [8], [7], [5], [9]). However, there are some articles
that investigate on a non-commutative ring.

In 2002, Milies and Sehgal [10] studied an interesting algebraic structure called a groupring,
which was presented in a book, called "An Introduction to Group rings". In a final part of a brief
history section on group ring of the book, the authors gave us a state of Arthur Cayley’s article, "if
we consider the elements of a (finite) group as basic units of a hypercomplex system”, and conclude
that the notion of a groupring appears for the first time.

A groupring is an algebraic structure that was combined a group and a ring bymodule functions.
In addition, each element of a groupring consists two parts, ones a basis part from the group and a
scalar part from a ring. Besides, one of the interesting points of studying a groupring structure is a
groupring's structure more general than a vector space's structure.

In this research, we study a graph which is originated from a studying of Arthur Cayley, called
unitary Cayley graph, associate to an algebraic structure which the notion was first appears in Arthur
Cayley’s article, called groupring.

The report is organized as follows: In Chapter 2, we first give some useful basic definition
and properties. In Chapter 3, the methodology and literature review were presented. After that, in
Chapter 4 is a main results of this study. Finally, we provide the conclusions of this research in
Chapter 5.



Chapter 2
Preliminaries

2.1 Groups Rings and Modules
There are some preliminary information to study in the groupring. The definition of a group

and ring are referred from [4]. Some useful notations and relevant terminologies related to this
research are given in this section.

2.1.1 Groups
Definition 2.1.1 If G is a nonempty set, a binary operation on G is a function ∗ : G×G → G.

In general, the notation a ∗ b is used for the image of (a, b) under the binary operation ∗.
Definition 2.1.2 A semigroup is a nonempty set G together with a binary operation ∗ on G which
is

i) associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G;
amonoid is a semigroup G which contains an
ii) identity element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G.

A group is a monoid G such that
iii) for every a ∈ G there exists an inverse element −a such that a ∗ (−a) = (−a) ∗ a = e.

A semigroup G is said to be abelian or commutative if its binary operation is
iv) commutative: a ∗ b = b ∗ a for all a, b ∈ G.

We shall denote by (G, ∗) a group G where ∗ is a binary operation on G.

2.1.2 Rings
Definition 2.1.3 A ring is a nonempty setR with two binary operations, denoted as addition⊕ and
multiplication ⊙ such that: for all a, b, c ∈ R

i) (R,⊕) is an abelian group;
ii) (a⊙ b)⊙ c = a⊙ (b⊙ c)

iii) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c) and (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c)

If in addition:
iv) a⊙ b = b⊙ a

then R is said to be a commutative ring. If R contains an element 1R such that
v) 1R ⊙ a = a⊙ 1R = a

then R is said to be a ring with identity and an element 1R is called a unity of R. We shall denote
by (R,⊕,⊙) a ring R where ⊕ and ⊙ are two binary operations on R.
Definition 2.1.4 ideal and maximal ideal
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2.1.3 Modules
Definition 2.1.5 Let (R,⊕,⊙) be a ring with a unity 1R. An abelian group (G, ∗) together with a
function · : R×G → G is called a (left) R−module (or a left module over R) if :

i) (a⊕ b) · g = (a · g)⊕ (b · g),
ii) a · (g1 ∗ g2) = (a · g1) ∗ (a · g2),
iii) a · (b · g) = (a⊙ b) · g,
iv) 1R · g = g,

for all a, b ∈ R and g, g1, g2 ∈ G.
For convenience, we shall refer to ag as the image of (a, g) of the above function.

2.2 Grouprings
In this section, we introduce a definition of a groupring and investigate some properties of a

unit on the groupring. The following definitions and some notation are given by Miles [10]. For
convenience, we shall refer eG, 0R and 1R to an identity of a groupG, an identity element of a ring
R and a unity of a ring R, respectively.

