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Abstract

A unitary Cayley graph of a groupring R, denoted by I'( R;) is a graph with R as a vertex
set where {c, B} is an edge if and only if &« — [ is a unit. In this research, we prove some basic
properties of a unitary Cayley graph of a finite groupring such as vertices adjacent, degree of a vertex,
connectivity and a dominating set.
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Chapter 1

Introduction

Studying a group structure by using a graph was first studied by Arthur Cayley in 1878.
Investigating on assign a group structure to the Cayley graph has been widely study by many authors.
In 1988 Beck [2] studied a graph that was constructed by a commutative ring. Afterwards, the graphs
associated with ring and the unitary Cayley graph has been extensively studied, such as coloring,
chromatic number, clique number etc. (see [3], [8], [7], [5], [9]). However, there are some articles
that investigate on a non-commutative ring.

In 2002, Milies and Sehgal [10] studied an interesting algebraic structure called a groupring,
which was presented in a book, called "An Introduction to Group rings". In a final part of a brief
history section on group ring of the book, the authors gave us a state of Arthur Cayley’s article, "if
we consider the elements of a (finite) group as basic units of a hypercomplex system”, and conclude
that the notion of a groupring appears for the first time.

A groupring is an algebraic structure that was combined a group and a ring by module functions.
In addition, each element of a groupring consists two parts, ones a basis part from the group and a
scalar part from a ring. Besides, one of the interesting points of studying a groupring structure is a
groupring's structure more general than a vector space's structure.

In this research, we study a graph which is originated from a studying of Arthur Cayley, called
unitary Cayley graph, associate to an algebraic structure which the notion was first appears in Arthur
Cayley’s article, called groupring.

The report is organized as follows: In Chapter 2, we first give some useful basic definition
and properties. In Chapter 3, the methodology and literature review were presented. After that, in
Chapter 4 is a main results of this study. Finally, we provide the conclusions of this research in
Chapter 5.



Chapter 2

Preliminaries

2.1  Groups Rings and Modules

There are some preliminary information to study in the groupring. The definition of a group
and ring are referred from [4]. Some useful notations and relevant terminologies related to this
research are given in this section.

2.1.1  Groups
Definition 2.1.1 If G is a nonempty set, a binary operation on G is a function * : G x G — G.
In general, the notation @ * b is used for the image of (a, b) under the binary operation .
Definition 2.1.2 A semigroup is a nonempty set G together with a binary operation * on GG which
is
i) associative: a x (bxc) = (a*b) xcforall a,b,c € Gj
a monoid is a semigroup G which contains an
i) identity element e € G suchthataxe =exa =aforalla € G.
A group is a monoid G such that
i11) for every a € G there exists an inverse element —a such that a * (—a) = (—a) xa = e.
A semigroup G is said to be abelian or commutative if its binary operation is
iv) commutative: a x b =bx*aforalla,b € G.

We shall denote by (G, *) a group G where * is a binary operation on G.

2.1.2  Rings

Definition 2.1.3 A ring is a nonempty set R with two binary operations, denoted as addition ¢ and
multiplication ® such that: forall a,b,c € R

i) (R,®) is an abelian group;
i) (a®b)©c=a0 (bOc)
i) a® (bdc)=(a®b)®(a®c)and (a®b) ©c=(a®c) D (bOc)
If in addition:
w) a®b=b0a
then R is said to be a commutative ring. If R contains an element 1y such that
v) lp@a=a0Glgp=a

then R is said to be a ring with identity and an element 15 is called a unity of R. We shall denote
by (R, ®,®) aring R where @ and © are two binary operations on R.

Definition 2.1.4 ideal and maximal ideal



2.1.3 Modules

Definition 2.1.5 Let (R, ®, ®) be a ring with a unity 1. An abelian group (G, ) together with a
function - : R x G — G is called a (left) R—module (or a left module over R) if :

i) (a®b)-g=(a-g9)& (b g)
ii) a- (g1 g2) = (a-g1) = (a-g2),
iii) a-(b-g)=(a®b)-g,

w) 1g-g9=g,

foralla,b € Rand g, g1, 92 € G.

