ชื่อเรื่อง ความสัมพันธ์ของจำนวนเชิงรูป

The relations of the figurate

นักวิจัย ผู้ช่วยศาสตราจารย์ ดร.ชัยณรงค์ ขันผนึก

E-mail iprove@hotmail.com

คณะ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเพชรบูรณ์

ปีการศึกษา 2553

บทคัดย่อ

การวิจัย เรื่อง **ความสัมพันธ์ของจำนวนเชิงรูป**นี้ มีจุดประสงค์ คือ

- 1) เพื่อสร้างและพิสูจน์ทฤษฎีบทของจำนวนเชิงรูป และ
- 2) เพื่ออธิบายความสัมพันธ์ของจำนวนเชิงรูปแบบต่าง ๆ จากการศึกษาวิจัยนี้ได้สร้างและพิสูจน์ทฤษฎีบทของจำนวนเชิงรูปในรูปทั่วไป 3 แบบ คือ
- (1) รูปทั่วไปของจำนวนรูป m เหลี่ยมพจน์ที่ n คือ $P_{(m,n)} = \frac{1}{2} \{ (m-2)n^2 + (4-m)n \}$ เมื่อ m \geq 3 และ n = 1, 2, 3, ...
- (2) รูปทั่วไปของจำนวนรูป n เหลี่ยมจากจุดศูนย์กลางพจน์ที่ t คือ $C_{(n,t)} = \frac{nt^2 + nt + 2}{2}$ เมื่อ n = 3, 4, 5, ... และ t = 0, 1, 2, ...
- (3) รูปทั่วไปของจำนวนรูปดาวฐาน n เหลี่ยมจากจุดศูนย์กลางพจน์ที่ t คือ $S_{(n,t)} = \frac{nt^2 + nt + 2}{2} + n\left(\frac{t^2 + t}{2}\right)$ เมื่อ n = 3, 4, 5, ... และ t = 0, 1, 2, ...

และจากทฤษฎีบทของรูปทั่วไปของจำนวนเชิงรูปทั้งสามแบบนำสู่การอธิบายความสัมพันธ์ของจำนวนเชิงรูปแบบต่างๆ ได้ ดังนี้

(i) ความสัมพันธ์ของจำนวนรูปหลายเหลี่ยมจากศูนย์กลางและจำนวนรูปสามเหลี่ยม

ได้แก่ เมื่อกำหนดให้ T_n เป็นจำนวนรูป สามเหลี่ยมใดๆ และ $C_{(k+t,n)}$, $C_{(k,n)}$ เป็นจำนวนรูป k+1 เหลี่ยม และ k เหลี่ยม จากศูนย์กลางใดๆ แล้ว $C_{(k+t,n)}$ - $C_{(k,n)}$ = $C_{(k+t,n)}$ - $C_{$

(ii) ความสัมพันธ์ของจำนวนรูปดาวฐาน n เหลี่ยมจากศูนย์กลางและจำนวนรูปสามเหลี่ยม

ได้แก่ เมื่อกำหนดให้ T_n เป็นจำนวน รูปสามเหลี่ยมใด ๆ และ $S_{(k+1,n)}$, $S_{(k,n)}$ เป็นจำนวนรูปดาวฐาน k+1 เหลี่ยมและ k เหลี่ยมจากศูนย์กลางใดๆ แล้ว $S_{(k+1,n)}$ - $S_{(k,n)}$ = $2T_n$ เมื่อ k=3,4,5,... และ n=0,1,2,3,..., $T_0=0$

(iii) ความสัมพันธ์ของจำนวนรูปดาวฐาน n เหลี่ยมจากศูนย์กลางจำนวนรูปหลายเหลี่ยมจากศูนย์กลางและ จำนวนรูปสามเหลี่ยม