2.2.1 Grouprings
Let (G, ∗) be a R−module over a ring (R,⊕,⊙) with a unity 1R and RG be the set of all

formal linear combinations of the form
α =

∑
g∈G

agg

where ag ∈ R and ag = 0R, almost everywhere, that is, only finite number of ag are different from
0R where 0R is an identity element in R and define the support of α to be the set of elements g of
G such that the corresponding ag ̸= 0R, that is

supp(α) = {g ∈ G : ag ̸= 0R}.
Given two elements α =

∑
g∈G agg and β =

∑
g∈G bgg inRG, we have α = β if and only

if ag = bg for all g ∈ G. The sum of α and β, denoted by α+ β, is defined by
α+ β =

∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag ⊕ bg)g.
Also, the product of α and β, denoted by αβ, is defined by

αβ =
∑

g,h∈G
(ag ⊙ bh)(g ∗ h).

By reordering the terms in the formula above, we can write
αβ =

∑
u∈G

cuu

where cu =
∑

g∗h=u

agbh.
It is easy to check that,RG is a ring under the operations above. Moreover,RG is a commutative

ring if and only if R is a commutative ring. In this research, we shall study the ring R which has no
zero divisor.
Definition 2.2.1 Let (G, ∗) be a R−module over a ring (R,⊕,⊙) with a unity 1R. The set RG,
with the operations defined above, is called groupring of G over R (or RG is a groupring).
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2.2.2 Unity and Unit of RG

Let X be a set, the cardinality of a set X is denoted by |X|. Clearly that, the cardinality of
a groupring RG is equal to mn where |G| = n and |R| = m. The following lemma shows some
properties of supp(α) and supp(αβ) that will be used to consider a unit element of the groupring
RG in the sequel.
Lemma 2.2.1 [4] LetR be a ring with has no zero divisor. Then gg′ = 0 if and only if either g = 0

or g′ = 0.
Lemma 2.2.2 Let α, β ∈ RG. The following conditions hold.

i) If supp(α) ̸= supp(β) then α ̸= β;
ii) |supp(α+ β)| ≤ |supp(α)|+ |supp(β)|;
iii) |supp(αβ)| ≥ max{|supp(α)|, |supp(β)|}

Proof i) It is obvious by definition.
ii) It is easy ti check that, supp(α + β) ⊆ (supp(α) ∪ supp(β)). Thus |supp(α + β)| ≤

|supp(α)|+ |supp(β)|.
iii) Since supp(αβ) = {gh : g ∈ supp(α), h ∈ supp(β)}, we conclude that |supp(αβ)| ≥

|{gh : g ∈ supp(α), h ∈ supp(β)}| ≥ max{|supp(α)|, |supp(β)|}.

Clearly that, the converse of i) not true.
Recall that, an element u of a ring R is a unit if there exists v ∈ R such that uv = vu = 1R.

Here, we investigate a unit element of a groupring RG.
Consider, an element 1ReG ∈ RG, we obtain that

1ReG

∑
g∈G

agg

 =
∑
g∈G

(1R ⊙ ag)(eG ∗ g)

=
∑
g∈G

(ag ⊙ 1R)(g ∗ eG)

=

∑
g∈G

agg

 1ReG

=
∑
g∈G

agg.

Thus an element uRG
:= 1ReG is a unity of the groupring RG.

Lemma 2.2.3 α ∈ RG is a unit if and only if |supp(α)| = 1

Proof Let α be a unit. Then there exist α−1 ∈ RG such that αα−1 = uRG
= 1ReG. Thus

supp(αα−1) = supp(1ReG) = {eG}. Since 1 = |supp(αα−1)| ≥ max{|supp(α)|, |supp(α−1)|},
we can conclude that |supp(α)| = |supp(α−1)| = 1.

Conversely, assume that |supp(α)| = 1. Then we put α = agg for some ag ∈ R, g ∈ G.
There exists β = a−1

g (−g) ∈ RG such that αβ = (agg)(a
−1
g (−g)) = aga

−1
g (g − g) = 1ReG.

Therefore α is a unit in RG.
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2.3 Unitary Cayley Graphs
In this section, we start with some useful definitions in graph theory, themeaning of dominating

set and a domination number of a graph. After that, the concepts of the unitary Cayley graph is
offered.

2.3.1 Graphs
Definition 2.3.1 A graph is a pairG = (V (G), E(G)) of sets such that the elements of E(G) are
2−element subset of V (G). The elements of V (G) are the vertices of the graphG, the elements of
E(G) are its edges.
Definition 2.3.2 Two vertices u, v of a graphG are adjacent, or neighbors, if {u, v} is an edge of
G. The set of neighbors of a vertex v in G is denoted by N(v).