For convenience, we shall refer to ag as the image of (a, g) of the above function.

2.2 Grouprings

In this section, we introduce a definition of a groupring and investigate some properties of a
unit on the groupring. The following definitions and some notation are given by Miles [10]. For
convenience, we shall refer ey, O and 1 to an identity of a group G, an identity element of a ring
R and a unity of a ring R, respectively.

2.2.1  Grouprings

Let (G, %) be a R—module over a ring (R, @, ®) with a unity 1z and R be the set of all
formal linear combinations of the form
a= ) ag9g
geCG

where ay, € R and a, = Op, almost everywhere, that is, only finite number of a, are different from
Or where Op is an identity element in R and define the support of « to be the set of elements g of
G such that the corresponding a4 # O, that is

supp(a) = {g € G : ag # ORr}.
Given two elements o = EgeG agg and 3 = deG byg in R, we have a = (3 if and only
ifag = by for all g € G. The sum of a and 3, denoted by o 4 3, is defined by
a+B=73 agg+ > bgg= > (ag®by)y.

geG geqG geG
Also, the product of « and (3, denoted by a3, is defined by

aff = > (ag©by)(g*h).

g,heG
By reordering the terms in the formula above, we can write
af =Y cuu
ueG

where ¢, = ) agbp.
gxh=u
It is easy to check that, R is a ring under the operations above. Moreover, R is a commutative
ring if and only if R is a commutative ring. In this research, we shall study the ring 2 which has no

zero divisor.

Definition 2.2.1 Let (G, *) be a R—module over a ring (R, ®, ®) with a unity 1. The set R,
with the operations defined above, is called groupring of G over R (or R is a groupring).



2.2.2  Unity and Unit of Rg

Let X be a set, the cardinality of a set X is denoted by | X|. Clearly that, the cardinality of
a groupring R is equal to m" where |G| = n and |R| = m. The following lemma shows some
properties of supp(a) and supp(«f) that will be used to consider a unit element of the groupring
R in the sequel.

Lemma 2.2.1 [4] Let R be a ring with has no zero divisor. Then gg’ = 0 if and only if either g = 0
org =0.

Lemma 2.2.2 Let o, 8 € R¢. The following conditions hold.

i) If supp(a) # supp(S) then o # B
i) |supp(a + B)| < [supp(a)| + |supp(B)|;

i11) |supp(aB)| > max{|supp(a)|, |supp(B)|}

Proof i) Itis obvious by definition.

i7) It is easy ti check that, supp(a + ) C (supp(a) U supp()). Thus |supp(a + B)| <
|supp(@)| + [supp(B)]-

i11) Since supp(af) = {gh : g € supp(a),h € supp(B)}, we conclude that |supp(a)| >
{gh : g € supp(a), h € supp(B)}| > max{|supp(a)l, |supp(B)[}.

[]

Clearly that, the converse of i) not true.

Recall that, an element u of a ring R is a unit if there exists v € R such that uv = vu = 1pR.
Here, we investigate a unit element of a groupring R.

Consider, an element 1 gre € R, we obtain that

Lreq Zagg :Z<1R®ag>(eG*g)

geG geqG

= Z(ag © 1r)(g * eq)

geG

= Zagg 1req

geG

=Y ayg

geG

Thus an element ugr, := 1geg is a unity of the groupring R¢.

Lemma 2.2.3 « € R is a unit if and only if |supp(a)| =1

Proof Let o be a unit. Then there exist ! € R such that aa™! = ur, = lgreg. Thus
supp(aa™) = supp(1req) = {eg}. Since 1 = |supp(aa1)| > max{|supp(a)|, |supp(a=)|},
we can conclude that |supp(a)| = |supp(a~1)| = 1.

Conversely, assume that |supp(«)| = 1. Then we put & = a4g for some a; € R, g € G.
There exists 5 = a,'(—g) € Rg such that a8 = (ay9)(a, ' (—g)) = aga; (9 — g) = 1req.

Therefore « is a unit in R¢;. []



2.3  Unitary Cayley Graphs

In this section, we start with some useful definitions in graph theory, the meaning of dominating
set and a domination number of a graph. After that, the concepts of the unitary Cayley graph is
offered.