ได้แก

- a) เมื่อกำหนดให้ T_n เป็นจำนวนรูปสามเหลี่ยมใด ๆ และ $S_{(k+1,n)}$ เป็นจำนวนรูปดาวฐาน k+1 เหลี่ยมจาก ศูนย์กลางใด ๆ และ $C_{(k,n)}$ เป็นจำนวนรูป k เหลี่ยมจากศูนย์กลางใดๆ แล้ว $S_{(k+1,n)}$ $C_{(k,n)}$ = $(k+2)T_n$ เมื่อ k=3,4,5,... และ n=0,1,2,3,... $T_0=0$
- b) เมื่อกำหนดให้ T_n เป็นจำนวนรูปสามเหลี่ยมใด ๆ และ $S_{(k,n)}$ เป็นจำนวนรูปดาวฐาน k เหลี่ยมจากศูนย์กลาง ใด ๆ และ $C_{(k,n)}$ เป็นจำนวนรูป k เหลี่ยมจากศูนย์กลางใด ๆ แล้ว $S_{(k,n)}$ $C_{(k,n)}$ = kT_n เมื่อ $k=3,\,4,\,5,\,...$ และ $n=0,\,1,\,2,\,3,\,...$, $T_0=0$

คำสำคัญ: ความสัมพันธ์ของจำนวนเชิงรูป

ABSTRACT

The relations of the Figurate numbers aims are:

- 1) To established and proved a theorem of formals and
- 2) To describe the relationship of forms of the Figurate numbers.

To describe the relationship, the theorems of three types of the Figurate numbers can be proved in the general forms;

- (1) The general form of the m-gon number is $P(m,n) = \frac{1}{2} \{(m-2)n^2 + (4-m)n\}$, when $m \ge 3$ and n = 1, 2, 3...
- (2) The general form of the n-gon centered number is $C(n,t) = \frac{nt^2 + nt + 2}{2}$, when $n \ge 3$ and t = 0, 1, 2...
- (3) The general form of the n-gon centered star number is $S(n,t) = \frac{nt^2 + nt + 2}{2} + n\left(\frac{t^2 + t}{2}\right)$, when $n \ge 3$ and t = 0, 1, 2...

From three theorems of the general forms of the Figurate numbers can described the relationship between various forms of them as follow;

- (i) The relation between the n-gon centered number and the triangle number; Given T_n is the general form of the triangle number and $C_{(k+t,n)}$, $C_{(k,n)}$ are the general forms of the k+1-gon centered number and k-gon centered number respectively then $C_{(k+t,n)}$ $C_{(k,n)}$ = T_n when T_0 = 0 , k = 3, 4, 5, ... and n = 0, 1, 2, 3, ...
- (ii) The relation between the n-gon centered star number and the triangle number; Given T_n is the general form of the triangle number and $S_{(k+1,n)}$, $S_{(k,n)}$ are the general forms of the k+1-gon centered star number and k-gon centered star number respectively then $S_{(k+1,n)}$ $S_{(k,n)}$ = $2T_n$ when T_0 = 0, k = 3, 4, 5, ... and n = 0, 1, 2, 3, ...
- (iii) The relation between the n-gon centered number, the n-gon centered star number and the triangle number;
 - a) Given T_n is the general form of the triangle number, $S_{(k+1,n)}$ is the general form Of the k+1-gon centered star number and $C_{(k,n)}$ is the general form of k-gon Centered number

then
$$S_{(k+1,n)}$$
 - $C_{(k,n)}$ = $(k+2)T_n$ when T_0 = 0 , k = 3, 4, 5, ... and n = 0, 1, 2, 3, ...

b) Given T_n is the general form of the triangle number, $S_{(k,n)}$ is the general form Of the k-gon centered

star number and
$$C_{(k,n)}$$
 is the general form of k-gon Centered number then $S_{(k,n)}$ - $C_{(k,n)}$ = kT $_n$ when T $_0$ = 0 , k = 3, 4, 5, ... and n = 0, 1, 2, 3, ...

Keyword: The relations of the Figurate