If a vertex v ∈ e for some an edge e ∈ E then v is incident with an edge e and the edge e is
said to be edge at v. The degree d(v) of a vertex v is the number of neighbor of v i.e. d(v) = |N(v)|.
Definition 2.3.3 Let G = (V,E) be a graph. If V ′ ⊆ V and E′ ⊆ E, then G′ = (V ′, E′) is said
to be a subgraph of G.

IfG′ is a subgraph ofG andG′ contains all the edges {u, v} ∈ E with u, v ∈ V ′, thenG′ is
an induced subgraph of G.
Definition 2.3.4 A dominating set in a graph G is a subset D of the vertex set V of G such that
for every vertex in V \D has a neighbor inD.

Adomination number γ(G) of a graphG is theminimum cardinality of aminimal dominating
set in G

2.3.2 Unitary Cayley Graph of Ring
Definition 2.3.5 Let R be a ring. The unitary Cayley graph of the ring R, is a graph with vertex
set R, where {u, v} is an edge if and only if u− v is a unit of R. Denote the unitary Cayley graph
of a ring R by Γ(R).

By the definition of the edge of the unitary Cayley graph of a ring R and the form of the unit
element of groupring RG, we can conclude that the unitary Cayley graph of the groupring RG,
denoted by Γ(RG) is a graph with vertex set RG, where {α, β} is an edge if and only if α− β is a
unit if and only if |supp(α)| = 1.



Chapter 3
Methodology and Literature Review

3.1 Methodology
We have 3 phases to perform this research;

Phase I Study background knowledge and literature reviews.
Phase II Verify the conditions, find some basic properties and then extend to the theorem.
Phase III Prove the theorems and summarize.

3.2 Literature Review
A commutative ring R is said to be local ring if R has exactly one maximal ideal.
In 2009, Akhtar et al. [1] studied a unitary Cayley graph of a finite ring R and proved that

Γ(R) is a regular graph of degree |R×|whereR× is a set of all unit elements. Moreover, they proved
that if R is a commutative local ring with maximal ideal M , then Γ(R) is a complete multipartite
graph whose partite sets are the cosets ofM .

A Jacobson radical of a ringR, denoted by JR, is defined to be the intersection of all maximal
left ideal of R.

In 2012, Kiani and Aghaei [6] studied a unitary Cayley graph of a ring and prove that if
Γ(R) ∼= Γ(S), then Γ(R/JR) ∼= Γ(S/JS) where JR and JS are Jacobson radicals of R and
S, respectively. Moreover, they obtained that if Γ(R) ∼= Γ(R′), then R/JR ∼= R′/JR′ for any
commutative ring R and R′.

In 2015, Su [11] submitted a doctoral thesis that studied a unitary Cayley graph of ring and
many properties of the unitary Cayley graph of ring are obtained, such as girth, diameter, connectivity
etc.



Chapter 4
Results

In this Chapter is about the main propose of this research which means that we shall present
some properties of a unitary Cayley graph of a grouprinf RG, including . Certainly, the domination
number of Γ(RG) is offered. After that, we shall present a several interesting corollary also. On
top of that, we shall decompose the unitary Cayley graph Γ(RG) by using a relation on the support
supp(α) of each element α of RG.

4.1 Unitary Cayley Graph of Ring
In this part, we classify an element of RG by Sk such that for each 1 ≤ k ≤ n, define Sk =

{α ∈ RG : |supp(α)| = k}. Note that, we let S0 = {0RG
} and clearly that, |Sk| = (m − 1)k.

Lastly, we prove some basic properties of the unitary Cayley graph Γ(RG) such as, a degree of
vertex, a connectivity etc.
Lemma 4.1.1 Let α, β ∈ RG where α =

∑
g∈G

agg and β =
∑
g∈G

bgg. If |supp(α − β)| = 1 then
|(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1

Proof Let |supp(α−β)| = 1. Assume to the contradiction that |(supp(α)∪supp(β))\(supp(α)∩
supp(β))| ≥ 2. Then there exists g, g′ ∈ (supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β)) where
g ̸= g′ which means g, g′ ∈ (supp(α)∪supp(β)) and g, g′ /∈ (supp(α)∩supp(β)). We consider
two cases:

i) If g, g′ ∈ supp(α) then ag, ag′ ̸= 0R. Since bg and bg′ are equal to 0R, |supp(α− β)| ≥ 2

which is contradicts to the assumption.
ii) If g ∈ supp(α) and g′ ∈ supp(β) then ag ̸= 0R and bg′ ̸= 0R. Since g, g′ /∈ (supp(α) ∩

supp(β)), ag′ and bg are equal to 0R. Thus ag, bg′ ∈ supp(α−β) this implies that |supp(α−
β)| ≥ 2 which is contradicts to the assumption.