2.3.1  Graphs

Definition 2.3.1 A graph is a pair G = (V(G), E(Q)) of sets such that the elements of E(G) are
2—element subset of V' (G). The elements of V' (G) are the vertices of the graph G, the elements of
E(G) are its edges.

Definition 2.3.2 Two vertices u, v of a graph G are adjacent, or neighbors, if {u, v} is an edge of
G. The set of neighbors of a vertex v in G is denoted by N (v).
If a vertex v € e for some an edge e € F then v is incident with an edge e and the edge e is

said to be edge at v. The degree d(v) of a vertex v is the number of neighbor of v i.e. d(v) = | N (v)].

Definition 2.3.3 Let G = (V, E) bea graph. If V/ C Vand E' C E, then G’ = (V', E’) is said
to be a subgraph of G.

If G’ is a subgraph of G and G’ contains all the edges {u,v} € E withu,v € V', then G’ is
an induced subgraph of G.

Definition 2.3.4 A dominating set in a graph G is a subset D of the vertex set V' of GG such that
for every vertex in V' \ D has a neighbor in D.

A domination number y(G) of a graph G is the minimum cardinality of a minimal dominating
setin G

2.3.2  Unitary Cayley Graph of Ring

Definition 2.3.5 Let R be a ring. The unitary Cayley graph of the ring R, is a graph with vertex
set R, where {u, v} is an edge if and only if u — v is a unit of R. Denote the unitary Cayley graph
ofaring Rby I'(R).

By the definition of the edge of the unitary Cayley graph of a ring R and the form of the unit
element of groupring R, we can conclude that the unitary Cayley graph of the groupring R,
denoted by I'( R¢;) is a graph with vertex set R, where {«, 3} is an edge if and only if « — S is a
unit if and only if |supp(a)| = 1.



Chapter 3

Methodology and Literature Review

3.1 Methodology

We have 3 phases to perform this research;

Phase I Study background knowledge and literature reviews.
Phase I  Verify the conditions, find some basic properties and then extend to the theorem.
Phase III  Prove the theorems and summarize.

3.2 Literature Review

A commutative ring R is said to be local ring if R has exactly one maximal ideal.

In 2009, Akhtar et al. [1] studied a unitary Cayley graph of a finite ring R and proved that
I'(R) is aregular graph of degree | R* | where R* is a set of all unit elements. Moreover, they proved
that if R is a commutative local ring with maximal ideal M, then I'(R) is a complete multipartite
graph whose partite sets are the cosets of M.

A Jacobson radical of aring R, denoted by Jg, is defined to be the intersection of all maximal
left ideal of R.

In 2012, Kiani and Aghaei [6] studied a unitary Cayley graph of a ring and prove that if
I'(R) = I'(S), then I'(R/Jg) = T'(S/Js) where Jg and Jg are Jacobson radicals of R and
S, respectively. Moreover, they obtained that if I'(R) = I'(R'), then R/Jr = R'/Jg for any
commutative ring R and R’.

In 2015, Su [11] submitted a doctoral thesis that studied a unitary Cayley graph of ring and
many properties of the unitary Cayley graph of ring are obtained, such as girth, diameter, connectivity
etc.



Chapter 4

Results

In this Chapter is about the main propose of this research which means that we shall present
some properties of a unitary Cayley graph of a grouprinf R, including . Certainly, the domination
number of I'( R¢;) is offered. After that, we shall present a several interesting corollary also. On
top of that, we shall decompose the unitary Cayley graph I'( R¢;) by using a relation on the support
supp(a) of each element «v of Rg.

4.1 Unitary Cayley Graph of Ring

In this part, we classify an element of R by Sj, such that for each 1 < k < n, define S =
{a € Rg : |supp(a)| = k}. Note that, we let Sp = {Og, } and clearly that, |Sy| = (m — 1)¥.
Lastly, we prove some basic properties of the unitary Cayley graph I'(R¢) such as, a degree of
vertex, a connectivity etc.

Lemma 4.1.1 Let o, f € Rg where v = ) aggand § = ) byg. If [supp(o — B)| = 1 then
geG geqG

|(supp(ar) U supp(B)) \ (supp(a) N supp(8))| <1

Proof Let|supp(a— ()| = 1. Assume to the contradiction that | (supp(a)Usupp(5))\ (supp(a)N

supp(B))| > 2. Then there exists g, ¢’ € (supp(a) U supp(B)) \ (supp(a) N supp(B)) where
g # ¢’ whichmeans g, ¢’ € (supp(a)Usupp()) and g,¢" ¢ (supp(a) Nsupp(B)). We consider
two cases:

i) If g, g’ € supp(c) then ay, ay # Op. Since by and by are equal to O, [supp(a — )| > 2

which is contradicts to the assumption.

it) If g € supp(a) and ¢’ € supp(fB) then agy # O and by # Og. Since g,¢" ¢ (supp(a) N
supp(B)), ag and by are equal to Or. Thus ag, by € supp(a—3) this implies that | supp(a—

B)| > 2 which is contradicts to the assumption.

The case g, ¢" € supp() and ¢’ € supp(«), g € supp(B) can be proved by the similar reason.
Therefore |(supp(a) U supp(B)) \ (supp(a) N supp(B))| < 1, as required. [

The following theorem, we shall conclude the adjacent condition of each pair of elements in
R¢.

Theorem 4.1.2 Let I'(R¢) be a unitary Cayley graph of a groupring R and o, 8 € R where

a = ) aggand f = ) byg. Then {a, 5} is an edge of I'(R¢) if and only if the following
geG geG
conditions hold

i) |(supp(a) U supp(B)) \ (supp(a) N supp(B))| < 1;

it) if supp(a) = supp(pB) then there is a unique ¢’ € supp(B) such that by # ay and by = ag

for otherwise;



ii) if |(supp(a) U supp(B)) \ (supp(a) N supp(B3))| = 1 then by = a4 forall g € supp(8) N
supp(a).
Proof Let o, € Rgsuchthata = ) aggand § = ) byg. Assume that {c, 8} is an edge

9€G geG
of I'(R) which means that v — 3 is a unit of Rg. Thus |supp(a — )| = 1. We consider each

condition as follow.
i) Clearly that 7) is obtained by Lemma 4.1.1.

i1) Suppose that supp(«) = supp(f). Assume to the contradiction that a; = b, for all g €

supp(f) = supp(a). Thena — = > (ag — bg)g = Y (ag — ag)g = O¢ this implies
geG geG

that supp(cv — 3) = () which is contradicts to [supp(a — 3)| = 1. Therefore the condition

i1) holds.

i7i) Suppose that |(supp(a) U supp(5)) \ (supp(a) N supp(B))| = 1. Thus there exists h €
(supp(a) U supp(B)) \ (supp(a) N supp(B)). Assume to the contradiction that by # a4
for some g € supp(B) N supp(a). For each g € supp(B) N supp(a) we obtain that
ag — by # Og where by # ag4. Let h € (supp(a) U supp(5)) \ (supp(a) N supp(B)).
Then either h € supp(a) or h € supp(B). Consequently, h € supp(a — [3). Choose
g € supp(B) N supp(c) such that ay # by, then g € supp(o — () and clearly that g # h.
Hence h,g € supp(a — () which is contradicts to |supp(aw — )| = 1. Therefore the

condition i7) holds.

Conversely, assume the conditions holds. We shall show that |supp(a — )| = 1. Since

| (supp(er) U supp(B)) \ (supp(a) N supp(B))| < 1, |(supp(a) U supp(B)) \ (supp(e) N
supp(B))| € {0,1}. Consider two cases.

i) If [(supp(a) U supp(B)) \ (supp(er) N supp(pB))| = O, then supp(ar) = supp(B). By
using i) we obtain that there is a unique ¢’ € supp(B) such that ay # by and by = ay

for otherwise. Then ay — by # Og and ay — by = Op for all g € supp(B) \ {¢'}.