The case g, g′ ∈ supp(β) and g′ ∈ supp(α), g ∈ supp(β) can be proved by the similar reason.
Therefore |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1, as required.

The following theorem, we shall conclude the adjacent condition of each pair of elements in
RG.
Theorem 4.1.2 Let Γ(RG) be a unitary Cayley graph of a groupring RG and α, β ∈ RG where
α =

∑
g∈G

agg and β =
∑
g∈G

bgg. Then {α, β} is an edge of Γ(RG) if and only if the following
conditions hold

i) |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1;
ii) if supp(α) = supp(β) then there is a unique g′ ∈ supp(β) such that bg′ ̸= ag′ and bg = ag

for otherwise;
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iii) if |(supp(α)∪ supp(β)) \ (supp(α)∩ supp(β))| = 1 then bg = ag for all g ∈ supp(β)∩
supp(α).

Proof Let α, β ∈ RG such that α =
∑
g∈G

agg and β =
∑
g∈G

bgg. Assume that {α, β} is an edge
of Γ(RG) which means that α − β is a unit of RG. Thus |supp(α − β)| = 1. We consider each
condition as follow.

i) Clearly that i) is obtained by Lemma 4.1.1.
ii) Suppose that supp(α) = supp(β). Assume to the contradiction that ag = bg for all g ∈

supp(β) = supp(α). Then α − β =
∑
g∈G

(ag − bg)g =
∑
g∈G

(ag − ag)g = 0G this implies
that supp(α − β) = ∅ which is contradicts to |supp(α − β)| = 1. Therefore the condition
ii) holds.

iii) Suppose that |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| = 1. Thus there exists h ∈
(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β)). Assume to the contradiction that bg ̸= ag

for some g ∈ supp(β) ∩ supp(α). For each g ∈ supp(β) ∩ supp(α) we obtain that
ag − bg ̸= 0R where bg ̸= ag . Let h ∈ (supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β)).
Then either h ∈ supp(α) or h ∈ supp(β). Consequently, h ∈ supp(α − β). Choose
g ∈ supp(β) ∩ supp(α) such that ag ̸= bg , then g ∈ supp(α − β) and clearly that g ̸= h.
Hence h, g ∈ supp(α − β) which is contradicts to |supp(α − β)| = 1. Therefore the
condition ii) holds.
Conversely, assume the conditions holds. We shall show that |supp(α − β)| = 1. Since

|(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1, |(supp(α) ∪ supp(β)) \ (supp(α) ∩
supp(β))| ∈ {0, 1}. Consider two cases.

i) If |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| = 0, then supp(α) = supp(β). By
using ii) we obtain that there is a unique g′ ∈ supp(β) such that ag′ ̸= bg′ and bg = ag

for otherwise. Then ag′ − bg′ ̸= 0R and ag − bg = 0R for all g ∈ supp(β) \ {g′}.
Consequently, g′ ∈ supp(α− β) and g /∈ supp(α− β) for all g ∈ supp(β) \ {g′}. Hence
supp(α− β) = {g′}. Therefore |supp(α− β)| = 1 as required.

ii) If |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| = 1. We obtain that there is g′ ∈
(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β)). Consequently, g′ /∈ supp(α) ∩ supp(β)

and either g′ ∈ supp(α) or g′ ∈ supp(β). By using iii), ag − bg = 0R for all g ∈
supp(α) ∩ supp(β) and g′ ∈ supp(α − β). Hence supp(α − β) = {g′}. Therefore
|supp(α− β)| = 1 which means that {α, β} ∈ E(Γ(RG)) as required.

Lemma 4.1.3 Let α ∈ V (Γ(RG)) and α ∈ Sk. ThenN(α) ⊆ Sk−1 ∪ Sk ∪ Sk+1.
Proof Let β ∈ N(α). Then {α, β} ∈ E(Γ(RG)). By Theorem 4.1.2 we obtain that |(supp(α) ∪
supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1, which means that |(supp(α) \ supp(β))| ∈ {0, 1} and
we then consider two following cases;
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Case |supp(α) \ supp(β)| = 1. Let g ∈ supp(α), g /∈ supp(β). If there exists h ̸= g such
that h ∈ supp(β) and h /∈ supp(α) then g, h ∈ (supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))

which implies that |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≥ 2 that is a contradiction.
Thus supp(β) ( supp(α). From |supp(α) \ supp(β)| = 1 we can conclude that β ∈ Sk−1.

Case |supp(α) \ supp(β)| = 0. We can conclude that either supp(α) = supp(β) or
supp(α) ( supp(β). Clearly that, if supp(α) = supp(β) then β ∈ Sk. In case of supp(α) (
supp(β), we get that |(supp(α)∪ supp(β)) \ (supp(α)∩ supp(β))| = |(supp(α)∪ supp(β)) \
supp(α)| ≤ 1. Since supp(α) ( supp(β), |supp(β) \ supp(α)| = 1. Thus we can conclude that
β ∈ Sk+1.
Lemma 4.1.4 Let α ∈ V (Γ(RG)), α ∈ Sk and β ∈ N(α). Then the following conditions holds;

i) β ∈ Sk−1 if and only if supp(β) ( supp(α);
ii) β ∈ Sk if and only if supp(β) = supp(α);
iii) β ∈ Sk+1 if and only if supp(α) ( supp(β).

Proof Let β ∈ N(α). Then {α, β} ∈ E(Γ(RG)).
i) Let β ∈ Sk−1. Then |supp(α)|−|supp(β)| = 1which means that there exists g ∈ suup(α)

such that g /∈ supp(β). Assume to the contradiction that there exists g′ ∈ supp(β) such that
g′ /∈ supp(α). Clearly, g ̸= g′. Thus {g, g′} ⊆ (supp(α) ∪ supp(β)) \ (supp(α) ∩
supp(β)) that means |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≥ 2 which is a
contradiction, since {α, β} ∈ E(Γ(RG)).
Conversely, Assume that supp(β) ( supp(α). Clearly that, if |supp(α) \ supp(β)| ≥ 2

then |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≥ 2 which is a contradiction since
β ∈ N(α). Thus |supp(α) \ supp(β)| ≤ 1 which implies that |supp(α) \ supp(β)| = 1

because supp(β) ( supp(α). Therefore β ∈ Sk−1 as required.
ii) Let β ∈ Sk. Assume to the contradiction that supp(β) ̸= supp(α). Since |supp(α)| =

|supp(β)|, there exists g ̸= g′ such that g ∈ supp(α), g′ ∈ supp(β) and g′ /∈ supp(α), g /∈
supp(β). Thus {g, g′} ⊆ (supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β)) that means
|(supp(α)∪supp(β))\(supp(α)∩supp(β))| ≥ 2which is a contradiction, since {α, β} ∈
E(Γ(RG)).
Conversely, Let supp(β) = supp(α). It is obvious that β ∈ Sk, since α ∈ Sk.

iii) Letβ ∈ Sk+1. Then |supp(β)|−|supp(α)| = 1whichmeans that there exists g′ ∈ suup(β)

such that g′ /∈ supp(α). Assume to the contradiction that there exists g ∈ supp(α) such that
g /∈ supp(β). Clearly, g ̸= g′. Thus {g, g′} ⊆ (supp(α)∪supp(β))\(supp(α)∩supp(β))
that means |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≥ 2 which is a contradiction,
since {α, β} ∈ E(Γ(RG)).
Conversely, Assume that supp(α) ( supp(β). Clearly that, if |supp(β) \ supp(α)| ≥ 2

then |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≥ 2 which is a contradiction since
β ∈ N(α). Thus |supp(β) \ supp(α)| ≤ 1 which implies that |supp(β) \ supp(α)| = 1

because supp(α) ( supp(β). Therefore β ∈ Sk+1 as required.
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Theorem 4.1.5 Let α ∈ V (Γ(RG)) and α =
∑
g∈G

agg ∈ Sk. Then d(α) = n(m − 1) for all
2 ≤ k ≤ n− 1.
Proof By using Lemma 4.1.3, we obtain that d(α) = |N(α) ∩ Sk−1|+ |N(α) ∩ Sk|+ |N(α) ∩
Sk+1|. Then we shall investigate the cardinality of the following 3 subsets.