Consequently, ¢’ € supp(a — ) and g ¢ supp(a — () forall g € supp(8) \ {¢'}. Hence
supp(a — B) = {g'}. Therefore |supp(a — B)| = 1 as required.

i1) If |(supp(ar) U supp(B)) \ (supp(a) N supp(B))| = 1. We obtain that there is ¢’ €
(supp(a) U supp(B)) \ (supp(cr) N supp(B)). Consequently, g" ¢ supp(a) N supp(S3)
and either ¢’ € supp(a) or ¢’ € supp(B). By using iii), ag — by = Op forall g €
supp(a) N supp(B) and ¢’ € supp(a — B). Hence supp(a — B) = {g’'}. Therefore
|supp(a — B)| = 1 which means that {«, 5} € E(I'(R¢)) as required.

[]
Lemma 4.1.3 Leta € V(I'(Rg)) and @ € Sy. Then N () C Sk—1 U Sk U Sk41.

Proof Let 5 € N(«). Then {a, f} € E(I'(R¢g)). By Theorem 4.1.2 we obtain that | (supp(«) U

supp(B)) \ (supp(cr) N supp(B))| < 1, which means that |(supp(c) \ supp(8))| € {0,1} and
we then consider two following cases;



Case |supp(a) \ supp(B)| = 1. Let g € supp(e), g ¢ supp(S3). If there exists h # g such
that h € supp(B) and h ¢ supp(«) then g, h € (supp(a) U supp(B)) \ (supp(a) N supp(5))
which implies that |(supp(a) U supp(5)) \ (supp(a) N supp(B))| > 2 that is a contradiction.
Thus supp(5) € supp(a). From |supp(a) \ supp(8)| = 1 we can conclude that 5 € Si_1.

Case |supp(«) \ supp(B)] = 0. We can conclude that either supp(a) = supp(B) or
supp(a) € supp(p). Clearly that, if supp(a) = supp(S) then 5 € Sk. In case of supp(a) C
supp(B), we get that |(supp(a) U supp(B)) \ (supp(a) N supp(B))| = [(supp(er) U supp(B)) \
supp(a)| < 1. Since supp(a) C supp(B), |supp(B) \ supp(c)| = 1. Thus we can conclude that
B € Skt1- ]

Lemma4.14 Leta € V(I'(Rg)), o € Si; and 5 € N (). Then the following conditions holds;
i) B € Sk—1 ifand only if supp(B) C supp(a);
i1) B € Sk if and only if supp(8) = supp(a);
iii) B € Sk41 if and only if supp(a) € supp(f).
Proof Let 5 € N(a). Then {c, 5} € E(I'(Rg)).

i) Let3 € Sg_1. Then |supp(a)|—|supp(5)| = 1 which means that there exists g € suup(a)
such that g ¢ supp(3). Assume to the contradiction that there exists ¢’ € supp(3) such that
g ¢ supp(a). Clearly, g # ¢'. Thus {g,¢'} C (supp(a) U supp(B)) \ (supp(e) N
supp(B)) that means |(supp(a) U supp(B)) \ (supp(a) N supp(B))| > 2 which is a
contradiction, since {«, 5} € E(I'(Rg)).

Conversely, Assume that supp(3) C supp(«). Clearly that, if |supp(«) \ supp(B)| > 2
then |(supp(a) U supp(B)) \ (supp(ca) N supp(B))| > 2 which is a contradiction since
B € N(«). Thus |supp(a) \ supp(B)| < 1 which implies that |supp(«) \ supp(8)| = 1

because supp(B) < supp(«). Therefore B € Sk_1 as required.

i) Let B € Sk. Assume to the contradiction that supp(5) # supp(a). Since |supp(a)| =
|supp(3)|, there exists g # ¢’ such that g € supp(a), g’ € supp(B)and g’ ¢ supp(a),g ¢

supp(B). Thus {g,¢9'} C (supp(a) U supp(B)) \ (supp(a) N supp(B)) that means
|(supp(a) Usupp(B))\ (supp(a) Nsupp(B))| > 2 which is a contradiction, since {a, 8} €

E(T(Rg)).