i) Consider |N(α) ∩ Sk−1|. By Lemma 4.1.4, we obtain that β ∈ N(α) ∩ Sk−1 if and only
if {α, β} ∈ E(Γ(RG)) and supp(β) ( supp(α). By Theorem 4.1.2, we obtain that β =∑
g∈A

agg where A ( supp(α) and |A| = |supp(α)| − 1 for all β ∈ N(α) ∩ Sk−1 . Hence
|N(α) ∩ Sk−1| =

(
k

k−1

)
= k.

ii) Consider |N(α) ∩ Sk|. By Lemma 4.1.4, we obtain that β ∈ N(α) ∩ Sk if and only if
{α, β} ∈ E(Γ(RG)) and supp(β) = supp(α). By Theorem 4.1.2, for any β ∈ N(α) ∩
Sk−1, we obtain that β =

∑
g∈supp(α)\{h}

agg + bhh for some h ∈ supp(α) where bh ∈

R \ {0R, ah}. Hence |N(α) ∩ Sk| =
(
k
1

)
(m− 2) = k(m− 2).

iii) Consider |N(α) ∩ Sk+1|. By Lemma 4.1.4, we obtain that β ∈ N(α) ∩ Sk+1 if and only
if {α, β} ∈ E(Γ(RG)) and supp(α) ( supp(β). By Theorem 4.1.2, for any β ∈ N(α) ∩
Sk+1, we obtain that β =

∑
g∈supp(α)∪{h}

agg + bhh where supp(α) ∪ {h} = supp(β) and
bh ̸= 0R. Hence |N(α) ∩ Sk| =

(
n−k
1

)
(m− 1) = (n− k)(m− 1).

Therefore d(α) = k + k(m− 2) + (n− k)(m− 1) = n(m− 1).

4.2 Connectivity
Let |G| = n, |R| = m and RG be a groupring. For each α, β ∈ RG we define a relation ∼

by
α ∼ β if and only if supp(α) = supp(β).

It is easy to check that,∼ is an equivalent relation onRG; consequently, the set of all distinct
equivalence classes in ∼ forms a partition of RG. By ᾱ we denote the equivalence class of α i.e.
ᾱ = {β ∈ RG : β ∼ α}. Furthermore, we put Tα = {agg : g ∈ supp(α)}.

In this section, we investigate a connectivity of the unitary Cayley graph of groupring and
obtain that Γ(RG) is a connected graph as follow,
Lemma 4.2.1 Let α ∈ V (Γ(RG)) and α =

∑
g∈G

agg ∈ Sk. Then an induced subgraph Γ(RG)[ᾱ]

is a connected subgraph of Γ(RG).
Proof Let α =

∑
g∈G

agg, we shall show that there is a path from α to β for every β ∈ ᾱ. Let
β =

∑
g∈G

bgg ∈ ᾱ. Then supp(β) = supp(α). Let {a′h1
h1, a

′
h2
h2, . . . , a

′
ht
ht} be a subset

of Tα such that a′ihi ̸= bhi
hi where bhi

hi ∈ Tβ for all i ∈ {1, 2, . . . , t} and we put T ′ =

{h1, h2, . . . , ht}. Then α = α0 =

( ∑
g∈supp(α)\T ′

agg

)
+ a′h1

h1 + a′h2
h2 + . . . + a′ht

ht. Let
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αi =

( ∑
g∈supp(α)\T ′

agg

)
+

(
i∑

j=1
bhj

hj

)
+ a′hi+1

hi+1 + . . . + a′ht
ht for all 1 ≤ i ≤ t. We

obtain that {αi−1, αi} ∈ E(Γ(RG)) for all 1 ≤ i ≤ t and clearly that β = αt. Thus there exists a
path from α to β for all β ∈ ᾱ which means that for any β, β′ ∈ ᾱ, there exists a path from β to α
and a path from α to β′. Hence there exists a path from β to β′ for all β, β′ ∈ ᾱ. Therefore ᾱ is a
connected subgraph of Γ(RG) as required.
Lemma 4.2.2 Let α, β ∈ V (Γ(RG)). If supp(α) ⊆ supp(β) then α, β are connected.
Proof Let α =