Conversely, Let supp(f) = supp(«). It is obvious that 5 € Sk, since o € S.

i1i) Let 3 € Ski1. Then |supp(B)|—|supp(c)| = 1 which means that there exists ¢’ € suup(f)
such that ¢’ ¢ supp(a). Assume to the contradiction that there exists g € supp(a) such that
g ¢ supp(B). Clearly, g # ¢'. Thus {g, ¢’} C (supp(e)Usupp(B))\(supp(a)Nsupp(B))
that means |(supp(a) U supp(B)) \ (supp(a) N supp(B))| > 2 which is a contradiction,
since {or, B} € E(I'(Rg)).
Conversely, Assume that supp(a) C supp(S). Clearly that, if |supp(8) \ supp(a)| > 2
then |(supp(a) U supp(B)) \ (supp(a) N supp(B))| > 2 which is a contradiction since
B € N(«). Thus |supp(B) \ supp(a)| < 1 which implies that |supp(8) \ supp(a)| =1
because supp(a) C supp(3). Therefore B € Sk1 as required.
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[]

Theorem 4.1.5 Let o« € V(I'(Rg)) and o« = ) agg € Sk. Then d(c) = n(m — 1) for all
geG
2<k<n-1.

Proof By using Lemma 4.1.3, we obtain that d(«) = |N () N Si—1| + [N (a) N S|+ |N(a) N
Sk-+1|- Then we shall investigate the cardinality of the following 3 subsets.

i) Consider [N (c) N Si_1|. By Lemma 4.1.4, we obtain that 3 € N(«) N Sk_1 if and only
if {o, B} € E(I'(R¢)) and supp(5) C supp(«). By Theorem 4.1.2, we obtain that § =

=

> agg where A C supp(a) and |A| = |supp(a)| — 1 forall B € N(«) N Sk_; . Hence
geA

IN(a) N S—1| = (7)) = k.

i7) Consider |[N () N Sk|. By Lemma 4.1.4, we obtain that 5 € N(«) N Sk if and only if
{a, B} € E(I'(R¢)) and supp(3) = supp(«). By Theorem 4.1.2, for any 8 € N(«a) N
Sk_1, we obtain that § = > agg + bph for some h € supp(a) where b, €

gesupp(a)\{h}
R\ {Og,an}. Hence |N () N S| = (lf) (m—2) =k(m —2).

i7i) Consider |N(a) N Sk41|. By Lemma 4.1.4, we obtain that § € N(«) N Sk41 if and only
if{a, 8} € E(I'(R¢)) and supp(«) S supp(3). By Theorem 4.1.2, for any 5 € N(a) N
Sk+1, we obtain that 3 = > aqgg + bph where supp(a) U {h} = supp(S3) and
g€supp(a)U{h}
by, # Og. Hence [N (a) N S| = ("7%)(m — 1) = (n — k)(m — 1).

Therefore d(a) = k + k(m — 2) + (n — k)(m — 1) = n(m — 1). []

4.2  Connectivity

Let |G| = n, |R| = m and R¢ be a groupring. For each «, 5 € R we define a relation ~
by

a ~ [ if and only if supp(a) = supp(5).

It is easy to check that, ~ is an equivalent relation on Rg; consequently, the set of all distinct
equivalence classes in ~ forms a partition of Rg. By & we denote the equivalence class of « i.e.
a ={p € Rg : B ~ a}. Furthermore, we put T,, = {ayg : g € supp(c)}.

In this section, we investigate a connectivity of the unitary Cayley graph of groupring and
obtain that I'(R) is a connected graph as follow,

Lemma 4.2.1 Leta € V(I'(Rg)) and @ = ) agyg € Sy. Then an induced subgraph I'( Rg)[@]
geG
is a connected subgraph of I'( R¢).

Proof Let « = ) a4g, we shall show that there is a path from « to  for every § € @. Let
geG
8 = ZGbgg € a. Then supp(B) = supp(a). Let {a}, hi,a), ha,...,a) hi} be a subset
ge
of Ty, such that alh; # bp,h; where by h; € Tpg foralli € {1,2,...,t} and we put T =

{hi,ho,...,h4}. Then @ = ap = > agg> +a;llh1+a%2h2+...+a;%ht. Let
gesupp(a)\T’
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o = > agg | + | 22 bnhy | + aﬁli+1hi+1 + ...+ a;ltht foralll < ¢ < t. We
gesupp(a)\T"’ j=1

obtain that {c;;_1,;} € E(I'(Rg)) forall 1 <4 <t and clearly that 5 = cy. Thus there exists a

path from « to 3 for all 3 € & which means that for any 3, 3’ € @, there exists a path from 3 to «
and a path from « to /3’. Hence there exists a path from 3 to 5’ for all 5, 3’ € &. Therefore & is a
connected subgraph of I'( R¢;) as required. []

Lemma 4.2.2 Let o, 8 € V(I'(Rg)). If supp(a) C supp(B) then v, 8 are connected.

Proof Let o = > ag9. 08 = Y bggand supp(er) C supp(B). Clearly that, if
g€supp(a) g€supp(B)
supp(a) = supp(3), we get o, 3 are connected by Lemma 4.2.1. Suppose that |supp(a)| = k for

some 1 < k < n. Here, we consider the case of supp(a) € supp(B). Let|supp(B)\supp(a)| =t

forsome 1 <t < |supp(B)|—1. Definec; = >, agg+ap hi+ap,ho+...+ap,h; where
g€supp()

j—1
h; € supp(B) \ (supp(a) U (U hr)) forall1 < j <<iandap, #Opforalll <¢<t¢—1
r=1

Denote @« = «g and we can conclude that {a;_1,0;} € E(I'(Rg)) forall 1 < ¢ < ¢t — 1.
Consequently, we obtain that a1, 3 € E(I'(Rg)). Therefore there exists a path from « to

which means that «, 5 are connected as required. []
Theorem 4.2.3 I'(R¢) is a connected graph.

Proof Let o, 3 € V(I'(Rg)), we shall show that there exists a path from a to 5. Now, let A €
V(I'(R¢)) such that supp(A) = G. Thus supp(a) C supp(A) and supp(5) C supp(A). By
Lemma 4.2.2, we obtain that there exists a path from « to A and a path from [ to A. Hence, we can
conclude that there exist a path from « to 3 for all v, B € V(I'(R¢)) which means that I'( R¢) is

a connected graph as required. []

4.3 A Dominating Set of I'( R¢;)
For each o € R we denote D (&) a maximal pairwise non-adjacent subset of I'( R¢) [@].
Lemma 4.3.1 D(a) is a dominating set of I'( R ) [a].

Proof By the definition of D (&) we can conclude that for any 5 € V(I'(Rg)[@]) the exists A €
D(@) such that 8, A € E(I'(Rg)[@]). Thus D(@) is a dominating set of I'( R)[@] as required.

[]

Theorem 4.3.2 |J D(@) isa dominating set I'( R¢)

a€Rg
Proof Since D(a) is a dominating set of the induced subgraph I'( Ry ) [@] for all equivalence class
aonV(I'(Rg))and |J a=V([I'(Rg)), U D(a)isadominating set I'(R¢). []

a€ERa a€Rqg



Chapter 5

Conclusion

In this research, we first investigate an adjacent condition of a unitary Cayley graph of a finite
groupring and obtain that

for any o, f € Rg where o« = ) aggand f = > bgg. We get {c, f} is an edge of
geG geG
I'(R¢) if and only if the following conditions hold

i) |(supp(a) U supp(B)) \ (supp(ar) N supp(B))| < 1;

it) if supp(a) = supp(3) then there is a unique g’ € supp(B) such that by # a, and by = ay
for otherwise;

iii) if |(supp(a) U supp(B)) \ (supp(a) N supp(B3))| = 1 then by = a4 forall g € supp(8) N
supp(a).

Afterward, the degree of a vertex of I'( R¢;) is obtained, i.e. d(«) = n(m—1) forall « € S,
where 2 < k < n—1. In addition, we prove that a unitary Cayley graph of a finite groupring I'( R¢)
is a connected graph. Besides, we give a dominating set of I'( R¢;) in term of union of a dominating
set of each equivalence class also.
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