∑
g∈supp(α)

agg, β =
∑

g∈supp(β)
bgg and supp(α) ⊆ supp(β). Clearly that, if

supp(α) = supp(β), we get α, β are connected by Lemma 4.2.1. Suppose that |supp(α)| = k for
some 1 ≤ k ≤ n. Here, we consider the case of supp(α) ( supp(β). Let |supp(β)\supp(α)| = t

for some 1 ≤ t ≤ |supp(β)|−1. Define αi =
∑

g∈supp(α)
agg+ah1h1+ah2h2+ . . .+ahi

hi where

hj ∈ supp(β) \

(
supp(α) ∪

(
j−1∪
r=1

hr

))
for all 1 ≤ j ≤ i and ahi

̸= 0R for all 1 ≤ i ≤ t− 1.
Denote α = α0 and we can conclude that {αi−1, αi} ∈ E(Γ(RG)) for all 1 ≤ i ≤ t − 1.
Consequently, we obtain that αt−1, β ∈ E(Γ(RG)). Therefore there exists a path from α to β

which means that α, β are connected as required.
Theorem 4.2.3 Γ(RG) is a connected graph.
Proof Let α, β ∈ V (Γ(RG)), we shall show that there exists a path from α to β. Now, let λ ∈
V (Γ(RG)) such that supp(λ) = G. Thus supp(α) ⊆ supp(λ) and supp(β) ⊆ supp(λ). By
Lemma 4.2.2, we obtain that there exists a path from α to λ and a path from β to λ. Hence, we can
conclude that there exist a path from α to β for all α, β ∈ V (Γ(RG)) which means that Γ(RG) is
a connected graph as required.

4.3 A Dominating Set of Γ(RG)

For each α ∈ RG we denoteD(ᾱ) a maximal pairwise non-adjacent subset of Γ(RG)[ᾱ].
Lemma 4.3.1 D(ᾱ) is a dominating set of Γ(RG)[ᾱ].
Proof By the definition of D(ᾱ) we can conclude that for any β ∈ V (Γ(RG)[ᾱ]) the exists λ ∈
D(ᾱ) such that β, λ ∈ E(Γ(RG)[ᾱ]). Thus D(ᾱ) is a dominating set of Γ(RG)[ᾱ] as required.

Theorem 4.3.2 ∪
α∈RG

D(ᾱ) is a dominating set Γ(RG)

Proof SinceD(ᾱ) is a dominating set of the induced subgraph Γ(RG)[ᾱ] for all equivalence class
ᾱ on V (Γ(RG)) and ∪

α∈RG

ᾱ = V (Γ(RG)), ∪
α∈RG

D(ᾱ) is a dominating set Γ(RG).



Chapter 5
Conclusion

In this research, we first investigate an adjacent condition of a unitary Cayley graph of a finite
groupring and obtain that

for any α, β ∈ RG where α =
∑
g∈G

agg and β =
∑
g∈G

bgg. We get {α, β} is an edge of
Γ(RG) if and only if the following conditions hold

i) |(supp(α) ∪ supp(β)) \ (supp(α) ∩ supp(β))| ≤ 1;
ii) if supp(α) = supp(β) then there is a unique g′ ∈ supp(β) such that bg′ ̸= ag′ and bg = ag

for otherwise;
iii) if |(supp(α)∪ supp(β)) \ (supp(α)∩ supp(β))| = 1 then bg = ag for all g ∈ supp(β)∩

supp(α).
Afterward, the degree of a vertex of Γ(RG) is obtained, i.e. d(α) = n(m−1) for all α ∈ Sk

where 2 ≤ k ≤ n−1. In addition, we prove that a unitary Cayley graph of a finite groupring Γ(RG)
is a connected graph. ฺฺBesides, we give a dominating set of Γ(RG) in term of union of a dominating
set of each equivalence class also.
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